
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 9, No. 3, 2016, 333-339

ISSN 1307-5543 – www.ejpam.com

On Some New Operations In Probabilistic Soft Set Theory
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Abstract. In this paper, we study the theory of probabilistic soft sets introduced by [7]. We define

equality of two probabilistic soft sets, subset, complement of a probabilistic soft set with examples. We

also introduce the operations of union, intersection, difference and symmetric difference. We prove

that certain De Morgan’s laws hold in probabilistic soft set theory with respect to these new definitions.
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1. Introduction

In theory, for formal modeling, reasoning, and computing we have traditional tools such

as crisp, deterministic, and precise in character but in practical way we see that data in eco-

nomics, engineering, environment, social science, medical science, etc. are not always all crisp

and classical methods because of various types of uncertainties present in these problems can

not be used, successfully. There are some theories like theory of probability, theory of fuzzy

sets and the interval mathematics which we can consider as mathematical tools for dealing

with uncertainties. According to Molodtsov [5], since all these theories have their inherent

difficulties the concept of soft set theory as a mathematical tool for dealing with uncertainties

which is free from the above difficulties has been initiated in [5]. Soft set theory has a rich

potential for applications in several directions [1–4, 6]. Zhu and Wen [7] have proposed the

notion of probabilistic soft sets incorporated Molodtsov’s soft set theory with probability the-

ory and introduced three operations with probabilistic soft sets the conditional probabilistic

soft set. In the present paper, we make a theoretical study of the "Probabilistic soft set theory"

in more detail.
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2. Preliminary

Definition 1. Let U be a universe. A probabilistic set X over U is a set defined by a function µX

representing a mapping

µX : U → I = [0,1]

satisfying the following conditions:

(i) For each
∼
U ⊂ U,
∑

u∈
∼
U
µX (u)≤ 1

(ii) If
∼
U = U, then
∑

u∈
∼
U
µX (u) = 1 or
∑

u∈
∼
U
µX (u) = 0

µX is called the the probabilistic membership function of X , and the value µX (u) is called the

probabilistic grade of membership of u ∈ U. Thus a probabilistic set X over U can be represented

as follows:

X = {
�
µX (u)/u
�

: u ∈ U}.

Note that the set of all the probabilistic sets over U will be denoted by Pr (U).

Example 1. Let U = {u1,u2,u3,u4} be a universal set. Then

X = {
�
0.4/u1

�
,
�
0.1/u2

�
,
�
0.2/u3

�
,
�
0.3/u4

�
}

is a probabilistic set over U.

Definition 2. A probabilistic set X over U is called empty probabilistic set if its membership

function is zero everywhere in U and denoted by ;. i.e,

µX : U → I ,µX (u) = 0.

Example 2. Let U = {u1,u2,u3,u4,u5} is a universal set. Then

X =
��

0/u1

�
,
�
0/u2

�
,
�
0/u3

�
,
�
0/u4

�
,
�
0/u5

�	
= ;

is an empty probabilistic set.

3. Probabilistic Soft Set

In this section, we define probabilistic soft sets and their operations. From now on, we

will use ΓP
A ,ΓP

B , . . .. etc, for probabilistic soft sets and γP
A ,γP

B , . . .. etc. for their probabilistic

approximate functions, respectively.

Throughout this work, U refers to an initial universe, E is a set of parameters and A⊂ E.

Definition 3. A probabilistic soft set (prs-set) ΓP
A over U is a set defined by a function γP

A repre-

senting a mapping

γP
A : E→ Pr (U) such that γP

A (x) = ; if x /∈ A.
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Here, γP
A is called probabilistic approximate function of the probabilistic soft set ΓP

A . Hence prob-

abilistic soft set ΓP
A over U can be represented by the set of ordered pairs

ΓP
A = {
�
x ,γP

A (x)
�

: x ∈ E,γP
A (x) ∈ Pr (U)}.

Note that the set of all probabilistic soft set ΓP
A over U will be denoted by Pr S (U).

