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Abstract. In this paper we will study the boundary values properties of the functions in the Hardy

spaces; generalize the F. and M. Riesz theorem to higher dimensions; discuss the existence of boundary

values of the functions in H p(Dn) on non-distinguished boundary ∂Dn \Tn and the intersection of the

spaces H p
u
(Dn).
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1. Introduction

This paper basically consists of two parts. In the first part, consisting of Sections 2, 3 and 4,

we study the properties of the functions on the classical Hardy spaces of n-harmonic functions

and the Hardy spaces of holomorphic functions on the polydisk. In Section 2 we will show

that the functions in the classical Hardy spaces can be restored by the Poisson integral of its

radial limit. In Section 3 we will restate and prove the celebrated F. and M. Riesz theorem to

higher dimensions. In Section 4 we will study the boundary values of the functions in H p(D)

on the non-distinguished boundary, ∂Dn \Tn.

The second part of this paper consists of Section 5. In this section we study the Poletsky–

Stessin Hardy spaces H
p
u (D

2) on bidisk. We mainly establish two things - there are nontrivial

Poletsky–Stessin Hardy spaces and the intersection of the Poletsky–Stessin Hardy spaces over

all exhaustion functions is H∞(D2), the space of bounded holomorphic functions on D2.

2. Hardy Spaces and Poisson Integral Formula

An n-harmonic function u onDn is a function which is harmonic in each variable separately.

Denote by hp(Dn) the space of all n-harmonic functions satisfying

sup
0≤r<1

∫

Tn

|ur(ζ)|
p dm(ζ)<∞ (1)
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where ur(ζ) = u(rζ) and dm is the normalized Lebesgue measure on Tn. The p -th root of (1)

defines a norm on hp(Dn) when p ≥ 1. With this norm hp(Dn) is Banach.

We will use the following notations:

z =(z1, . . . , zn)

ζ =(ζ1, . . . ,ζn)

P(z,ζ) =P(z1,ζ1) . . . P(zn,ζn)

where P(z,ζ) is the Poisson kernel and

P(z j ,ζ j) = Re

�

ζ j + z j

ζ j − z j

�

=
1− |z j |

2

|ζ j − z j |2
, j = 1, . . . , n.

Theorem 1. Let u ∈ hp(Dn), p > 1. Then there exists a function f ∈ Lp(Tn) such that

u(z) =

∫

Tn

P(z,ζ) f (ζ) dm(ζ).

Proof. Take r j ր 1. Then (1) implies that there is a weakly convergent subsequence of ur j
.

We will write the subsequence ur j
just to avoid the sub-subscript. Hence for g ∈ Lq(Tn)

g 7→ lim
j→∞

∫

Tn

g(ζ)ur j
(ζ) dm(ζ)

is a linear functional on Lq(Tn). By Riesz theorem there exists an f ∈ Lp(Tn) such that

lim
j→∞

∫

Tn

g(ζ)ur j
(ζ) dm(ζ) =

∫

Tn

g(ζ) f (ζ) dm(ζ).

Now take g(ζ) = P(z,ζ). Then

u(z) = lim
j→∞

ur j
(z) = lim

j→∞

∫

Tn

P(z,ζ)ur j
(ζ) dm=

∫

Tn

P(z,ζ) f (ζ) dm(ζ).

The second equality above follows from [7, Theorem 2.1.2].

What makes the above proof work is the duality of Lp spaces. Since L∞ is the dual of

L1, the same result holds with the same proof for p =∞. Of course we have to change the

statement accordingly. But unfortunately L1 is not dual of anything, we don’t have the same

result for p = 1. Instead, since the space of finite signed measures on Tn is dual of the space

of continuous functions C(Tn) we have the following result from [7, Theorem 2.1.3, (e)].

Theorem 2. If the hypothesis of Theorem 1 holds for p = 1 then there exists a finite signed

measure µ on Tn with

u(z) =

∫

Tn

P(z,ζ) dµ(ζ).
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So the function u ∈ hp(Dn), p > 1, is the Poisson integral of some function f ∈ Lp(Tn).

