Hardy Spaces on the Polydisk

Khim R. Shrestha
University of Great Falls, 1301 20th St S, Great Falls, MT 59405

Abstract

In this paper we will study the boundary values properties of the functions in the Hardy spaces; generalize the F. and M. Riesz theorem to higher dimensions; discuss the existence of boundary values of the functions in $H^{p}\left(\mathbb{D}^{n}\right)$ on non-distinguished boundary $\partial \mathbb{D}^{n} \backslash \mathbb{T}^{n}$ and the intersection of the spaces $H_{u}^{p}\left(\mathbb{D}^{n}\right)$.

2010 Mathematics Subject Classifications: 32A35, 32A40
Key Words and Phrases: Poisson integral, boundary values, exhaustion function

1. Introduction

This paper basically consists of two parts. In the first part, consisting of Sections 2, 3 and 4, we study the properties of the functions on the classical Hardy spaces of n-harmonic functions and the Hardy spaces of holomorphic functions on the polydisk. In Section 2 we will show that the functions in the classical Hardy spaces can be restored by the Poisson integral of its radial limit. In Section 3 we will restate and prove the celebrated F. and M. Riesz theorem to higher dimensions. In Section 4 we will study the boundary values of the functions in $H^{p}(\mathbb{D})$ on the non-distinguished boundary, $\partial \mathbb{D}^{n} \backslash \mathbb{T}^{n}$.

The second part of this paper consists of Section 5. In this section we study the PoletskyStessin Hardy spaces $H_{u}^{p}\left(\mathbb{D}^{2}\right)$ on bidisk. We mainly establish two things - there are nontrivial Poletsky-Stessin Hardy spaces and the intersection of the Poletsky-Stessin Hardy spaces over all exhaustion functions is $H^{\infty}\left(\mathbb{D}^{2}\right)$, the space of bounded holomorphic functions on \mathbb{D}^{2}.

2. Hardy Spaces and Poisson Integral Formula

An n-harmonic function u on \mathbb{D}^{n} is a function which is harmonic in each variable separately. Denote by $h^{p}\left(\mathbb{D}^{n}\right)$ the space of all n-harmonic functions satisfying

$$
\begin{equation*}
\sup _{0 \leq r<1} \int_{\mathbb{T}^{n}}\left|u_{r}(\zeta)\right|^{p} d m(\zeta)<\infty \tag{1}
\end{equation*}
$$

[^0]where $u_{r}(\zeta)=u(r \zeta)$ and $d m$ is the normalized Lebesgue measure on \mathbb{T}^{n}. The p-th root of (1) defines a norm on $h^{p}\left(\mathbb{D}^{n}\right)$ when $p \geq 1$. With this norm $h^{p}\left(\mathbb{D}^{n}\right)$ is Banach.

We will use the following notations:

$$
\begin{aligned}
z & =\left(z_{1}, \ldots, z_{n}\right) \\
\zeta & =\left(\zeta_{1}, \ldots, \zeta_{n}\right) \\
P(z, \zeta) & =P\left(z_{1}, \zeta_{1}\right) \ldots P\left(z_{n}, \zeta_{n}\right)
\end{aligned}
$$

where $P(z, \zeta)$ is the Poisson kernel and

$$
P\left(z_{j}, \zeta_{j}\right)=\operatorname{Re}\left(\frac{\zeta_{j}+z_{j}}{\zeta_{j}-z_{j}}\right)=\frac{1-\left|z_{j}\right|^{2}}{\left|\zeta_{j}-z_{j}\right|^{2}}, \quad j=1, \ldots, n .
$$

Theorem 1. Let $u \in h^{p}\left(\mathbb{D}^{n}\right), p>1$. Then there exists a function $f \in L^{p}\left(\mathbb{T}^{n}\right)$ such that

$$
u(z)=\int_{\mathbb{T}^{n}} P(z, \zeta) f(\zeta) d m(\zeta) .
$$

Proof. Take $r_{j} \nearrow 1$. Then (1) implies that there is a weakly convergent subsequence of $u_{r_{j}}$. We will write the subsequence $u_{r_{j}}$ just to avoid the sub-subscript. Hence for $g \in L^{q}\left(\mathbb{T}^{n}\right)$

$$
g \mapsto \lim _{j \rightarrow \infty} \int_{\mathbb{T}^{n}} g(\zeta) u_{r_{j}}(\zeta) d m(\zeta)
$$

is a linear functional on $L^{q}\left(\mathbb{T}^{n}\right)$. By Riesz theorem there exists an $f \in L^{p}\left(\mathbb{T}^{n}\right)$ such that

$$
\lim _{j \rightarrow \infty} \int_{\mathbb{T}^{n}} g(\zeta) u_{r_{j}}(\zeta) d m(\zeta)=\int_{\mathbb{T}^{n}} g(\zeta) f(\zeta) d m(\zeta)
$$

Now take $g(\zeta)=P(z, \zeta)$. Then

$$
u(z)=\lim _{j \rightarrow \infty} u_{r_{j}}(z)=\lim _{j \rightarrow \infty} \int_{\mathbb{T}^{n}} P(z, \zeta) u_{r_{j}}(\zeta) d m=\int_{\mathbb{T}^{n}} P(z, \zeta) f(\zeta) d m(\zeta) .
$$

The second equality above follows from [7, Theorem 2.1.2].
What makes the above proof work is the duality of L^{p} spaces. Since L^{∞} is the dual of L^{1}, the same result holds with the same proof for $p=\infty$. Of course we have to change the statement accordingly. But unfortunately L^{1} is not dual of anything, we don't have the same result for $p=1$. Instead, since the space of finite signed measures on \mathbb{T}^{n} is dual of the space of continuous functions $C\left(\mathbb{T}^{n}\right)$ we have the following result from [7, Theorem 2.1.3, (e)].