Example 3. Assume that U = {u1,u2,u3,u4,u5} is a universal set and E = {x1, x2, x3, x4} is a

set of all parameters. If A= {x1, x3, x4},

γP
A

�
x1

�
={0.9/u2, 0.1/u4}

γP
A

�
x3

�
={0.2/u1, 0.2/u2, 0.2/u3, 0.2/u4, 0.2/u5}

γP
A

�
x4

�
={0.2/u1, 0.4/u3, 0.4/u5}

then the prs-set ΓP
A is written

ΓP
A ={
�
x1, {0.9/u2, 0.1/u4}

�
,

�
x3, {0.2/u1, 0.2/u2, 0.2/u3, 0.2/u4, 0.2/u5}

�
,

�
x4, {0.2/u1, 0.4/u3, 0.4/u5}

�
}.

Definition 4. Let ΓP
A ∈ Pr S (U). If γP

A (x) = ; for all x ∈ A then ΓP
A is called A−impossible prs-set,

denoted by ΓP
Φ.

Example 4. Assume that U = {u1,u2,u3,u4,u5} is a universal set and E = {x1, x2, x3, x4} is a

set of all parameters. If A= {x1, x2}, and γP
A

�
x1

�
= ;, γP

A

�
x2

�
= ;, then probabilistic soft set ΓP

A

is an impossible prs-set, i.e. ΓP
A = Γ

P
Φ.

Definition 5. Let ΓP
A ,ΓP

B ∈ Pr S (U). Then ΓP
A is a prs-subset of ΓP

B , denoted by ΓP
A
e⊆ΓP

B , if A ⊂ B

and γP
A (x) ⊆ γ

P
B (x) for all x ∈ A.

Remark 1. As in the definition of the classical subset, ΓP
A
e⊆ΓP

B does not imply that every element

of ΓP
A is an element of ΓP

B .

Example 5. Assume that U = {u1,u2,u3,u4,u5} is a universal set and E = {x1, x2, x3} is a set

of all parameters.

x1→{0.4/u1, 0.2/u2, 0.4/u5}

x2→{0.2/u1, 0.4/u2, 0.1/u3, 0.1/u4, 0.2/u5}

x3→{1/u3}

If A= {x1}, B = {x1, x2}, then

γP
A

�
x1

�
={0.4/u1, 0.2/u2}

γP
B

�
x1

�
={0.4/u1, 0.2/u2, 0.4/u5}
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γP
B

�
x2

�
={0.2/u1, 0.4/u2, 0.1/u3}.

Hence

ΓP
A ={
�
x1, {0.4/u1, 0.2/u2}

�
}

ΓP
B ={
�
x1, {0.4/u1, 0.2/u2, 0.4/u5}

�
,
�
x2, {0.2/u1, 0.4/u2, 0.1/u3}

�
}

Then for all x ∈ E, γP
A (x) ⊆ γ

P
B (x), hence ΓP

A
e⊆ΓP

B . But it is clear that
�
x1, {0.4/u1, 0.2/u2}

�
∈ ΓP

A ,

but
�
x1, {0.4/u1, 0.2/u2}

�
/∈ ΓP

B .

Proposition 1. Let ΓP
A ,ΓP

B ∈ Pr S (U). Then

(i) ΓP
A
e⊆ΓP

A

(ii) ΓP
A
e⊆ΓP

B and ΓP
B
e⊆ΓP

C ⇒ Γ
P
A
e⊆ΓP

C .

Proof. They can be proved easily by using the probabilistic approximate function of prs-

set.

Definition 6. Let ΓP
A ,ΓP

B ∈ Pr S (U). Then ΓP
A and ΓP

B are prs-equal set written as ΓP
A = Γ

P
B , if ΓP

A

is a prs-subset of ΓP
B and ΓP

B is a prs-subset of ΓP
A .

Proposition 2. Let ΓP
A ,ΓP

B ,ΓP
C ∈ Pr S (U). Then

(i) ΓP
A = Γ

P
B and ΓP

B = Γ
P
C ⇒ Γ

P
A = Γ

P
C

(ii) ΓP
A
e⊆ΓP

B and ΓP
B
e⊆ΓP

A⇔ ΓP
A = Γ

P
B .

Proof. The proofs are straightforward.

Definition 7. Let ΓP
A ,ΓP

B ∈ Pr S (U). Then the difference of ΓP
A and ΓP

B , denoted by ΓP
A
e\ΓP

B , is

defined by its probabilistic approximate functions:

γP
A\B (x) = γ

P
A (x) \ γ

P
B (x) , for allx ∈ E.

