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Abstract. In this paper, we find the generalized Hyers-Ulam-Rassias stability of the system of bi-reciprocal
functional equations

r(x + u, y) =
r(x , y)r(u, y)
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1. Introduction

In functional analysis and related areas of mathematics, Fréchet spaces, named after Mau-

rice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces

(normed vector spaces which are complete with respect to the metric induced by the norm).

Many vector spaces of holomorphic, differentiable or continuous functions which arise in

connection with various problems in analysis and its applications are defined by (at most)

countably many conditions, whence they carry a natural Fréchet topology (if they are, in ad-

dition, complete). In particular, each Banach space is a Fréchet space and so has a countable

basis of absolutely convex zero neighborhoods. A topological vector space X is a Fréchet space

if and only if it satisfies the following three properties:
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(i) it is complete as a uniform space

(ii) it is locally convex

(iii) its topology can be induced by a translation invariant metric, i.e. a metric d : X ×X → !
such that d(x , y) = d(x + a, y + a) for all a, x ,∈ X .

This means that a subset U of X is open if and only if for every u in U , there exists an ε> 0 such

that {v : d(u, v)< ε} is a subset of U . Note that there is no natural notion of distance between

two points of a Fréchet space: many different translation-invariant metrics may induce the

same topology.

The vector space C∞([0,1]) of all infinitely often differentiable functions f : [0,1] → !
becomes a Fréchet space with the seminorms || f ||k = sup{| f (k)(x)| : x ∈ [0,1]} for every

integer k ≥ 0. Here, f (k) denotes the kth derivative of f , and f (0) = f . The spaces C∞(Ω) for

Ω ⊂ !n open, )(K), C∞(K) for K ⊂ !n, )(!n), * (Ω) for Ω ⊂ "n open are other examples

of Fréchet spaces.

More generally, if M is a compact C∞ manifold and B is a Banach space, then the set of

all infinitely often differentiable functions f : M → B can be turned into a Fréchet space; the

seminorms are given by the suprema of the norms of all partial derivatives.

The space ω of real valued sequences becomes a Fréchet space if we define the kth semi-

norm of a sequence to be the absolute value of the kth element of the sequence. Convergence

in this Fréchet space is equivalent to element-wise convergence.

Not all vector spaces with complete translation-variant metrics are Fréchet spaces. An

example is Lp with p < 1. Of course, such spaces fail to be locally convex.

The topology of a Fréchet space E can be given by a sequence of seminorms

‖ ‖1 ≤ ‖ ‖2 ≤ . . . in the following way: a basis of neighborhoods of zero are the sets

Uk,ε = {x ∈ E : ‖x‖k ≤ ε}. Such a system is called a fundamental system of seminorms. It is

by no means uniquely determined by the topology. In fact, two systems ‖ ‖1 ≤ ‖ ‖2 ≤ . . . and

‖ ‖∼1 ≤ ‖ ‖
∼
2 ≤ . . . give the same topology if and only if there exist constants Ck and n(k) ∈ #

such that

‖ ‖k ≤ Ck ‖ ‖
∼
n(k) and ‖ ‖∼k ≤ Ck ‖ ‖n(k)

for all k. In this case the systems of seminorms are called equivalent.

A Fréchet space equipped with a fixed fundamental system of seminorms is called a graded

Fréchet space. This concept is important in connection with many problems in analysis, where

the index of a norm indicates e.g. the order of derivatives involved.

It is a classical fact that the Fréchet spaces are characterized by the existence of a countable,

sufficient and increasing family of semi-norms {pi}i∈# (that is pi(x) = 0 implies x = 0 and

pi(x)≤ pi+1(x) for all x ∈ X and i ∈ #), which define the pseudo-norm

∆(x) =

∞
∑

i=0

1

2i

pi(x)

1+ pi(x)

and the metric d(x , y) =∆(x−y) invariant with respect to translations, such that d generates a

complete topology equivalent to that of locally convex space. Also, notice that since
pi(x)

1+pi(x)
≤ 1

and
∑∞

i=0
1
2i = 1, it follows that ∆(x)≤ 1 for all x ∈ X (see [7]).
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Moreover, d has the properties given by the following.