Theorem 2. If the hypothesis of Theorem 1 holds for $p=1$ then there exists a finite signed measure μ on \mathbb{T}^{n} with

$$
u(z)=\int_{\mathbb{T}^{n}} P(z, \zeta) d \mu(\zeta) .
$$

So the function $u \in h^{p}\left(\mathbb{D}^{n}\right), p>1$, is the Poisson integral of some function $f \in L^{p}\left(\mathbb{T}^{n}\right)$. Is there any other connection between u and f ? We know, when $n=1, f$ is the boundary value function of u and when $n>1$ the following theorem [7, Theorem 2.3.1] answers this question.

Theorem 3. If $f \in L^{1}\left(\mathbb{T}^{n}\right)$, if σ is a measure on \mathbb{T}^{n} which is singular with respect to $d m$, and if $u=P[f+d \sigma]$, then $u^{*}(\zeta)=f(\zeta)$ for almost every $\zeta \in \mathbb{T}^{n}$.

Recall that $u^{*}(\zeta)=\lim _{r \rightarrow 1} u(r \zeta)$ is the radial limit. Thus any n-harmonic function satisfying the growth condition (1) for $p>1$ can be restored by the Poisson integral of its boundary value function.

For $p=1$ we just saw in Theorem 2 that $u(z)=P[d \mu](z)$. By the Lebesgue decomposition theorem

$$
d \mu=f d m+d \sigma
$$

where σ is singular with respect to m and $f \in L^{1}\left(\mathbb{T}^{n}\right)$. Hence we have $u^{*}(\zeta)=f(\zeta)$ but u can not be restored by the Poisson integral of its boundary value function unless, of course, $P[d \sigma]=0$.

Also in [7] it has been proved that if $f \in L^{p}\left(\mathbb{T}^{n}\right), 1 \leq p<\infty$, and $u=P[f]$ then u_{r} converges to f in the L^{p}-norm as $r \rightarrow$ 1, i.e. $\lim _{r \rightarrow 1}\left\|u_{r}-f\right\|_{L^{p}}=0$. But when $p=1$ we have the weak-* convergence.

Theorem 4. Let $f(z)=P[d \mu](z)$ with μ a finite signed measure on \mathbb{T}^{n}. Then $f_{r} d m \rightarrow d \mu$ weak-* as $r \rightarrow 1$.

Proof. Let $\varphi \in C\left(\mathbb{T}^{n}\right)$. Then

$$
\begin{aligned}
\left|\int_{\mathbb{T}^{n}} \varphi(\zeta) f_{r}(\zeta) d m(\zeta)-\int_{\mathbb{T}^{n}} \varphi(\zeta) d \mu(\zeta)\right| & =\left|\int_{\mathbb{T}^{n}} \varphi(\zeta)\left(\int_{\mathbb{T}^{n}} P(r \zeta, \eta) d \mu(\eta)\right) d m(\zeta)-\int_{\mathbb{T}^{n}} \varphi(\eta) d \mu(\eta)\right| \\
(\because P(r \zeta, \eta)=P(r \eta, \zeta)) & =\left|\int_{\mathbb{T}^{n}}\left(\int_{\mathbb{T}^{n}} P(r \eta, \zeta) \varphi(\zeta) d m(\zeta)\right) d \mu(\eta)-\int_{\mathbb{T}^{n}} \varphi(\eta) d \mu(\eta)\right| \\
& =\left|\int_{\mathbb{T}^{n}}\left(\int_{\mathbb{T}^{n}} P(r \eta, \zeta) \varphi(\zeta) d m(\zeta)-\varphi(\eta)\right) d \mu(\eta)\right| \\
& \rightarrow 0
\end{aligned}
$$

because the inner integral goes to zero uniformly on η. Hence $f_{r} d m \rightarrow d \mu$ weak-* as $r \rightarrow 1$.

We define $H^{p}\left(\mathbb{D}^{n}\right), 0<p<\infty$, to be the class of all holomorphic functions $f \in \mathbb{D}^{n}$ for which

$$
\sup _{0 \leq r<1} \int_{\mathbb{T}^{n}}\left|f_{r}(\zeta)\right|^{p} d m<\infty
$$

and $H^{\infty}\left(\mathbb{D}^{n}\right)$ is the space of all bounded holomorphic functions in \mathbb{D}^{n}.

Since $|f|^{p}$ is n-subharmonic, sup in the definition can be replaced by lim as $r \rightarrow 1$.
It is known that if $f \in H^{p}\left(\mathbb{D}^{n}\right), 0<p<\infty$, then f has a non-tangential limit at almost all points of \mathbb{T}^{n} [11, Ch. XVII, Theorem 4.8]. We denote this limit by f^{*} as in [7] and call it a boundary value function. Moreover, we have the following results from Rudin (see [7, Theorem 3.4.2 and 3.4.3]).
Theorem 5. If $f \in H^{p}\left(\mathbb{D}^{n}\right), 0<p<\infty$, then $f^{*} \in L^{p}\left(\mathbb{T}^{n}\right)$ and
(i) $\lim _{r \rightarrow 1} \int_{\mathbb{T}^{n}}\left|f_{r}\right|^{p} d m=\int_{\mathbb{T}^{n}}\left|f^{*}\right|^{p} d m$
(ii) $\lim _{r \rightarrow 1} \int_{\mathbb{T}^{n}}\left|f_{r}-f^{*}\right|^{p} d m=0$.