Is there any other connection between u and f ? We know, when n = 1, f is the boundary

value function of u and when n > 1 the following theorem [7, Theorem 2.3.1] answers this

question.

Theorem 3. If f ∈ L1(Tn), if σ is a measure on Tn which is singular with respect to dm, and if

u= P[ f + dσ], then u∗(ζ) = f (ζ) for almost every ζ ∈ Tn.

Recall that u∗(ζ) = limr→1 u(rζ) is the radial limit. Thus any n-harmonic function satisfy-

ing the growth condition (1) for p > 1 can be restored by the Poisson integral of its boundary

value function.

For p = 1 we just saw in Theorem 2 that u(z) = P[dµ](z). By the Lebesgue decomposition

theorem

dµ= f dm+ dσ

where σ is singular with respect to m and f ∈ L1(Tn). Hence we have u∗(ζ) = f (ζ) but u

can not be restored by the Poisson integral of its boundary value function unless, of course,

P[dσ] = 0.

Also in [7] it has been proved that if f ∈ Lp(Tn), 1 ≤ p <∞, and u = P[ f ] then ur

converges to f in the Lp-norm as r → 1, i.e. limr→1 ‖ur − f ‖Lp = 0. But when p = 1 we have

the weak-∗ convergence.

Theorem 4. Let f (z) = P[dµ](z) with µ a finite signed measure on Tn. Then fr dm → dµ

weak-∗ as r → 1.

Proof. Let ϕ ∈ C(Tn). Then

�

�

�

�

�

∫

Tn

ϕ(ζ) fr(ζ) dm(ζ)−

∫

Tn

ϕ(ζ) dµ(ζ)

�

�

�

�

�

=

�

�

�

�

�

∫

Tn

ϕ(ζ)

�∫

Tn

P(rζ,η) dµ(η)

�

dm(ζ)−

∫

Tn

ϕ(η) dµ(η)

�

�

�

�

�

(∵ P(rζ,η) = P(rη,ζ)) =

�

�

�

�

�

∫

Tn

�∫

Tn

P(rη,ζ)ϕ(ζ) dm(ζ)

�

dµ(η)−

∫

Tn

ϕ(η) dµ(η)

�

�

�

�

�

=

�

�

�

�

�

∫

Tn

�∫

Tn

P(rη,ζ)ϕ(ζ) dm(ζ)−ϕ(η)

�

dµ(η)

�

�

�

�

�

→0

because the inner integral goes to zero uniformly on η. Hence fr dm→ dµ weak-∗ as

r → 1.

We define H p(Dn), 0 < p <∞, to be the class of all holomorphic functions f ∈ Dn for

which

sup
0≤r<1

∫

Tn

| fr(ζ)|
p dm<∞

and H∞(Dn) is the space of all bounded holomorphic functions in Dn.



K. Shrestha / Eur. J. Pure Appl. Math, 9 (2016), 292-304 295

Since | f |p is n-subharmonic, sup in the definition can be replaced by lim as r → 1.

It is known that if f ∈ H p(Dn), 0 < p <∞, then f has a non-tangential limit at almost

all points of Tn [11, Ch. XVII, Theorem 4.8]. We denote this limit by f ∗ as in [7] and call

it a boundary value function. Moreover, we have the following results from Rudin (see [7,

Theorem 3.4.2 and 3.4.3]).

Theorem 5. If f ∈ H p(Dn), 0< p <∞, then f ∗ ∈ Lp(Tn) and

(i) limr→1

∫

Tn | fr |
p dm=

∫

Tn | f
∗|p dm

(ii) limr→1

∫

Tn | fr − f ∗|p dm= 0.

When p ≥ 1 the function in H p(Dn) can be represented by the Poisson integral of its

boundary value function.