Theorem 1 ([7]). Let (X , {pi}i∈#, d) be a Fréchet space, then

(i) d(cx , c y) ≤ d(x , y) for x , y ∈ X , |c|< 1;

(ii) d(x + u, y + v)≤ d(x , y) + d(u, v) for x , y,u, v ∈ X ;

(iii) d(kx , k y)≤ d(r x , r y) if k, r ∈ !, 0< k ≤ r;

(iv) d(kx , k y)≤ kd(x , y) for x , y ∈ X , k ∈ #, k ≥ 2;

(v) d(cx , c y) ≤ (|c|+ 1)d(x , y) for all x , y ∈ X and c ∈ !.

Fréchet spaces are studied because even though their topological structure is more com-

plicated due to the lack of a norm, many important results in functional analysis, like the

open mapping theorem and the Banach-Steinhaus theorem, still hold. For further concepts on

Fréchet spaces, one can refer to ([6, 14, 17]).

The stability theory of functional equations basically deals with the following question:

“Given an approximately linear mapping f , when does a linear mapping T estimating f exist?”

This problem was raised by S.M. Ulam [22] in the year 1940 and D.H. Hyers [11] in the year

1941, gave a first affirmative partial answer to the question of Ulam in the case of Banach

spaces. Hyers’ theorem was generalized by T. Aoki [2] for additive mappings in the year 1950

and by Th.M. Rassias [18] for linear mappings by considering an unbounded Cauchy difference

in the year 1978. The type of stability investigated by Th.M. Rassias is known as "Hyers-Ulam-

Rassias stability" of functional equation.

A generalized form of the theorem given by Th.M. Rassias was advocated by P. Gavruta

[8] who replaced the unbounded Cauchy difference in Rassias’ theorem by a general control

function. This type of stability is called "Generalized Hyers-Ulam-Rassias Stability".

The stability problems of several functional equations have been extensively investigated

by a number of authors and there are many interesting results concerning this problem (see

[1, 4, 5, 10, 12, 13, 15, 16, 21]).

Let A and B be vector spaces. A mapping J : A→ B is called Jensen mapping if J satisfies

the functional equation

2J

#

x + y

2

$

= J(x) + J(y).

Definition 1 ([3]). Let A and B be vector spaces. A mapping f : A× A→ B is called a bi-Jensen

mapping if f satisfies the system of functional equations

2 f

#

x + y

2
, z

$

= f (x , z) + f (y, z)

2 f

#

x ,
y + z

2

$

= f (x , y) + f (x , z).











(1)

When A= B = !, the function f : !×!→ ! given by f (x , y) = ax y + bx + c y + d is a

solution of (1).
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Definition 2 ([9]). Let A and B be vector spaces. A mapping f : A×A→ B is called a bi-quadratic

mapping if f satisfies the system of functional equations

f (x1 + x2, y) + f (x1 − x2, y) = 2 f (x1, y) + 2 f (x2, y)

f (x , y1 + y2) + f (x , y1 − y2) = 2 f (x , y1) + 2 f (x , y2).

)

(2)

When A= B = !, the function f : !×!→ ! given by f (x , y) = x2 y2 is a solution of (2).

In the year 2010, K. Ravi and B.V. Senthil Kumar [19] investigated the generalized Hyers-

Ulam-Rassias stability for the reciprocal functional equation

r(x + y) =
r(x)r(y)

r(x) + r(y)
(3)

where r : !∗ → ! is a mapping with R∗ as the space of non-zero real numbers and with the

assumptions x+ y /= 0, r(x)+ r(y) /= 0 and r(x) /= 0, for all x , y ∈ !∗. The reciprocal function

r(x) = 1
x is a solution of the functional equation (3).

K.Ravi, J.M. Rassias and B.V. Senthil Kumar [20] obtained the general solution and in-

vestigated the generalized Hyers-Ulam-Rassias stability of a 2-variable reciprocal functional

equation

F(x + u, y + v) =
F(x , y)F(u, v)

F(x , y) + F(u, v)
(4)

where F : !∗ ×!∗ → ! is a mapping with R∗ as the space of non-zero real numbers and with

the conditions x+ y /= 0, u+ v /= 0, x+u /= 0, y+ v /= 0, F(x , y) /= 0 and F(x , y)+ F(u, v) /= 0

for all x ,u, y, v ∈ !∗. The 2-variable reciprocal function F(x , y) = 1
x+y is a solution of the

functional equation (4).

Motivated by the system of functional equations (1) and (2), we say that a mapping

r : !+ ×!+→ !+ is bi-reciprocal if r satisfies the system of functional equations

r(x + u, y) =
r(x , y)r(u, y)

r(x , y) + r(u, y)

r(x , y + v) =
r(x , y)r(x , v)

r(x , y) + r(x , v)
.