When $p \geq 1$ the function in $H^{p}\left(\mathbb{D}^{n}\right)$ can be represented by the Poisson integral of its boundary value function.
Theorem 6. If $f \in H^{1}\left(\mathbb{D}^{n}\right)$, then

$$
f(z)=\int_{\mathbb{T}^{n}} P(z, \zeta) f^{*}(\zeta) d m
$$

(The case $n=1$ can be found in [6, Theorem 17.11].)
Proof. Since $z \in \mathbb{D}^{n}, P(z, \zeta)$ is bounded on \mathbb{T}^{n} and by (ii) of the theorem above

$$
\begin{aligned}
\left|\int_{\mathbb{T}^{n}} P(z, \zeta) f_{r}(\zeta) d m(\zeta)-\int_{\mathbb{T}^{n}} P(z, \zeta) f^{*}(\zeta) d m(\zeta)\right| & \leq \int_{\mathbb{T}^{n}} P(z, \zeta)\left|f_{r}(\zeta)-f^{*}(\zeta)\right| d m(\zeta) \\
& \rightarrow 0 .
\end{aligned}
$$

Now by [7, Theorem 2.1.2]

$$
\begin{aligned}
f(z) & =\lim _{r \rightarrow 1} f_{r}(z) \\
& =\lim _{r \rightarrow 1} \int_{\mathbb{T}^{n}} P(z, \zeta) f_{r}(\zeta) d m(\zeta) \\
& =\int_{\mathbb{T}^{n}} f^{*}(\zeta) d m(\zeta)
\end{aligned}
$$

3. The F. and M. Riesz Theorem

Now we want to generalize the F. and M. Riesz theorem.
Theorem 7. Let μ be a complex Borel measure on \mathbb{T}^{n}. If

$$
\int_{\mathbb{T}^{n}} e^{i(k \theta)} d \mu(\theta)=0
$$

for $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{n}$ with at least one $k_{j}, j=1,2, \ldots, n$ positive, where $(k \theta)=k_{1} \theta_{1}+\ldots+k_{n} \theta_{n}$ then μ is absolutely continuous with respect to dm .
(When $n=1$ see [6, Theorem 17.13].)
Proof. Define $f(z)=P[d \mu](z)$. Then, with the notations

$$
\begin{aligned}
z & =\left(z_{1}, \ldots, z_{n}\right) \text { with } z_{j}=r_{j} e^{i \theta_{j}}, j=1, \ldots, n \\
r^{|k|} & =r_{1}^{\left|k_{1}\right|} \ldots r_{n}^{\left|k_{n}\right|} \\
(k \cdot \theta) & =k_{1} \theta_{1}+\ldots+k_{n} \theta_{n} \\
(k \cdot t) & =k_{1} t_{1}+\ldots+k_{n} t_{n}
\end{aligned}
$$

and using the series representation for the Poisson kernel, we get

$$
\begin{aligned}
f(z) & =\int_{\mathbb{T}^{n}} P\left(z, e^{i t}\right) d \mu(t) \\
& =\int_{\mathbb{T}^{n}}\left(\sum_{k \in \mathbb{Z}^{n}} r^{|k|} e^{i(k \cdot \theta)} e^{-i(k \cdot t)}\right) d \mu(t) \\
& =\sum_{k \in \mathbb{Z}^{n}}\left(\int_{\mathbb{T}^{n}} e^{-i(k \cdot t)} d \mu(t)\right) r^{|k|} e^{i(k \cdot \theta)} \\
& =\sum_{k \in \mathbb{Z}_{+}^{n}} c_{k} z^{k}
\end{aligned}
$$

where $c_{k}=\int_{\mathbb{T}^{n}} e^{-i(k \cdot t)} d \mu(t)$ and $z_{k}=r^{|k|} e^{i(k \cdot \theta)}$. Notice that all other integrals in the above sum vanish by the hypothesis. Thus $f(z)$ is holomorphic.

For $0 \leq r<1$,

$$
\begin{aligned}
\int_{\mathbb{T}^{n}}\left|f_{r}(\zeta)\right| d m(\zeta) & =\int_{\mathbb{T}^{n}}\left|\int_{\mathbb{T}^{n}} P(r \zeta, \eta) d \mu(\eta)\right| d m(\zeta) \\
& \leq \int_{\mathbb{T}^{n}}\left(\int_{\mathbb{T}^{n}} P(r \zeta, \eta) d|\mu|(\eta)\right) d m(\zeta) \\
& =\int_{\mathbb{T}^{n}}\left(\int_{\mathbb{T}^{n}} P(r \zeta, \eta) d m(\zeta)\right) d|\mu|(\eta) \\
& =\|\mu\| .
\end{aligned}
$$

Thus $f \in H^{1}\left(\mathbb{D}^{n}\right)$ and hence $f(z)=P\left[f^{*}\right](z)$, where $f^{*} \in L^{1}\left(\mathbb{T}^{n}\right)$. Now the uniqueness of the Poisson integral representation shows that

$$
d \mu=f^{*} d m
$$

and the proof is completed.

4. Boundary Values

Do the boundary values of functions in $H^{p}\left(\mathbb{D}^{n}\right)$ exist on the non-distinguished boundary? Now we want to look into this question.