Definition 8. Let ΓP
A ,ΓP

B ∈ Pr S (U) and ΓP
A
e⊆ΓP

B . Then the complement of ΓP
A on ΓP

B , denoted by�
ΓP

A

�c
ΓP

B

, is defined by
�
γP

A

�c
γP

B

(x) = γP
B (x) \ γ

P
A (x) , for all x ∈ E.

Example 6. Let us consider Example 5. Then,

�
ΓP

A

�c
ΓP

B

= {
�
x1, {0.4/u5}
�

,
�
x2, {0.2/u1, 0.4/u2, 0.1/u3

�
}.

Definition 9. Let ΓP
A ,ΓP

B ∈ Pr S (U). Then the union of ΓP
A and ΓP

B , denoted by ΓP
A
e∪ΓP

B , is defined

by its probabilistic approximate functions:

γP
A∪B (x) = γ

P
A (x)∪ γ

P
B (x) , for all x ∈ E.
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Example 7. Assume that U = {u1,u2,u3,u4,u5} is a universal set and E = {x1, x2, x3, x4} is a

set of all parameters.

x1→{0.4/u1, 0.2/u2, 0.4/u5}

x2→{0.2/u1, 0.4/u2, 0.1/u3, 0.1/u4, 0.2/u5}

x3→{1/u3}

x4→{0.2/u1, 0.1/u2, 0.3/u3, 0.2/u4, 0.2/u5}

If A= {x1, x2}, B = {x1, x2, x4}, then

γP
A

�
x1

�
={0.2/u2, 0.4/u5}

γP
A

�
x2

�
={0.2/u1, 0.1/u4}

γP
B

�
x1

�
={0.4/u1, 0.2/u2, 0.4/u5}

γP
B

�
x2

�
={0.4/u2, 0.1/u3}

γP
B

�
x4

�
={0.2/u4, 0.2/u5}

Hence

ΓP
A ={
�
x1, {0.2/u2, 0.4/u5}

�
,
�
x2, {0.2/u1, 0.1/u4}

�
}

ΓP
B ={
�
x1, {0.4/u1, 0.2/u2, 0.4/u5}

�
,
�
x2, {0.4/u2, 0.1/u3}

�
,
�
x4, {0.2/u4, 0.2/u5}

�
}

It is clear that A∪ B = {x1, x2, x4} and

γP
A∪B

�
x1

�
=γP

A

�
x1

�
∪ γP

B

�
x1

�
= {0.4/u1, 0.2/u2, 0.4/u5}

γP
A∪B

�
x2

�
=γP

A

�
x2

�
∪ γP

B

�
x2

�
= {0.2/u1, 0.4/u2, 0.1/u3, 0.1/u4}

γP
A∪B

�
x4

�
=γP

A

�
x4

�
∪ γP

B

�
x4

�
= {0.2/u4, 0.2/u5}

i.e.

ΓP
A
e∪ΓP

B = {
�
x1, {0.4/u1, 0.2/u2, 0.4/u5}

�
,
�
x2, {0.2/u1, 0.4/u2, 0.1/u3, 0.1/u4}

� �
x4, {0.2/u4, 0.2/u5}

�
}.

Proposition 3. Let ΓP
A ,ΓP

B ,ΓP
C ∈ Pr S (U). Then

(i) ΓP
A
e∪ΓP

A = Γ
P
A

(ii) ΓP
A
e∪ΓP

B = Γ
P
B
e∪ΓP

A

(iii)
�
ΓP

A
e∪ΓP

B

�
e∪ΓP

C = Γ
P
A
e∪
�
ΓP

B
e∪ΓP

C

�
.

Proof. The proofs can be proved easily by using the Definition 9.

Definition 10. Let ΓP
A ,ΓP

B ∈ Pr S (U). Then the intersection of ΓP
A and ΓP

B , denoted by ΓP
A
e∩ΓP

B , is

defined by its probabilistic approximate functions:

γP
A∩B (x) = γ

P
A (x)∩ γ

P
B (x) , for all x ∈ A∩ B, A∩ B 6= ;.
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Example 8. Let us consider Example 7. Then A∩ B = {x1, x2} and

γP
A∩B

�
x1

�
=γP

A

�
x1

�
∩ γP

B

�
x1

�
= {0.2/u2, 0.4/u5}

γP
A∩B

�
x2

�
=γP

A

�
x2

�
∩ γP

B

�
x2

�
= ;

Hence

ΓP
A
e∩ΓP

B = {
�
x1, {0.2/u2, 0.4/u5}

�
}

is obtained.

