EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 2, No. 2, 2009, (172-181)

ISSN 1307-5543 - www.ejpam.com

On Hausdorff Spaces Via Ideals and Semi-I-irresolute Functions

E. Hatir^{1*} and T. Noiri²

42090, Meram-Konya, Turkey

Abstract. We introduce the notion of semi-I-Hausdorff spaces which is weaker than Hausdorff spaces and independent both I-Hausdorff and quasi-I-Hausdorff.

AMS subject classifications: Primary 54C08, 54H05; Secondary 54C10

Key words: I-Hausdorff, quasi-I-Hausdorff, semi-I-Hausdorff, Semi-I-irresolute, Semi-I-open set.

1. Introduction

In [4], Dontchev has introduced and studied *I*-Hausdorff spaces. In [13], Nasef has improved *I*-Hausdorff spaces and defined quasi-*I*-Hausdorff spaces. In [5], the

Email addresses: hatir10@yahoo.com (E. Hatir), t.noiri@nifty.com (T. Noiri)

¹ Selçuk Üniversitesi, Eğitim Fakültesi,

² 2949 Shiokita-shi, Kumamoto-ken 869-5142, Japan

^{*}Corresponding author.

present authors defined the notion of semi-open sets via ideals to obtain decomposition of continuity. In the present paper, we introduce the notion of semi-*I*-Hausdorff spaces which is weaker than Hausdorff spaces and independent both *I*-Hausdorff and quasi-*I*-Hausdorff spaces. Using semi-*I*-irresolute [6] functions, we also investigate its relation with semi-*I*-Hausdorff spaces.

2. Preliminaries

Throughout this paper, (X, τ) (simply X) denotes a topological space on which no separation axiom is assumed unless explicitly stated. For a subset A of a topological space X, the closure and the interior of A in X are denoted by Cl(A) and Int(A), respectively. A nonempty collection I of subsets on a topological space (X, τ) is called a topological ideal on (X, τ) if it satisfies the following two conditions: (1) if $A \in I$ and $B \subset A$, then $B \in I$ (heredity); (2) if $A \in I$ and $B \in I$, then $A \cup B \in I$ (finite additivity). If *I* is a proper ideal, that is, $X \notin I$, then $\{A : X - A \in I\}$ is a filter, hence proper ideals are sometimes called dual filters. By (X, τ, I) , we will denote an ideal topological space which means a topological space (X,τ) with an ideal I on X. No separation property is assumed on X. For a space (X, τ, I) and a subset A of X, $A^*(I) = \{x \in X : U \cap A \notin I \text{ for each neighborhood } U \text{ of } x\}$ is called the local function of A with respect to I and τ [7]. We simply write A^* instead of $A^*(I)$ in case there is no chance for confusion. The simplest ideals are $\{\emptyset\}$ and $\wp(X)$ which satisfy $\{\emptyset\} \subset I \subset \wp(X)$, for any ideal I on X. Note that $Cl^*(A) = A \cup A^*$ defines a Kuratowski closure operator for a topology $\tau^*(I)$ (also denoted by τ^* when there is no chance for confusion) finer than τ .

Definition 2.1. A subset A of an ideal topological space (X, τ, I) is said to be semiopen [10] (resp. β – open [1], semi-I-open [5], I-open [9], quasi-I-open [2]) if $A \subset Cl(Int(A))$ (resp. $A \subset Cl(Int(Cl(A)))$, $A \subset Cl^*(Int(A))$, $A \subset Int(A^*)$, $A \subset Int(A^*)$

174

For a subsets defined above, the following diagram holds:

DIAGRAM I

open
$$\longrightarrow$$
 semi- I -open \longrightarrow semi-open \downarrow I - open \longrightarrow quasi- I -open \longrightarrow β - open

Definition 2.2. A space (X, τ) is said to be semi-Hausdorff [11] (resp. β -Hausdorff [12]) if for every two different points x, y of X, there exist disjoint semi-open (resp. β – open) sets U, V of X such that $x \in U$ and $y \in V$.

Definition 2.3. An ideal topological space (X, τ, I) is called I-Hausdorff [4] (resp. quasi-I-Hausdorff [13]) if for every two different points x, y of X, there exist disjoint I-open sets (resp. quasi-I-open) U, V of X such that $x \in U$ and $y \in V$.