Let $\left\{j_{1}, \ldots, j_{k}\right\}$ and $\left\{i_{1}, \ldots, i_{l}\right\}$ be disjoint sets of indices such that their union is $\{1, \ldots, n\}$ where $j_{1}<j_{2}<\ldots<j_{k}$ and $i_{1}<i_{2}<\ldots<i_{l}$. Define the sections of \mathbb{D}^{n} as follows

$$
\mathbb{D}_{z_{j_{1}}, \ldots, z_{j_{k}}}^{n}=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{D}^{n}: z_{j_{1}}, \ldots, z_{j_{k}} \text { are fixed }\right\}
$$

and define $f_{z_{j_{1}}, \ldots, z_{j_{k}}}=\left.f\right|_{\mathbb{D}_{z_{j_{1}}, \ldots, z_{j k}}^{n}}$. We will write $f_{z_{j_{1}}, \ldots, z_{j_{k}}}\left(z_{i_{1}}, \ldots, z_{i_{l}}\right)$ instead of $f_{z_{j_{1}}, \ldots, z_{j_{k}}}\left(z_{1}, \ldots, z_{n}\right)$.
We will see below that for $f \in H^{p}\left(\mathbb{D}^{n}\right), 1 \leq p<\infty$, the non-tangential limit of $f_{z_{j_{1}}, \ldots, z_{j_{k}}}$ exists at almost all points of the distinguished boundary of the section $\mathbb{D}_{z_{j_{1}}, \ldots, z_{j_{k}}}^{n}$ which is \mathbb{T}^{l} and the function $f_{z_{j_{1}}, \ldots, z_{j_{k}}}$ can be restored by the Poisson integral of this limit.
Theorem 8. Let $f \in H^{p}\left(\mathbb{D}^{n}\right), 1 \leq p<\infty$. Then $f_{z_{j_{1}}, \ldots, z_{j_{k}}} \in H^{p}\left(\mathbb{D}^{l}\right)$.
Proof. Without loss of generality we suppose that $\left\{j_{1}, \ldots, j_{k}\right\}=\{1, \ldots, k\}$. Let's use the following notations for the Poisson kernels

$$
P_{j}\left(\zeta_{j}\right)= \begin{cases}P\left(z_{j}, \zeta_{j}\right) & j=1, \ldots, k \\ P\left(r \xi_{j}, \zeta_{j}\right) & j=k+1, \ldots, n\end{cases}
$$

where $\left|\xi_{j}\right|=1$. Then, for $0<r<1$, by Theorem 6

$$
f_{z_{1}, \ldots, z_{k}}\left(r \xi_{k+1}, \ldots, r \xi_{n}\right)=\int_{\mathbb{T}^{n}} P_{1}\left(\zeta_{1}\right) \ldots P_{n}\left(\zeta_{n}\right) f^{*}\left(\zeta_{1}, \ldots, \zeta_{n}\right) d m_{n}
$$

By Hölder and Fubini

$$
\begin{aligned}
\int_{\mathbb{T}^{l}}\left|f_{z_{1}, \ldots, z_{k}}\left(r \xi_{k+1}, \ldots, r \xi_{n}\right)\right|^{p} d m_{l}= & \int_{\mathbb{T}^{l} \mid}\left|\int_{\mathbb{T}^{n}} P_{1}\left(\zeta_{1}\right) \ldots P_{n}\left(\zeta_{n}\right) f^{*}\left(\zeta_{1}, \ldots, \zeta_{n}\right) d m_{n}\right|^{p} d m_{l} \\
\leq & \int_{\mathbb{T}^{l}}\left(\int_{\mathbb{T}^{n}} P_{1}\left(\zeta_{1}\right) \ldots P_{n}\left(\zeta_{n}\right)\left|f^{*}\left(\zeta_{1}, \ldots, \zeta_{n}\right)\right|^{p} d m_{n}\right) d m_{l} \\
= & \int_{\mathbb{T}^{n}} P_{1}\left(\zeta_{1}\right) \ldots P_{k}\left(\zeta_{k}\right)\left|f^{*}\left(\zeta_{1}, \ldots, \zeta_{n}\right)\right|^{p} \\
& \times\left(\int_{\mathbb{T}^{l}} P_{k+1}\left(\zeta_{k+1}\right) \ldots P_{n}\left(\zeta_{n}\right) d m_{l}\right) d m_{n} \\
\leq & \frac{2^{k}}{\left(1-\left|z_{1}\right|\right) \ldots\left(1-\left|z_{k}\right|\right)} \int_{\mathbb{T}^{n}}\left|f^{*}\left(\zeta_{1}, \ldots, \zeta_{n}\right)\right|^{p} d m_{n}
\end{aligned}
$$

The last quantity above is independent of r and is finite by Theorem 5 . Thus the theorem is proved.

The following corollary is immediate.

Corollary 1. If $f \in H^{p}\left(\mathbb{D}^{n}\right), 1 \leq p<\infty$, then the non-tangential limit $f_{z_{j}, \ldots, z_{j_{k}}}^{*}$ of the function $f_{z_{j_{1}}, \ldots, z_{j_{k}}}$ exists almost everywhere on \mathbb{T}^{l} and belongs to $L^{p}\left(\mathbb{T}^{l}\right)$.

The following theorems are the direct consequences of Theorems 5 and 6.
Theorem 9. If $1 \leq p<\infty$ and $f \in H^{p}\left(\mathbb{D}^{n}\right)$, then
(i) $\lim _{r \rightarrow 1} \int_{\mathbb{T}^{l}}\left|\left(f_{z_{j_{1}}, \ldots, z_{j_{k}}}\right)_{r}\right|^{p} d m_{l}=\int_{\mathbb{T}^{l}}\left|f_{z_{j_{1}}, \ldots, z_{j_{k}}}^{*}\right|^{p} d m_{l}$
(ii) $\lim _{r \rightarrow 1} \int_{\mathbb{T}^{l}}\left|\left(f_{z_{j_{1}}, \ldots, z_{j_{k}}}\right)_{r}-f_{z_{j_{1}}, \ldots, z_{j_{k}}}^{*}\right|^{p} d m_{l}=0$
where $\left(f_{z_{j_{1}}, \ldots, z_{j_{k}}}\right)_{r}\left(\zeta_{i_{1}}, \ldots, \zeta_{i_{l}}\right)=f_{z_{j_{1}}, \ldots, z_{j_{k}}}\left(r \zeta_{i_{1}}, \ldots, r \zeta_{i_{l}}\right)$.
Theorem 10. If $f \in H^{1}\left(\mathbb{D}^{n}\right)$, then

$$
f_{z_{j_{1}}, \ldots, z_{j_{k}}}\left(z_{i_{1}}, \ldots, z_{i_{l}}\right)=\int_{\mathbb{T}^{l}} P\left(z_{i_{1}}, \zeta_{i_{1}}\right) \ldots P\left(z_{i_{l}}, \zeta_{i_{l}}\right) f_{z_{j_{1}}, \ldots, z_{j_{k}}}^{*}\left(\zeta_{i_{1}}, \ldots, \zeta_{i_{l}}\right) d m_{l} .
$$