(5)

It is easy to see that r(x , y) = 1
x y is a solution of the system of functional equations (5).

In this paper, we investigate the generalized Hyers-Ulam-Rassias stability problem for the

system of functional equations (5). Throughout this paper, we assume that E is a real normed

space and F is a real Banach space. We also assume that X is the space of non-zero real

numbers and Y is a real Fréchet space with metric d with the conditions x + u /= 0, y + v /= 0,

r(x , y) /= 0, r(x , y) + r(u, y) /= 0 and r(x , y) + r(x , v) /= 0 for all x ,u, y, v ∈ X .

For notational convenience, let us denote for a given mapping r : X → Y , the difference

operators δr : X × X × X → Y and ∆r : X × X × X → Y by

δr(x ,u, y) = d

*

r(x + u, y),
r(x , y)r(u, y)

r(x , y) + r(u, y)

+

,
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∆r(x , y, v) = d

*

r(x , y + v),
r(x , y)r(x , v)

r(x , y) + r(x , v)

+

for all x ,u, y, v ∈ X .

2. Generalized Hyers-Ulam-Rassias Stability of the System of Functional
Equations (5)

Theorem 2. Let G, H : X × X × X → [0,∞) be mappings satisfying

∞
∑

i=0

4iG(2i x , 2i x , 2i y)<∞,

∞
∑

i=0

4iH(2i+1 x , 2i y, 2i y)<∞















(6)

for all x , y ∈ X . Let r : X × X → Y be a mapping such that

δr(x ,u, y)≤ G(x ,u, y) (7)

∆r(x , y, v) ≤ H(x , y, v) (8)

for all x ,u, y, v ∈ X . Then there exists a unique bi-reciprocal mapping R : X × X → Y satisfying

(5) and

d(R(x , y), r(x , y))≤ 2

∞
∑

i=0

4iG(2i x , 2i x , 2i y) + 4

∞
∑

i=0

4iH(2i+1 x , 2i y, 2i y) (9)

for all x , y ∈ X . The mapping R(x , y) is defined by

R(x , y) = lim
n→∞

4nr(2n x , 2n y), for all x , y ∈ X .

Proof. Setting u= x in (7) and then multiplying by 2 on both sides, we get

d(2r(2x , y), r(x , y))≤ 2G(x , x , y) (10)

for all x , y ∈ X . Putting v = y in (8) and then multiplying by 2 on both sides, we obtain

d(2r(x , 2y), r(x , y))≤ 2H(x , y, y) (11)

for all x , y ∈ X . Replacing x by 2x in (11) and then multiplying by 2 on both sides, yields

d(4r(2x , 2y), 2r(2x , y))≤ 4H(2x , y, y) (12)

for all x , y ∈ X . Combining (10) and (12) and using triangle inequality, we get

d(4r(2x , 2y), r(x , y))≤ 2G(x , x , y) + 4H(2x , y, y) (13)
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for all x , y ∈ X . Now, substituting (x , y) by (2x , 2y) in (13) and then multiplying by 4 on

both sides, we have

d(16r(4x , 4y), 4r(2x , 2y))≤ 8G(2x , 2x , 2y) + 16H(4x , 2y, 2y) (14)

for all x , y ∈ X . Combining (13) and (14), we see that

d
,

42r(22 x , 22 y), r(x , y)
-

≤ 2

1
∑

i=0

4iG(2i x , 2i x , 2i y) + 4

1
∑

i=0

4iH(2i+1 x , 2i y, 2i y)

for all x , y ∈ X . Using induction arguments, we conclude that

d(4nr(2n x , 2n y), r(x , y))

≤2

n−1
∑

i=0

4iG(2i x , 2i x , 2i y) + 4

n−1
∑

i=0

4iH(2i+1 x , 2i y, 2i y)

≤2

∞
∑

i=0

4iG(2i x , 2i x , 2i y) + 4

∞
∑

i=0

4iH(2i+1 x , 2i y, 2i y)

(15)

for all x , y ∈ X . In order to prove the convergence of the sequence {4nr(2n x , 2n y)}, replace

(x , y) by (2m x , 2m y) in (15) and multiply by 4m to get

d(4n+mr(2n+m, 2n+m y), 4mr(2m x , 2m y)) =4md(4nr(2n+m x , 2n+m y), r(2m x , 2m y))

≤2

∞
∑

i=0

4m+iG(2m+i x , 2m+i x , 2m+i y)

+ 4

∞
∑

i=0

4m+iH(2m+i+1 x , 2m+i y, 2m+i y).