Theorem 6. If f ∈ H1(Dn), then

f (z) =

∫

Tn

P(z,ζ) f ∗(ζ) dm.

(The case n= 1 can be found in [6, Theorem 17.11].)

Proof. Since z ∈ Dn, P(z,ζ) is bounded on Tn and by (ii) of the theorem above
�

�

�

�

�

∫

Tn

P(z,ζ) fr(ζ) dm(ζ)−

∫

Tn

P(z,ζ) f ∗(ζ) dm(ζ)

�

�

�

�

�

≤

∫

Tn

P(z,ζ)| fr(ζ)− f ∗(ζ)| dm(ζ)

→0.

Now by [7, Theorem 2.1.2]

f (z) = lim
r→1

fr(z)

= lim
r→1

∫

Tn

P(z,ζ) fr(ζ) dm(ζ)

=

∫

Tn

f ∗(ζ) dm(ζ).

3. The F. and M. Riesz Theorem

Now we want to generalize the F. and M. Riesz theorem.

Theorem 7. Let µ be a complex Borel measure on Tn. If
∫

Tn

ei(kθ ) dµ(θ ) = 0

for k = (k1, . . . , kn) ∈ Z
n with at least one k j , j = 1,2, . . . , n positive, where

(kθ ) = k1θ1 + . . .+ knθn then µ is absolutely continuous with respect to dm.
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(When n= 1 see [6, Theorem 17.13].)

Proof. Define f (z) = P[dµ](z). Then, with the notations

z =(z1, . . . , zn) with z j = r je
iθ j , j = 1, . . . , n

r |k| =r
|k1|
1

. . . r |kn|
n

(k · θ ) =k1θ1 + . . .+ knθn

(k · t) =k1 t1 + . . .+ kn tn

and using the series representation for the Poisson kernel, we get

f (z) =

∫

Tn

P(z, ei t) dµ(t)

=

∫

Tn

 

∑

k∈Zn

r |k|ei(k·θ )e−i(k·t)

!

dµ(t)

=
∑

k∈Zn

�∫

Tn

e−i(k·t)dµ(t)

�

r |k|ei(k·θ )

=
∑

k∈Zn
+

ckzk

where ck =
∫

Tn e−i(k·t) dµ(t) and zk = r |k|ei(k·θ ). Notice that all other integrals in the above

sum vanish by the hypothesis. Thus f (z) is holomorphic.

For 0≤ r < 1,

∫

Tn

| fr(ζ)| dm(ζ) =

∫

Tn

�

�

�

�

�

∫

Tn

P(rζ,η) dµ(η)

�

�

�

�

�

dm(ζ)

≤

∫

Tn

�∫

Tn

P(rζ,η) d|µ|(η)

�

dm(ζ)

=

∫

Tn

�∫

Tn

P(rζ,η) dm(ζ)

�

d|µ|(η)

=‖µ‖.

Thus f ∈ H1(Dn) and hence f (z) = P[ f ∗](z), where f ∗ ∈ L1(Tn). Now the uniqueness of the

Poisson integral representation shows that

dµ= f ∗dm

and the proof is completed.
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4. Boundary Values

Do the boundary values of functions in H p(Dn) exist on the non-distinguished boundary?

Now we want to look into this question.

Let { j1, . . . , jk} and {i1, . . . , il} be disjoint sets of indices such that their union is {1, . . . , n}
where j1 < j2 < . . .< jk and i1 < i2 < . . .< il . Define the sections of Dn as follows

D
n
z j1

,...,z jk

= {(z1, . . . , zn) ∈ D
n : z j1

, . . . , z jk
are fixed}

and define fz j1
,...,z jk

= f |Dn
z j1

,...,z jk

. We will write fz j1
,...,z jk

(zi1
, . . . , zil

) instead of fz j1
,...,z jk

(z1, . . . , zn).

We will see below that for f ∈ H p(Dn), 1 ≤ p <∞, the non-tangential limit of fz j1
,...,z jk

exists at almost all points of the distinguished boundary of the section Dn
z j1

,...,z jk

which is Tl

and the function fz j1
,...,z jk

can be restored by the Poisson integral of this limit.