Theorem 11. Let f be a holomorphic function in \mathbb{D}^{n}. If $1 \leq p<\infty$ and

$$
\sup _{\substack{\left(z_{j_{1}}, \ldots, z_{j k}\right) \\\left|z_{j_{1}}\right|=\ldots=\left|z_{j_{k}}\right|}}\left\|f_{z_{j_{1}}, \ldots, z_{j_{k}}}\right\|_{H^{p}\left(\mathbb{\mathbb { D } ^ { n - k }}\right)}=M<\infty,
$$

then $f \in H^{p}\left(\mathbb{D}^{n}\right)$.
Proof. For simplicity we take $\left\{j_{1}, \ldots, j_{k}\right\}=\{1, \ldots, k\}$. And, of course, this theorem makes sense only when $k>0$. Now for $0 \leq r<1$,

$$
\begin{aligned}
\int_{\mathbb{T}^{n}}\left|f\left(r \zeta_{1}, \ldots, r \zeta_{n}\right)\right|^{p} d m_{n} & =\int_{\mathbb{T}^{k}}\left(\int_{\mathbb{T}^{n-k}}\left|f\left(r \zeta_{1}, \ldots, r \zeta_{n}\right)\right|^{p} d m_{n-k}\right) d m_{k} \\
& \leq \int_{\mathbb{T}^{k}}\left(\sup _{0 \leq t<1} \int_{\mathbb{T}^{n-k}}\left|f\left(r \zeta_{1}, \ldots, r \zeta_{k}, t \zeta_{k+1}, \ldots, t \zeta_{n}\right)\right|^{p} d m_{n-k}\right) d m_{k} \\
& =\int_{\mathbb{T}^{k}}\left\|f_{r \zeta_{1}, \ldots, r \zeta_{k}}\right\|_{H^{p}\left(\mathbb{D}^{n-k}\right)}^{p} d m_{k} \\
& \leq M^{p}
\end{aligned}
$$

Thus $f \in H^{p}\left(\mathbb{D}^{n}\right)$.

5. Poletsky-Stessin Hardy Spaces on the Bidisk

Let u be a negative continuous plurisubharmonic function on the bidisk

$$
\mathbb{D}^{2}=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:\left|z_{1}\right|<1,\left|z_{2}\right|<1\right\}
$$

such that $u\left(z_{1}, z_{2}\right) \rightarrow 0$ as $\left(z_{1}, z_{2}\right) \rightarrow\left(\zeta_{1}, \zeta_{2}\right) \in \partial \mathbb{D}^{2}$. Following Demailly [2], for $r<0$ we define

$$
\begin{aligned}
& S_{u}(r)=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{D}^{2}: u\left(z_{1}, z_{2}\right)=r\right\} \\
& B_{u}(r)=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{D}^{2}: u\left(z_{1}, z_{2}\right)<r\right\} .
\end{aligned}
$$

For convenience we will write $z=\left(z_{1}, z_{2}\right)$. Associated with this u we define the positive measure $\mu_{u, r}$ called Monge-Ampère measures by

$$
\mu_{u, r}=\left(d d^{c} u_{r}\right)^{2}-\chi_{\mathbb{D}^{2} \backslash B_{u}(r)}\left(d d^{c} u\right)^{2}
$$

where $u_{r}=\max \{u, r\}$. These measures are supported by the level sets $S_{u}(r)$. Demailly has proved the following [2, Theorem 1.7].

Theorem 12 (Lelong-Jensen Formula). For all $r<0$ every plurisubharmonic function φ on \mathbb{D}^{2} is $\mu_{u, r}$-integrable and

$$
\mu_{u, r}(\varphi)=\int_{B_{u}(r)} \varphi\left(d d^{c} u\right)^{2}+\int_{B_{u}(r)}(r-u)\left(d d^{c} \varphi\right) \wedge\left(d d^{c} u\right)
$$

Denote by $\mathscr{E}\left(\mathbb{D}^{2}\right)$ the set of all continuous negative plurisubharmonic functions u on \mathbb{D}^{2} and equal to zero on $\partial \mathbb{D}^{2}$ whose Monge-Ampère mass is finite, i.e.

$$
\int_{\mathbb{D}^{2}}\left(d d^{c} u\right)^{2}<\infty
$$

and denote by $\mathscr{E}_{1}\left(\mathbb{D}^{2}\right)$ the set of those $u \in \mathscr{E}\left(\mathbb{D}^{2}\right)$ for which $\int_{\mathbb{D}^{2}} d d^{c} u=1$.
Following [3] we define, what we call, the Poletsky-Stessin Hardy space $H_{u}^{p}\left(\mathbb{D}^{2}\right), p>0$, as the space of all holomorphic functions on \mathbb{D}^{2} for which

$$
\limsup _{r \rightarrow 0^{-}} \mu_{u, r}\left(|f|^{p}\right)<\infty
$$

These new spaces are contained in the classical spaces, that is, $H_{u}^{p}\left(\mathbb{D}^{2}\right) \subset H^{p}\left(\mathbb{D}^{2}\right)$. Since $\mu_{u, r}\left(|f|^{p}\right)$ is an increasing function of r the limsup in the definition can be replaced by lim. For $p \geq 1$

$$
\|f\|_{H_{u}^{p}}^{p}=\lim _{r \rightarrow 0^{-}} \mu_{u, r}\left(|f|^{p}\right)
$$

is a norm and with this norm $H_{u}^{p}\left(\mathbb{D}^{2}\right)$ is Banach [3, Theorem 4.1]. The Poletsky-Stessin Hardy spaces on the unit disk have been studied in detail in [1, 5, 8-10].