Using (6), the right-hand side of the above inequality tends to zero as m→∞. This shows

that {4nr(2n x , 2n y)} is a Cauchy sequence in Y . Since Y is a Fréchet space, it follows that the

sequence {4nr(2n x , 2n y)} converges. Define R : X × X → Y by

R(x , y) = lim
n→∞

4nr(2n x , 2n y)

for all x , y ∈ X . It follows from (7) that

δR(x ,u, y) = lim
n→∞

4n
δr(2

n x , 2nu, 2n y)

≤ lim
n→∞

4nG(2n x , 2nu, 2n y) = 0

for all x ,u, y, v ∈ X . Also it follows from (8) that

∆R(x , y, v) = lim
n→∞

4n∆r(2
n x , 2n y, 2nv)

≤ lim
n→∞

4nH(2n x , 2n y, 2nv) = 0
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for all x , y, v ∈ X , which shows that R is bi-reciprocal. To prove R is unique bi-reciprocal

mapping, let us consider another bi-reciprocal mapping R′ : X × X → Y which satisfies (5)

and (9). Since 4nR(2n x , 2n y) = R(x , y) and 4nR′(2n x , 2n y) = R′(x , y) for all x , y ∈ X , we

conclude that

d(R(x , y),R′(x , y)) =4nd(R(2n x , 2n y),R′(2n x , 2n y))

≤4n
.

d(R(2n x , 2n y), r(2n x , 2n y)) + d(r(2n x , 2n y),R′(2n x , 2n y))
/

≤4

∞
∑

i=0

4n+iG(2n+i x , 2n+i x , 2n+i x) + 8

∞
∑

i=0

4n+iH(2n+i+1 x , 2n+i y, 2n+i y)

for all x , y ∈ X . Using (6), letting n →∞ in the right-hand side of the above inequality, it

follows that R(x , y) = R′(x , y) for all x , y ∈ X , which completes the proof of the theorem.

Theorem 3. Suppose the mapping G, H : E × E × E → [0,∞) satisfy (6) for all x , y ∈ E. If

r : E × E→ F is a mapping such that
0

0

0

0
r(x + u, y)−

r(x , y)r(u, y)

r(x , y) + r(u, y)

0

0

0

0
≤ G(x ,u, y), (16)

0

0

0

0
r(x , y + v)−

r(x , y)r(x , v)

r(x , y) + r(x , v)

0

0

0

0
≤ H(x , y, v) (17)

for all x ,u, y, v ∈ E, then there exists a unique bi-reciprocal mapping R : E × E → F satisfying

(5) and

0

0R(x , y)− r(x , y)
0

0≤ 2

∞
∑

i=0

4iG(2i x , 2i x , 2i y) + 4

∞
∑

i=0

4iH(2i+1 x , 2i y, 2i y)

for all x , y ∈ E.

Proof. Putting d(a, b) = ‖a− b‖, for all a, b ∈ E in Theorem 2, the proof follows immedi-

ately.

We investigate the Hyers-Ulam-Rassias stability of the system of functional equations (5)

in the corollary presented below.

Corollary 1. Let c1 > 0 be fixed and p < −2. If a mapping r : E×E→ F satisfies the inequalities
0

0

0

0
r(x + u, y)−

r(x , y)r(u, y)

r(x , y) + r(u, y)

0

0

0

0
≤ c1

1

‖x‖p + ‖u‖p +
0

0y
0

0
p
2

,

0

0

0

0
r(x , y + v)−

r(x , y)r(x , v)

r(x , y) + r(x , v)

0

0

0

0
≤ c1

1

‖x‖p +
0

0y
0

0
p
+ ‖v‖p
2













(18)

for all x ,u, y, v ∈ E, then there exists a unique bi-reciprocal mapping R : E × E → F satisfying

(5) and
0

0R(x , y)− r(x , y)
0

0≤
#

2c1

1− 2p+2

$
.