Proposition 4. Let ΓP
A ,ΓP

B ,ΓP
C ∈ Pr S (U). Then

(i) ΓP
A
e∩ΓP

A = Γ
P
A

(ii) ΓP
A
e∩ΓP

B = Γ
P
B
e∩ΓP

A

(iii)
�
ΓP

A
e∩ΓP

B

�
e∩ΓP

C = Γ
P
A
e∩
�
ΓP

B
e∩ΓP

C

�
.

Proof. The proofs can be proved easily by using the Definition 10.

Proposition 5. Let ΓP
A ,ΓP

B ,ΓP
C ∈ Pr S (U) and ΓP

A ,ΓP
B
e⊆ΓP

C . Then, De Morgan’s laws for ΓP
A ,ΓP

B are

valid as follows:

(i)
�
ΓP

A
e∩ΓP

A

�c
ΓP

C

=
�
ΓP

A

�c
ΓP

C

e∪
�
ΓP

B

�c
ΓP

C

(ii)
�
ΓP

A
e∪ΓP

B

�c
ΓP

C

=
�
ΓP

A

�c
ΓP

C

e∩
�
ΓP

B

�c
ΓP

C

Proof. The proofs can be proved easily by using the respective probabilistic approximate

functions. So, we only prove (i) case. For all x ∈ E,

�
γP

A∩B

�c
γP

C

(x) =
�
γP

A ∩ γ
P
B

�c
γP

C

(x) = γP
C (x) \
�
γP

A ∩ γ
P
B

�
(x)

=
�
γP

C (x) \ γ
P
A (x)
�
∪
�
γP

C (x) \ γ
P
B (x)
�

=
�
γP

A

�c
γP

C

(x)∪
�
γP

B

�c
γP

C

(x) .

Definition 11. Let ΓP
A ,ΓP

B ∈ Pr S (U). Then the symmetric difference of ΓP
A and ΓP

B , denoted by

ΓP
A
e∆ΓP

B , is defined by its probabilistic approximate functions:

γP
A (x)∆γ

P
B (x) =
�
γP

A (x) \ γ
P
B (x)
�
∪
�
γP

B (x) \ γ
P
A (x)
�

, for all x ∈ E.

Example 9. Let us consider Example 7. Then

ΓP
A
e∆ΓP

B =
��

x1, {0.4/u1}
�

,
�
x2, {0.2/u1, 0.4/u2, 0.1/u3, 0.1/u4}

� �
x4, {0.2/u4, 0.2/u5}

�	
.

is obtained.
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Proposition 6. Let ΓP
A ,ΓP

B ,ΓP
C ∈ Pr S (U). The following conditions are satisfied:

(i) ΓP
A
e∆ΓP

B = Γ
P
B
e∆ΓP

A

(ii)
�
ΓP

A
e∆ΓP

B

� e∆ΓP
C = Γ

P
A
e∆
�
ΓP

B
e∆ΓP

C

�

(iii) ΓP
A = Γ

P
B⇔ ΓP

A
e∆ΓP

B = Γ
P
Φ.

Proof. The proofs can be proved easily by using the respective probabilistic approximate

functions. So, we only prove (i) case. For all x ∈ E,

γP
A (x)∆γ

P
B (x) =
�
γP

A (x) \ γ
P
B (x)
�
∪
�
γP

B (x) \ γ
P
A (x)
�

=
�
γP

B (x) \ γ
P
A (x)
�
∪
�
γP

A (x) \ γ
P
B (x)
�

=γP
B (x)∆γ

P
A (x)

i.e., ΓP
A
e∆ΓP

B = Γ
P
B
e∆ΓP

A is obtained.

4. Conclusion

In this paper, we study the theory of probabilistic soft sets. We give some operations such

as union, intersection, difference and symmetric difference. We prove that certain De Morgan’s

laws hold in probabilistic soft set theory with respect to these new definitions.

In addition, this theory not only provides a significant addition to existing theories for

handling uncertainties, but also leads to potential areas of further research.
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