In [4] Poletsky has proved that the intersection of all Poletsky-Stessin Hardy spaces $H_{u}^{p}(D)$, $p \geq 1$, where D is a strongly pseudoconvex domain with C^{2} boundary, is $H^{\infty}(D)$, the space of bounded holomorphic functions. Hence it immediately follows that the intersection of all $H_{u}^{p}(\mathbb{D})$ is $H^{\infty}(\mathbb{D})$. We will prove this result for the polydisk. It is enough to consider the bidisk.

Let $\zeta=\left(\zeta_{1}, \zeta_{2}\right) \in \mathbb{T}^{2}$ and $\alpha=\left(\alpha_{1}, \alpha_{2}\right), 0<\alpha_{1}, \alpha_{2}<\pi / 2$. Following [11] we define the approach region $T_{\alpha}(\zeta)$ as

$$
T_{\alpha}(\zeta)=T_{\alpha_{1}}\left(\zeta_{1}\right) \times T_{\alpha_{2}}\left(\zeta_{2}\right)
$$

where $T_{\alpha_{j}}\left(\zeta_{j}\right)$ is the Stolz angle at $\zeta_{j} \in \mathbb{T}$ with vertex angle $2 \alpha_{j}$. Here we will consider only the congruent symmetric approach regions meaning that the Stolz angles are symmetric with respect to the radius to ζ_{j} and the vertex angles are equal, i.e. $\alpha_{1}=\alpha_{2}$. Following [4] we define the Green ball of radius $0<r<1$ and center at w to be the set

$$
G(w, r)=\left\{z \in \mathbb{D}^{2}: g(z, w)<\log r\right\}
$$

where $g(z, w)$ is the Green function for \mathbb{D}^{2} with pole at w. The Green function for \mathbb{D}^{2} is explicitly given by

$$
g(z, w)=\log \max \left\{\left|\frac{z_{1}-w_{1}}{1-\overline{w_{1}} z_{1}}\right|,\left|\frac{z_{2}-w_{2}}{1-\overline{w_{2}} z_{2}}\right|\right\}
$$

Hence it follows that

$$
G(w, r)=\left\{z_{1} \in \mathbb{D}:\left|\frac{z_{1}-w_{1}}{1-\overline{w_{1}} z_{1}}\right|<r\right\} \times\left\{z_{2} \in \mathbb{D}:\left|\frac{z_{2}-w_{2}}{2-\overline{w_{2}} z_{2}}\right|<r\right\}
$$

Lemma 1. Let $\zeta=\left(\zeta_{1}, \zeta_{2}\right) \in \mathbb{T}^{2}$ and $0<r<1$. For any $0<t<1$ there exists $0<\alpha<\pi / 2$ such that $G(t \zeta, r) \subset T_{\alpha}(\zeta)$ where $t \zeta=\left(t \zeta_{1}, t \zeta_{2}\right)$ and $T_{\alpha}(\zeta)=T_{\alpha}\left(\zeta_{1}\right) \times T_{\alpha}\left(\zeta_{2}\right)$.

Proof. Observe that

$$
\left\{z_{j} \in \mathbb{D}:\left|\frac{z_{j}-t \zeta_{j}}{1-t \bar{\zeta} z_{j} z_{j}}\right|<r\right\}
$$

is the image of the disk $\left\{\left|w_{j}\right|<r\right\} \subset \mathbb{C}$ under the conformal map

$$
w_{j} \mapsto \frac{w_{j}+t \zeta_{j}}{1+t \bar{\zeta}{ }_{j} w_{j}}
$$

which is a disk contained in \mathbb{D} with center at

$$
\frac{t\left(1-r^{2}\right)}{1-r^{2} t^{2}} \zeta_{j}
$$

and radius equal to

$$
\frac{r\left(1-t^{2}\right)}{1-r^{2} t^{2}}
$$

The tangents to this disk that pass through ζ_{j} make an angle of

$$
\alpha=\arcsin \left(\frac{r(1+t)}{1+t r^{2}}\right)
$$

with the radius to ζ_{j}. Hence

$$
\left\{z_{j} \in \mathbb{D}:\left|\frac{z_{j}-t \zeta_{j}}{1-t \overline{\zeta_{j} z_{j}}}\right|<r\right\} \subset T_{\alpha}\left(\zeta_{j}\right)
$$

for $j=1,2$ and $G(t \zeta, r) \subset T_{\alpha}(\zeta)$. Since for fixed $0<r<1$

$$
t \mapsto \frac{r(1+t)}{1+t r^{2}}
$$

is an increasing function of $t \in[0,1]$ we have

$$
0<\frac{r(1+t)}{1+t r^{2}} \leq \frac{2 r}{1+r^{2}}<1 .
$$

From this it follows that

$$
0<\alpha \leq \arcsin \left(\frac{2 r}{1+r^{2}}\right)<\frac{\pi}{2} .
$$

Remark 1. For fixed $0<r<1$,

$$
t \mapsto \frac{r\left(1-t^{2}\right)}{1-r^{2} t^{2}}
$$

is a decreasing function of $t \in[0,1]$ that decreases to zero as $t \rightarrow 1$. Therefore we can make the size of the Green ball $G(t \zeta, r)$ as small as we want simply by choosing t close enough to 1 .