Theorem 8. Let f ∈ H p(Dn), 1≤ p <∞. Then fz j1
,...,z jk
∈ H p(Dl).

Proof. Without loss of generality we suppose that { j1, . . . , jk} = {1, . . . , k}. Let’s use the

following notations for the Poisson kernels

Pj(ζ j) =

¨

P(z j,ζ j) j = 1, . . . , k

P(rξ j ,ζ j) j = k+ 1, . . . , n

where |ξ j |= 1. Then, for 0< r < 1, by Theorem 6

fz1,...,zk
(rξk+1, . . . , rξn) =

∫

Tn

P1(ζ1) . . . Pn(ζn) f
∗(ζ1, . . . ,ζn) dmn.

By Hölder and Fubini

∫

Tl

| fz1,...,zk
(rξk+1, . . . , rξn)|

pdml =

∫

Tl

�

�

�

�

�

∫

Tn

P1(ζ1) . . . Pn(ζn) f
∗(ζ1, . . . ,ζn) dmn

�

�

�

�

�

p

dml

≤

∫

Tl

�∫

Tn

P1(ζ1) . . . Pn(ζn)| f
∗(ζ1, . . . ,ζn)|

p dmn

�

dml

=

∫

Tn

P1(ζ1) . . . Pk(ζk)| f
∗(ζ1, . . . ,ζn)|

p

×

�∫

Tl

Pk+1(ζk+1) . . . Pn(ζn) dml

�

dmn

≤
2k

(1− |z1|) . . . (1− |zk|)

∫

Tn

| f ∗(ζ1, . . . ,ζn)|
pdmn.

The last quantity above is independent of r and is finite by Theorem 5. Thus the theorem is

proved.

The following corollary is immediate.
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Corollary 1. If f ∈ H p(Dn), 1 ≤ p <∞, then the non-tangential limit f ∗z j1
,...,z jk

of the function

fz j1
,...,z jk

exists almost everywhere on Tl and belongs to Lp(Tl).

The following theorems are the direct consequences of Theorems 5 and 6.

Theorem 9. If 1≤ p <∞ and f ∈ H p(Dn), then

(i) lim
r→1

∫

Tl |( fz j1
,...,z jk

)r |
p dml =

∫

Tl | f
∗

z j1
,...,z jk

|p dml

(ii) lim
r→1

∫

Tl |( fz j1
,...,z jk

)r − f ∗z j1
,...,z jk

|p dml = 0

where ( fz j1
,...,z jk

)r(ζi1
, . . . ,ζil

) = fz j1
,...,z jk

(rζi1
, . . . , rζil

).

Theorem 10. If f ∈ H1(Dn), then

fz j1
,...,z jk

(zi1
, . . . , zil

) =

∫

Tl

P(zi1
,ζi1
) . . . P(zil

,ζil
) f ∗z j1

,...,z jk

(ζi1
, . . . ,ζil

) dml .

Theorem 11. Let f be a holomorphic function in Dn. If 1≤ p <∞ and

sup
(z j1

,...,z jk
)

|z j1
|=...=|z jk

|

‖ fz j1
,...,z jk
‖Hp(Dn−k) = M <∞,

then f ∈ H p(Dn).

Proof. For simplicity we take { j1, . . . , jk} = {1, . . . , k}. And, of course, this theorem makes

sense only when k > 0. Now for 0≤ r < 1,

∫

Tn

| f (rζ1, . . . , rζn)|
p dmn =

∫

Tk

�∫

Tn−k

| f (rζ1, . . . , rζn)|
p dmn−k

�

dmk

≤

∫

Tk

�

sup
0≤t<1

∫

Tn−k

| f (rζ1, . . . , rζk, tζk+1, . . . , tζn)|
p dmn−k

�

dmk

=

∫

Tk

‖ frζ1,...,rζk
‖p

Hp(Dn−k)
dmk

≤M p.