2 (2p + 1)‖x‖p +
0

0y
0

0
p
/

(19)

for all x , y ∈ E.
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Proof. Considering G(x , y, z) = H(x , y, z) = c1

1

‖x‖p +
0

0y
0

0
p
+ ‖z‖p
2

, for all x , y, z ∈ E in

Theorem 3, we get
0

0R(x , y)− r(x , y)
0

0

≤2c1

∞
∑

i=0

4i
10

02i x
0

0
p
+
0

02i x
0

0
p
+
0

02i y
0

0
p
2

+ 4c1

∞
∑

i=0

4i
10

02i+1 x
0

0
p
+
0

02i y
0

0
p
+
0

02i y
0

0
p
2

≤2c1

∞
∑

i=0

4i2pi
1

2‖x‖p +
0

0y
0

0
p
2

+ 4c1

∞
∑

i=0

4i2pi
1

2p ‖x‖p + 2
0

0y
0

0
p
2

≤2c1

∞
∑

i=0

2(p+2)i
1

2‖x‖p +
0

0y
0

0
p
2

+ 4c1

∞
∑

i=0

2(p+2)i
1

2p ‖x‖p + 2
0

0y
0

0
p
2

≤2c1

#

1

1− 2p+2

$
1

2‖x‖p +
0

0y
0

0
p
2

+

#

4c1

1− 2p+2

$
1

2p ‖x‖p + 2
0

0y
0

0
p
2

≤
#

2c1

1− 2p+2

$
.

2 (2p + 1)‖x‖p + 5
0

0y
0

0
p
/

, for all x , y ∈ E.

Theorem 4. Let G, H : X × X × X → [0,∞) be mappings satisfying

∞
∑

i=0

1

4i
G

#

x

2i+1
,

x

2i+1
,

y

2i+1

$

<∞,

∞
∑

i=0

1

4i
H

#

x

2i
,

y

2i+1
,

y

2i+1

$

<∞















(20)

for all x , y ∈ X . Let r : X ×X → Y be a mapping such that (7) and (8) hold for all x ,u, y, z ∈ X .

Then there exists a unique bi-reciprocal mapping R : X × X → Y satisfying (5) and

d(r(x , y),R(x , y))≤
1

2

∞
∑

i=0

1

4i
G

#

x

2i+1
,

x

2i+1
,

y

2i+1

$

+

∞
∑

i=0

1

4i
H

#

x

2i
,

y

2i+1
,

y

2i+1

$

(21)

for all x , y ∈ X . The mapping R(x , y) is defined by

R(x , y) = lim
n→∞

1

4n
r

#

x

2n
,

y

2n

$

, for allx , y ∈ X .

Proof. Replacing (x ,u, y) by
,

x
2 , x

2 ,
y
2

-

in (7) and then dividing by 2, we obtain

d

#

1

2
r

#

x ,
y

2

$

,
1

4
r

#

x

2
,

y

2

$$

≤
1

2
G

#

x

2
,

x

2
,

y

2

$

(22)

for all x , y ∈ X . Now, replacing (x , y, v) by
,

x
2 ,

y
2 ,

y
2

-

in (8), we get

d

#

r

#

x

2
, y

$

,
1

2
r

#

x

2
,

y

2

$$

≤ H

#

x

2
,

y

2
,

y

2

$

(23)
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for all x , y ∈ X . Putting x = 2x in (23), we lead to

d

#

r(x , y),
1

2
r

#

x ,
y

2

$$

≤ H

#

x ,
y

2
,

y

2

$

(24)

for all x , y ∈ X . Combining (22) and (24), applying triangle inequality, yields

d

#

r(x , y),
1

4
r

#

x

2
,

y

2

$$

≤
1

2
G

#

x

2
,

x

2
,

y

2

$

+ H

#

x ,
y

2
,

y

2

$

for all x , y ∈ X . Proceeding further and using induction arguments on a positive integer n, we

have

d

#

r(x , y),
1

4n
r

#

x

2n
,

y

2n

$$

≤
1

2

n−1
∑

i=0

1

4i
G

#

x

2i+1
,

x

2i+1
,

y

2i+1

$

+

n−1
∑

i=0

1

4i
H

#

x

2i
,

y

2i+1
,

y

2i+1

$

≤
1

2

∞
∑

i=0

1

4i
G

#

x

2i+1
,

x

2i+1
,

y

2i+1

$

+

∞
∑

i=0

1

4i
H

#

x

2i
,

y

2i+1
,

y

2i+1

$

for all x , y ∈ X . The rest of the proof is obtained by similar arguments as in Theorem 2.

Theorem 5. Suppose the mappings G, H : E × E × E → [0,∞) satisfy (23) and (24) for all

x , y ∈ E. If r : E × E → F is a mapping such that (16) and (17) hold for all x ,u, y, v ∈ E, then

there exists a unique bi-reciprocal mapping R : E × E→ F satisfying (5) and

0

0r(x , y)− R(x , y)
0

0≤
1

2

∞
∑

i=0

1

4i
G

#

x

2i+1
,

x

2i+1
,

y

2i+1

$

+

∞
∑

i=0

1

4i
H

#

x

2i
,

y

2i+1
,

y

2i+1

$

for all x , y ∈ E.