The plurisubharmonic envelope $E \phi$ of a continuous function ϕ on a domain $\Omega \subset \mathbb{C}^{n}$ is the maximal plurisubharmonic function on Ω less than or equal to ϕ. For a sequence of functions $\left\{u_{j}\right\} \subset \mathscr{E}\left(\mathbb{D}^{2}\right)$, we denote by $E\left\{u_{j}\right\}$ the envelope of $\inf \left\{u_{j}\right\}$. The following Lemma [4, Theorem 3.3] gives the estimate on the Monge-Ampère mass of the envelope.

Lemma 2. If Ω is a strongly hyperconvex domain and continuous plurisubharmonic functions $\left\{u_{j}\right\} \subset \mathscr{E}(\Omega)$, then

$$
\int_{\Omega}\left(d d^{c} E\left\{u_{j}\right\}\right)^{n} \leq \sum \int_{\Omega}\left(d d^{c} u_{j}\right)^{n} .
$$

Theorem 13. Let f be a holomorphic function on \mathbb{D}^{2}. Suppose that f has non-tangential limits at points $\left\{\zeta_{j}\right\} \subset \mathbb{T}^{2}$ and $\lim _{j \rightarrow \infty}\left|f^{*}\left(\zeta_{j}\right)\right|=\infty$. Then for any $p \geq 1$ there exists $u \in \mathscr{E}_{1}\left(\mathbb{D}^{2}\right)$ such that $f \notin H_{u}^{p}\left(\mathbb{D}^{2}\right)$.

The proof that Poletsky gave to this theorem in [4] in the case when D is a strongly pseudoconvex domain with C^{2} boundary also works when the domain is a polydisk. We will mimic his proof in our context.

Proof. Let us take a sequence $\left\{a_{j}\right\}$ of positive numbers such that

$$
\sum_{j=1}^{\infty} a_{j}<\infty \text { and } \sum_{j=1}^{\infty} a_{j}^{2}\left|f^{*}\left(\zeta_{j}\right)\right|^{p}=\infty .
$$

For $0<t_{j}<1$ we write $G_{j}=G\left(t_{j} \zeta_{j}, e^{-1}\right)$. By Lemma 1 there exists $0<\alpha_{j}<\pi / 2$ such that $G_{j} \subset T_{\alpha_{j}}\left(\zeta_{j}\right)$. Now we inductively construct a sequence $\left\{t_{k}\right\}, 0<t_{k}<1$, satisfying certain conditions. Choose any $0<t_{1}<1$. Suppose that t_{1}, \ldots, t_{k-1} have already been chosen. Now chose $0<t_{k}<1$ so that the following conditions are satisfied:
(i) $|f|>\left|f^{*}\left(\zeta_{k}\right)\right| / 2$ on G_{k}
(ii) $G_{k} \cap G_{j}=\phi$
(iii) $g\left(z, t_{k} \zeta_{k}\right)>-a_{j} / 2^{k+1}$ on G_{j}
(iv) $a_{j} g\left(z, t_{j} \zeta_{j}\right)>-a_{k} / 2^{j+1}$ on G_{k}
for $1 \leq j \leq k-1$. The conditions (i) and (ii) can be achieved simply by taking t_{k} close enough to 1 . Since $G_{j}, j<k$, and G_{k} are disjoint, $g\left(z, t_{k} \zeta_{k}\right) \rightarrow 0$ uniformly on G_{j} as $t_{k} \rightarrow 1$. Hence (iii) can be achieved for t_{k} close enough to 1 . Since $g\left(z, t_{j} \zeta_{j}\right)=0$ when $z \in \partial \mathbb{D}^{2}$, we can choose t_{k} so close to 1 that

$$
G_{k} \subset \bigcap_{j=1}^{k-1}\left\{z \in \mathbb{D}^{2}: a_{j} g\left(z, t_{j} \zeta_{j}\right)>-a_{k} / 2^{j+1}\right\} .
$$

Thus (iv) can be achieved.
Define

$$
u_{j}(z)=a_{j} \max \left\{g\left(z, t_{j} \zeta_{j}\right),-2\right\} .
$$

Note that if F is an open set in \mathbb{D}^{2} containing $G\left(t_{j} \zeta_{j}, e^{-2}\right)$ then

$$
\int_{F}\left(d d^{c} u_{j}\right)^{2}=a_{j}^{2}
$$

Let $u=E\left\{u_{j}\right\}$. Since the series $v=\sum_{j=1}^{\infty} u_{j}$ converges uniformly on $\overline{\mathbb{D}^{2}}, v \in \mathscr{E}\left(\mathbb{D}^{2}\right)$. So $u \geq v$ is a continuous plurisubharmonic function on \mathbb{D}^{2} equal to 0 on $\partial \mathbb{D}^{2}$. By Lemma 2 ,

$$
\int_{\mathbb{D}^{2}}\left(d d^{c} u\right)^{2} \leq \sum_{j=1}^{\infty} \int_{\mathbb{D}^{2}}\left(d d^{c} u_{j}\right)^{2}=\sum_{j=1}^{\infty} a_{j}^{2}<\infty .
$$

Hence $u \in \mathscr{E}\left(\mathbb{D}^{2}\right)$.
Now we evaluate $\int_{G_{k}}\left(d d^{c} u\right)^{2}$. Observe that $u_{k} \geq u \geq v$ on \mathbb{D}^{2}. By the conditions on the choices of t_{j}, on ∂G_{k} we get

$$
-a_{k} \geq u \geq-\sum_{j=1}^{k-1} \frac{a_{k}}{2^{j+1}}-a_{k}-\sum_{j=k+1}^{\infty} \frac{a_{k}}{2^{j+1}} \geq-\frac{3}{2} a_{k} .
$$