Thus f ∈ H p(Dn).

5. Poletsky–Stessin Hardy Spaces on the Bidisk

Let u be a negative continuous plurisubharmonic function on the bidisk

D
2 = {(z1, z2) ∈ C

2 : |z1|< 1, |z2|< 1}
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such that u(z1, z2) → 0 as (z1, z2) → (ζ1,ζ2) ∈ ∂D
2. Following Demailly [2], for r < 0 we

define

Su(r) =
�

(z1, z2) ∈ D
2 : u(z1, z2) = r

	

Bu(r) ={(z1, z2) ∈ D
2 : u(z1, z2)< r}.

For convenience we will write z = (z1, z2). Associated with this u we define the positive

measure µu,r called Monge-Ampère measures by

µu,r = (dd cur)
2 −χD2\Bu(r)

(dd cu)2

where ur = max{u, r}. These measures are supported by the level sets Su(r). Demailly has

proved the following [2, Theorem 1.7].

Theorem 12 (Lelong–Jensen Formula). For all r < 0 every plurisubharmonic function ϕ on D2

is µu,r -integrable and

µu,r(ϕ) =

∫

Bu(r)

ϕ(dd cu)2 +

∫

Bu(r)

(r − u)(dd cϕ)∧ (dd cu).

Denote by E (D2) the set of all continuous negative plurisubharmonic functions u on D2

and equal to zero on ∂D2 whose Monge–Ampère mass is finite, i.e.

∫

D2

(dd cu)2 <∞

and denote by E1(D
2) the set of those u ∈ E (D2) for which

∫

D2 dd cu= 1.

Following [3] we define, what we call, the Poletsky–Stessin Hardy space H
p
u (D

2), p > 0,

as the space of all holomorphic functions on D2 for which

lim sup
r→0−

µu,r(| f |
p)<∞.

These new spaces are contained in the classical spaces, that is, H
p
u (D

2) ⊂ H p(D2). Since

µu,r(| f |
p) is an increasing function of r the lim sup in the definition can be replaced by lim.

For p ≥ 1

‖ f ‖p
H

p
u

= lim
r→0−

µu,r(| f |
p)

is a norm and with this norm H
p
u (D

2) is Banach [3, Theorem 4.1]. The Poletsky–Stessin Hardy

spaces on the unit disk have been studied in detail in [1, 5, 8–10].

In [4] Poletsky has proved that the intersection of all Poletsky–Stessin Hardy spaces H
p
u (D),

p ≥ 1, where D is a strongly pseudoconvex domain with C2 boundary, is H∞(D), the space

of bounded holomorphic functions. Hence it immediately follows that the intersection of all

H
p
u (D) is H∞(D). We will prove this result for the polydisk. It is enough to consider the bidisk.
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Let ζ = (ζ1,ζ2) ∈ T
2 and α = (α1,α2), 0 < α1,α2 < π/2. Following [11] we define the

approach region Tα(ζ) as

Tα(ζ) = Tα1
(ζ1)× Tα2

(ζ2)

where Tα j
(ζ j) is the Stolz angle at ζ j ∈ T with vertex angle 2α j . Here we will consider only

the congruent symmetric approach regions meaning that the Stolz angles are symmetric with

respect to the radius to ζ j and the vertex angles are equal, i.e. α1 = α2. Following [4] we

define the Green ball of radius 0< r < 1 and center at w to be the set

G(w, r) = {z ∈ D2 : g(z, w)< log r}

where g(z, w) is the Green function for D2 with pole at w. The Green function for D2 is

explicitly given by

g(z, w) = log max

��

�

�

�

z1 −w1

1−w1z1

�

�

�

�

,

�

�

�

�

z2 −w2

1−w2z2

�

�

�

�

�

.