3. Semi-I-Hausdorff Spaces

Definition 3.1. An ideal topological space (X, τ, I) is called semi-I-Hausdorff if for each two distinct points $x \neq y$, there exist semi-I-open sets U and V containing x and y, respectively such that $U \cap V = \emptyset$. Then the points x and y are said to be semi -I – separated.

Theorem 3.1. For an ideal topological space (X, τ, I) , the following statements hold:

- 1. Every Hausdorff space is semi-I-Hausdorff.
- 2. Every semi-*I*-Hausdorff space is semi-Hausdorff.

Proof. This follows from the definition of semi-*I*-open sets.

For ideal topological spaces, the following diagram holds:

DIAGRAM II

Remark 3.1. (1) It is shown in Example 2.3 and 2.4 of [4] that Hausdorffness and I-Hausdorffness are independent of each other.

(2) In the following examples, it will be shown that semi-I-Hausdorffness is independent to quasi-I-Hausdorffness and to I-Hausdorffness.

Example 3.1. Let X be the real line with the "rigth-ray" topology τ that is the nontrivial open sets are the form (x,∞) , where x is any real number. Let I be the ideal of all finite subsets of X. Then the ideal topological space (X,τ,I) is an I-Hausdorff space which is not Hausdorff [4, Example 2.3]. However, this space is not even semi-Hausdorff because, every nonempty semi-open set has the nonempty interior.

Example 3.2. Let $X = \{a, b\}$, τ be the discrete topology on X and $I = \wp(X)$. Then Dontchev [4] showed that the space is Hausdorff, but it is not I-Hausdorff. Moreover, Nasef [13] showed that the space is not even quasi-I-Hausdorff.

Example 3.3. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $I = \{\emptyset\}$. Then (X, τ, I) is a semi-I-Hausdorff space which is not Hausdorff. If we take $I = \wp(X)$, then (X, τ, I) is semi-Hausdorff, but it is neither semi-I-Hausdorff nor quasi-I-Hausdorff.

Theorem 3.2. Let (X, τ, I) be an ideal topological space.

1. Let $I = \{\emptyset\}$. Then (X, τ, I) is semi-I-Hausdorff (resp. quasi-I-Hausdorff) if and only if it is semi-Hausdorff (resp. β -Hausdorff).

- 2. Let $I = \wp(X)$. Then (X, τ, I) is Hausdorff if and only if it is semi-I-Hausdorff. Proof. (1) Let $I = \{\varnothing\}$. Then $A^* = Cl(A)$ and $Cl^*(A) = Cl(A)$ for every subset A of X. Therefore, we have $SIO(X, \tau) = SO(X, \tau)$ (resp. $QIO(X, \tau) = \beta(X, \tau)$) and hence (X, τ, I) is semi-I-Hausdorff (resp. quasi-I-Hausdorff) if and only if semi-Hausdorff (resp. β -Hausdorff), where $QIO(X, \tau)$ denotes the set of all quasi-I-open sets.
- (2) Let $I = \wp(X)$. Then $A^* = \emptyset$ and $Cl^*(A) = A$ for every subset A of X. Let $A \in SIO(X, \tau)$, then $A \subset Cl^*(Int(A)) = Int(A)$ and hence A is open in (X, τ) . Therefore, (X, τ, I) is Hausdorff if and only if it is semi-I-Hausdorff.
- **Definition 3.2.** An ideal topological space (X, τ, I) is called semi-I-complete (resp. quasi-I-complete [13]) if $\tau^* = SIO(X, \tau)$ (resp. $\tau^* = QIO(X, \tau)$), that is, a subset A of X is τ^* open if and only if it is semi-I-open (resp. quasi-I-open).
- **Theorem 3.3.** Let (X, τ, I_n) be an ideal topological space, where I_n is the ideal of the nowhere dense sets of (X, τ) .
- 1. (X, τ, I_n) is semi-*I*-Hausdorff (resp. quasi-*I*-Hausdorff) if and only if it is semi-Hausdorff (resp. β -Hausdorff).
- 2. (X, τ, I_n) is semi-Hausdorff and semi-*I*-complete (resp. β -Hausdorff and quasi-*I*-complete), then it is Hausdorff.
- *Proof.* (1) Since I_n is the ideal of nowhere dense sets of (X, τ) , we have $A^* = Cl(Int(Cl(A)))$ and hence by Example 2.10 of [8]
- $Cl^*(A) = A \cup Cl(Int(Cl(A))) = \alpha Cl(A)$, where $\alpha Cl(A)$ denotes the $\alpha closure$ of A. For every subset A of X,
 - $Cl^*(Int(A)) = Int(A) \cup Cl(Int(Cl(Int(A)))) = Int(A) \cup Cl(Int(A)) = Cl(Int(A)).$