Proof. By taking d(a, b) = ‖a− b‖, for all a, b ∈ E in Theorem 4, we arrive at the desired

result.

Corollary 2. Let ε> 0 be fixed. If r : E × E→ F satisfies

0

0

0

0
r(x + u, y)−

r(x , y)r(u, y)

r(x , y) + r(u, y)

0

0

0

0
≤
ε

2
,

0

0

0

0
r(x , y + v)−

r(x , y)r(x , v)

r(x , y) + r(x , v)

0

0

0

0
≤
ε

2

for all x ,u, y, v ∈ E, then there exists a unique bi-reciprocal mapping R : E × E→ F such that

0

0r(x , y)− R(x , y)
0

0≤ ε, for all x , y ∈ E.
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Proof. Letting G(x , y, z) = H(x , y, z) = ε

2 , for all x , y, z ∈ E in Theorem 5, we lead to

0

0r(x , y)− R(x , y)
0

0≤
1

2

∞
∑

i=0

1

4i

ε

2
+

∞
∑

i=0

1

4i

ε

2

≤
3ε

4

∞
∑

i=0

1

4i
=

3ε

4

#

4

3

$

= ε, for all x , y ∈ E.

Corollary 3. Let c1 > 0 be fixed and p > −2. If a mapping r : E×E→ F satisfies the inequalities

(18), for all x ,u, y, v ∈ E, then there exists a unique bi-reciprocal mapping R : E × E → F

satisfying (5) and

0

0r(x , y)− R(x , y)
0

0≤
#

2c1

2p+2 − 1

$
.

2 (2p + 1)‖x‖p + 5
0

0y
0

0
p
/

, for all x , y ∈ E.

Proof. The proof is similar to that of Corollary 1.
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additive-cubic functional equations in Fréchet spaces. Functional Analysis, Approximation

and Computation, 3(2):57–68, 2011.

[10] M.E. Gordji, S. Zolfaghari, J.M. Rassias, and M.B. Savadkouhi. Solution and stability of

a mixed type cubic and quartic functional equation in quasi-Banach spaces. Abstract and

Applied Analysis, Article ID 417473:1–14, 2009.

[11] D.H. Hyers. On the stability of the linear functional equation. Proceedings of the National

Academy of Sciences, 27:222–224, 1941.

[12] D.H. Hyers, G. Isac, and Th.M. Rassias. Stability of Functional Equations in Several Vari-

ables. Birkhauser, Basel, 1998.

[13] S.M. Jung. Hyers-Ulam-Rassias stability of functional equations in Mathematical Analysis.

Hardonic press, Palm Harbor, 2001.

[14] G. Köthe. Topologische lineare Räume. Springer, 1960.

[15] J.R. Lee, D.Y. Shin, and C. Park. Hyers-Ulam stability of functional equations in matrix

normed spaces. Journal of Inequalities and Applications, 22, 2013.

[16] E. Movahednia. Fixed point and generalized Hyers-Ulam-Rassias stability of a quadratic

functional equation. Journal of Mathematics and Computer Science, 6:72–78, 2013.

[17] A. Pietsch. Nuclear locally convex spaces. Ergebnisse der Mathematik 66, Springer, 1972.

[18] Th.M. Rassias. On the stability of the linear mapping in banach spaces. Proceedings of

American Mathematical Society, 72:297–300, 1978.

[19] K. Ravi and B.V. Senthil Kumar. Ulam-Gavruta-Rassias stability of Rassias Reciprocal

functional equation. Global Journal of Applied Mathematics and Mathematical Sciences,

3(1-2):57–79, 2010.

[20] K. Ravi, J.M. Rassias, and B.V. Senthil Kumar. Generalized Hyers-Ulam stability of a

2-variable reciprocal functional equation. Bulletin of Mathematical Analysis and Applica-

tions, 2(2):84–92, 2010.

[21] F. Skof. Proprieta locali e approssimazione di operatori. Rendiconti del Seminario Matem-

atico e Fisico di Milano, 53:113–129, 1983.

[22] S.M. Ulam. Problems in Modern Mathematics, Chapter VI. Wiley-Interscience, New York,

1964.