Hence $u+3 a_{k} / 2 \geq 0$ on ∂G_{k} and the set $F_{k}=\left\{6\left(u+\frac{3}{2} a_{k}\right)<u_{k}\right\}$ compactly belongs to G_{k}. Moreover, if $z \in \partial G\left(t_{k} \zeta_{k}, e^{-2}\right)$ then

$$
6\left(u(z)+\frac{3}{2} a_{k}\right) \leq 6\left(u_{k}(z)+\frac{3}{2} a_{k}\right)=-3 a_{k}<-2 a_{k}=u_{k}(z) .
$$

Thus $G\left(t_{k} \zeta_{k}, e^{-2}\right) \subset F_{k}$. By the comparison principle

$$
36 \int_{G_{k}}\left(d d^{c} u\right)^{2}=\int_{G_{k}}\left(d d^{c} 6\left(u(z)+\frac{3}{2} a_{k}\right)\right)^{2} \geq \int_{F_{k}}\left(d d^{c} u_{k}\right)^{2}=a_{k}^{2}
$$

Hence by Lelong-Jensen formula

$$
\|f\|_{H_{u}^{p}}^{p} \geq \int_{\mathbb{D}^{2}}|f|^{p}\left(d d^{c} u\right)^{2} \geq \sum_{k=1}^{\infty} \int_{G_{k}}|f|^{p}\left(d d^{c} u\right)^{2} \geq \frac{1}{36 \cdot 2^{p}} \sum_{k=0}^{\infty}\left|f^{*}\left(\zeta_{k}\right)\right|^{p} a_{k}^{2}=\infty
$$

Hence $f \notin H^{p}\left(\mathbb{D}^{2}\right)$.
The following corollary shows the existence of nontrivial Poletsky-Stessin Hardy spaces on the bidisk.

Corollary 2. For every $p \geq 1$ there exists a function $u \in \mathscr{E}_{1}\left(\mathbb{D}^{2}\right)$ such that $H_{u}^{p}\left(\mathbb{D}^{2}\right) \nsubseteq H^{p}\left(\mathbb{D}^{2}\right)$.
Proof. Take $f \in H^{p}\left(\mathbb{D}^{2}\right)$ that is unbounded. Then the non-tangential limit f^{*} on \mathbb{T}^{2} must be unbounded because otherwise

$$
f(z)=\int_{\mathbb{T}^{2}} P(z, \zeta) f^{*}(\zeta) d m
$$

would imply that $f(z)$ is bounded. So there exists a set of points $\left\{\zeta_{j}\right\} \in \mathbb{T}^{2}$ such that $\lim _{j \rightarrow \infty}\left|f^{*}\left(\zeta_{j}\right)\right|=\infty$. Hence the corollary follows from Theorem 13.

Now we prove the most important theorem of this section.
Theorem 14. Let $p \geq 1$. Then

$$
\bigcap_{u \in \mathscr{E}_{1}\left(\mathbb{D}^{2}\right)} H_{u}^{p}\left(\mathbb{D}^{2}\right)=H^{\infty}\left(\mathbb{D}^{2}\right)
$$

Proof. Let $f \in \bigcap_{u \in \mathscr{E}_{1}\left(\mathbb{D}^{2}\right)} H_{u}^{p}\left(\mathbb{D}^{2}\right)$. Then the non-tangential limit f^{*} on \mathbb{T}^{2} is bounded because otherwise by Theorem 13 there would exist a $u \in \mathscr{E}_{1}\left(\mathbb{D}^{2}\right)$ such that $f \notin H_{u}^{p}\left(\mathbb{D}^{2}\right)$. Thus, since f^{*} is bounded,

$$
f(z)=\int_{\mathbb{T}^{2}} P(z, \zeta) f^{*}(\zeta) d m
$$

implies that $f \in H^{\infty}\left(\mathbb{D}^{2}\right)$.

ACKNOWLEDGEMENTS I would like to express my sincere gratitude to my Ph. D. advisor Prof. E. A. Poletsky for his immense support and guidance on this work.

References

[1] M. A. Alan and N. G. Goğuş. Poletsky-Stessin-Hardy spaces in the plane, Complex Analysis and Operator Theory, 8, 975-990. 2014.
[2] J. P. Demailly. Mesures de Monge-Amprè et mesures pluriharmoniques, Mathematische Zeitschrift, 194, 519-564. 1987.
[3] E. A. Poletsky and M. I. Stessin. Hardy and Bergman Spaces on Hyperconvex Domains and Their Composition Operators, Indiana University Mathematics Journal, 57, 2153-2201. 2008.
[4] E. A. Poletsky. Projective Limits of Poletsky-Stessin Hardy Spaces, arXiv:1503.00575.
[5] E. A. Poletsky and K. R. Shrestha. On Weighted Hardy Spaces on the Unit Disk, arXiv:1503.00535.
[6] W. Rudin. Real and Complex Analysis, Third edition, McGraw Hill, 1987.
[7] W. Rudin. Function Theory in Polydiscs, W. A. Benjamin, Inc. New York 1969.
[8] S. Şahin. Poletsky-Stessin Hardy spaces on domains bounded by an analytic Jordan curve in \mathbb{C}, arXiv:1303.2322.
[9] K. R. Shrestha. Boundary Values Properties of Functions in Weighted Hardy Spaces, arXiv:1309.6561.
[10] K. R. Shrestha. Weighted Hardy spaces on the unit disk, Complex Analysis and Operator Theory, 9, 1377-1389. 2015.
[11] A. Zygmund. Trigonometric Series, Third Edition, Cambridge University Press, 2002.

[^0]: Email address: khim.shrestha@ugf.edu