Therefore, $A \in SIO(X, \tau)$ if and only if $A \in SO(X, \tau)$. By this fact, it follows that (X, τ, I_n) is semi-*I*-Hausdorff if and only if it is semi-Hausdorff. On the other hand,

177

 $Cl(Int(A^*)) = Cl(Int(Cl(Int(Cl(A))))) = Cl(Int(Cl(A)))$ for every subset A of X. Therefore, $A \in QIO(X, \tau)$ if and only if $A \in \beta(X, \tau)$. It follows that (X, τ, I_n) is quasi-I-Hausdorff if and only if it is $\beta - Hausdorff$.

(2) Let (X, τ, I_n) be semi-Hausdorff and semi-I-complete. Then $A \in SIO(X, \tau)$ if and only if $A \in \tau^*$ if and only if A is $\alpha - open$. By the proof of (1), $SO(X, \tau) = SIO(X, \tau)$ and hence (X, τ, I) is Hausdorff. The another result is shown similarly.

Lemma 3.1. Let I and J be two ideals on a topological space (X, τ) . If $I \subset J$, then the following properties hold:

- 1. $Cl_I^*(A) \subset Cl_I^*(A)$ for each subset A of X,
- 2. $SIO(X, \tau, J) \subset SIO(X, \tau, I)$.

Proof. (1) If $I \subset J$, then $A^*(J) \subset A^*(I)$ and $Cl_J^*(A) = A \cup A^*(J) \subset A \cup A^*(I) = Cl_I^*(A)$ for each subset A of X.

(2) Let $A \in SIO(X, \tau, J)$. Then $A \subset Cl_J^*(Int(A)) \subset Cl_I^*(Int(A))$ and hence $A \in SIO(X, \tau, I)$.

Theorem 3.4. Let I and J be two ideals on a topological space (X, τ) and $I \subset J$. If (X, τ, J) is semi-I-Hausdorff, then (X, τ, I) is semi-I-Hausdorff.

Proof. This is an immediate consequence of Lemma 1

A semi-*I*-open subspace of semi-*I*-Hausdorff space need not be semi-*I*-Hausdorff as shown in the following example.

Example 3.4. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $I = \{\emptyset\}$. Then (X, τ, I) is semi-I-Hausdorff. But, take $A = \{a, c\} \in SIO(X, \tau)$, then $(A, \tau_{|A}, I_{|A})$ is not semi-I-Hausdorff.

Lemma 3.2. (Hatir and Noiri [5]) Let (X, τ, I) be an ideal topological space. If $U \in \tau$ and $V \in SIO(X, \tau)$, then $U \cap V \in SIO(U, \tau_{|U}, I_{|U})$.

Theorem 3.5. Let (X, τ, I) be a semi-I-Hausdorff space and $A \subset X$. Then if A is open, then $(A, \tau_{|A}, I_{|A})$ semi-I-Hausdorff.

Proof. This follows from Lemma 2

4. Semi-I-irresolute Functions

In this section, we investigate some properties of semi-*I*-irresolute functions. First, we shall recall some definition of functions.

Definition 4.1. A function $f:(X,\tau,I)\longrightarrow (Y,\sigma,J)$ is said to be

- 1. Semi-*I*-continuous [5] if for every $V \in \sigma$, $f^{-1}(V)$ is semi-*I*-open set,
- 2. Semi-*I*-irresolute if for every $V \in SJO(Y, \sigma)$, $f^{-1}(V) \in SIO(X, \tau)$,
- 3. Irresolute [3] if for every $V \in SO(Y, \sigma)$, $f^{-1}(V) \in SO(X, \tau)$.

Remark 4.1. In [6], the present authors called semi-I-irresolute functions I-irresolute. However, Dontchev [4] defined a function $f:(X,\tau,I)\longrightarrow (Y,\sigma,J)$ to be I-irresolute if $f^{-1}(V)$ is I-open in (X,τ,I) for every I-open in (Y,σ,J) .