Hence it follows that

G(w, r) =

�

z1 ∈ D :

�

�

�

�

z1 −w1

1−w1z1

�

�

�

�

< r

�

×

�

z2 ∈ D :

�

�

�

�

z2 − w2

2−w2z2

�

�

�

�

< r

�

.

Lemma 1. Let ζ = (ζ1,ζ2) ∈ T
2 and 0 < r < 1. For any 0 < t < 1 there exists 0 < α < π/2

such that G(tζ, r) ⊂ Tα(ζ) where tζ = (tζ1, tζ2) and Tα(ζ) = Tα(ζ1)× Tα(ζ2).

Proof. Observe that
(

z j ∈ D :

�

�

�

�

�

z j − tζ j

1− tζ jz j

�

�

�

�

�

< r

)

is the image of the disk {|w j |< r} ⊂ C under the conformal map

w j 7→
w j + tζ j

1+ tζ jw j

which is a disk contained in D with center at

t(1− r2)

1− r2 t2
ζ j

and radius equal to

r(1− t2)

1− r2 t2
.

The tangents to this disk that pass through ζ j make an angle of

α= arcsin

�

r(1+ t)

1+ t r2

�
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with the radius to ζ j . Hence

(

z j ∈ D :

�

�

�

�

�

z j − tζ j

1− tζ jz j

�

�

�

�

�

< r

)

⊂ Tα(ζ j)

for j = 1,2 and G(tζ, r) ⊂ Tα(ζ). Since for fixed 0< r < 1

t 7→
r(1+ t)

1+ t r2

is an increasing function of t ∈ [0,1] we have

0<
r(1+ t)

1+ t r2
≤

2r

1+ r2
< 1.

From this it follows that

0< α≤ arcsin

�

2r

1+ r2

�

<
π

2
.

Remark 1. For fixed 0< r < 1,

t 7→
r(1− t2)

1− r2 t2

is a decreasing function of t ∈ [0,1] that decreases to zero as t → 1. Therefore we can make the

size of the Green ball G(tζ, r) as small as we want simply by choosing t close enough to 1.

The plurisubharmonic envelope Eφ of a continuous function φ on a domain Ω ⊂ Cn is the

maximal plurisubharmonic function on Ω less than or equal to φ. For a sequence of functions

{u j} ⊂ E (D
2), we denote by E{u j} the envelope of inf{u j}. The following Lemma [4, Theorem

3.3] gives the estimate on the Monge–Ampère mass of the envelope.

Lemma 2. If Ω is a strongly hyperconvex domain and continuous plurisubharmonic functions

{u j} ⊂ E (Ω), then
∫

Ω

(dd c E{u j})
n ≤

∑

∫

Ω

(dd cu j)
n.

Theorem 13. Let f be a holomorphic function on D2. Suppose that f has non-tangential limits

at points {ζ j} ⊂ T
2 and lim j→∞ | f

∗(ζ j)|=∞. Then for any p ≥ 1 there exists u ∈ E1(D
2) such

that f /∈ H
p
u (D

2).

The proof that Poletsky gave to this theorem in [4] in the case when D is a strongly pseu-

doconvex domain with C2 boundary also works when the domain is a polydisk. We will mimic

his proof in our context.

Proof. Let us take a sequence {a j} of positive numbers such that

∞
∑

j=1

a j <∞ and

∞
∑

j=1

a2
j | f
∗(ζ j)|

p =∞.
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For 0 < t j < 1 we write G j = G(t jζ j , e−1). By Lemma 1 there exists 0 < α j < π/2 such that

G j ⊂ Tα j
(ζ j). Now we inductively construct a sequence {tk}, 0 < tk < 1, satisfying certain

conditions. Choose any 0< t1 < 1. Suppose that t1, . . . , tk−1 have already been chosen. Now

chose 0< tk < 1 so that the following conditions are satisfied:

(i) | f |> | f ∗(ζk)|/2 on Gk

(ii) Gk ∩ G j = φ

(iii) g(z, tkζk)> −a j/2
k+1 on G j

(iv) a j g(z, t jζ j)> −ak/2
j+1 on Gk

for 1≤ j ≤ k−1. The conditions (i) and (ii) can be achieved simply by taking tk close enough

to 1. Since G j , j < k, and Gk are disjoint, g(z, tkζk)→ 0 uniformly on G j as tk → 1. Hence

(iii) can be achieved for tk close enough to 1. Since g(z, t jζ j) = 0 when z ∈ ∂D2, we can

choose tk so close to 1 that

Gk ⊂
k−1
⋂

j=1

�

z ∈ D2 : a j g(z, t jζ j)> −ak/2
j+1
	

.

Thus (iv) can be achieved.

Define

u j(z) = a j max{g(z, t jζ j),−2}.

Note that if F is an open set in D2 containing G(t jζ j , e−2) then

∫

F

(dd cu j)
2 = a2

j .

Let u = E{u j}. Since the series v =
∑∞

j=1 u j converges uniformly on D2, v ∈ E (D2). So u ≥ v

is a continuous plurisubharmonic function on D2 equal to 0 on ∂D2. By Lemma 2,

∫

D2

(dd cu)2 ≤
∞
∑

j=1

∫

D2

(dd cu j)
2 =

∞
∑

j=1

a2
j <∞.

Hence u ∈ E (D2).

Now we evaluate
∫

Gk
(dd cu)2. Observe that uk ≥ u ≥ v on D2. By the conditions on the

choices of t j , on ∂ Gk we get

−ak ≥ u≥ −
k−1
∑

j=1

ak

2 j+1
− ak −

∞
∑

j=k+1

ak

2 j+1
≥ −

3

2
ak.

Hence u + 3ak/2 ≥ 0 on ∂ Gk and the set Fk = {6(u +
3
2 ak) < uk} compactly belongs to Gk.

Moreover, if z ∈ ∂ G(tkζk, e−2) then

6

�

u(z) +
3

2
ak

�

≤ 6

�

uk(z) +
3

2
ak

�

= −3ak < −2ak = uk(z).
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Thus G(tkζk, e−2) ⊂ Fk. By the comparison principle

36

∫

Gk

(dd cu)2 =

∫

Gk

(dd c6(u(z) +
3

2
ak))

2 ≥

∫

Fk

(dd cuk)
2 = a2

k
.

Hence by Lelong–Jensen formula

‖ f ‖p
H

p
u

≥

∫

D2

| f |p(dd cu)2 ≥
∞
∑

k=1

∫

Gk

| f |p(dd cu)2 ≥
1

36 · 2p

∞
∑

k=0

| f ∗(ζk)|
pa2

k
=∞.

Hence f /∈ H p(D2).

The following corollary shows the existence of nontrivial Poletsky–Stessin Hardy spaces on

the bidisk.

Corollary 2. For every p ≥ 1 there exists a function u ∈ E1(D
2) such that H

p
u (D

2) 6⊆ H p(D2).

Proof. Take f ∈ H p(D2) that is unbounded. Then the non-tangential limit f ∗ on T2 must

be unbounded because otherwise

f (z) =

∫

T2

P(z,ζ) f ∗(ζ) dm

would imply that f (z) is bounded. So there exists a set of points {ζ j} ∈ T
2 such that

lim j→∞ | f
∗(ζ j)|=∞. Hence the corollary follows from Theorem 13.

Now we prove the most important theorem of this section.

Theorem 14. Let p ≥ 1. Then

⋂

u∈E1(D
2)

H p
u (D

2) = H∞(D2).

Proof. Let f ∈
⋂

u∈E1(D
2)H

p
u (D

2). Then the non-tangential limit f ∗ on T2 is bounded

because otherwise by Theorem 13 there would exist a u ∈ E1(D
2) such that f /∈ H

p
u (D

2). Thus,

since f ∗ is bounded,

f (z) =

∫

T2

P(z,ζ) f ∗(ζ) dm

implies that f ∈ H∞(D2).
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