Theorem 4.1. For a function $f:(X,\tau,I)\longrightarrow (Y,\sigma,J)$, the following properties are equivalent;

- 1. f is semi-*I*-irresolute,
- 2. The inverse image of each semi-*I*-closed set in (Y, σ, J) is semi-*I*-closed in (X, τ, I) ,
- 3. For each $x \in X$ and each $V \in SIO(Y, \sigma)$ containing f(x), there exists $U \in SIO(X, \tau)$ containing x such that $f(U) \subset V$.

Proof. The proof is obvious from the fact that the arbitrary union of semi-*I*-open sets is semi-*I*-open [6, *Theorem* 3.4].

179

Remark 4.2. Irresolute functions are not in general semi-I-irresolute as shown by the following example.

Example 4.1. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}\}$ and

 $I = \{\emptyset, \{a\}\}$ and $J = \{\emptyset\}$. Then the identity function

 $f:(X,\tau,I)\longrightarrow (X,\sigma,J)$ is irresolute, but it is not semi-I-irresolute since $\{a,c\}\in SIO(X,\sigma,J)$ and $f^{-1}(\{a,c\})=\{a,c\}\notin SIO(X,\tau,I)$.

Theorem 4.2. Let $f:(X,\tau,I) \longrightarrow (Y,\sigma,J)$ be a function, where I and J are ideals on Y, respectively. If $I=J=\{\emptyset\}$ or I_n , then semi-I-irresoluteness and irresoluteness are equivalent.

Proof. This follows from the proofs of Theorems 2(1) and 3(1).

Theorem 4.3. Let f be a semi-I-irresolute injection from a space (X, τ, I) into a space (Y, σ, J) . If Y is semi-I-Hausdorff, then X is also semi-I-Hausdorff.

Proof. Let $x, y \in X$ and $x \neq y$. Then $f(x) \neq f(y)$ thus f(x) and f(y) are semi-*I*-separated in *Y* by semi-*I*-open sets *U* and *V*, respectively. Since f is semi-*I*-irresolute, $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint semi-*I*-open sets containing *x* and *y*, respectively. This shows that *X* is semi-*I*-Hausdorff.

Theorem 4.4. Let (X, τ, I) be an ideal topological space with the following property; if $x \neq y$, where $x, y \in X$, then there exist a Hausdorff space (Y, σ) and a semi-I-continuous function $f: (X, \tau, I) \longrightarrow (Y, \sigma)$ such that $f(x) \neq f(y)$. Then X is semi-I-Hausdorff.

Proof. The proof is straightforward.

Theorem 4.5. Let $f:(X,\tau,I)\longrightarrow (Y,\sigma,J)$ be a function and $V\in\sigma$. Then

$$f^{-1}(V^*) \subset (f^{-1}(V))^*$$
 implies $f^{-1}(Cl^*(V)) \subset Cl^*(f^{-1}(V))$.
Proof. $f^{-1}(Cl^*(V)) = f^{-1}(V \cup V^*) = f^{-1}(V) \cup f^{-1}(V^*)$
 $\subset f^{-1}(V) \cup (f^{-1}(V))^* = Cl^*(f^{-1}(V))$.

Remark 4.3. The converse of Theorem 10 is false as shown by the following example.

Example 4.2. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\} \}$ and

 $\sigma = \{\emptyset, X, \{c\}, \{a, b\}\}$. Let us take $I = \wp(X)$ and $J = \{\emptyset, \{c\}\}$. The define the identity function $f: (X, \tau, I) \longrightarrow (X, \sigma, J)$. For the subset $\{a, b\} \in \sigma$, we have $(\{a, b\})^* = \{a, b\}$ and $(f^{-1}(\{a, b\}))^* = (\{a, b\})^* = \emptyset$ and thus $f^{-1}(V^*) \subsetneq (f^{-1}(V))^*$ for $V = \{a, b\} \in \sigma$. But $f^{-1}(Cl^*(V)) \subset Cl^*(f^{-1}(V))$ for every $V \in \sigma$.

Lemma 4.1. (Hatir and Noiri [6]) Let A and B be subsets of an ideal topological space (X, τ, I) . Then the following properties hold:

- 1. $A \in SIO(X, \tau)$ if and only if there exists $U \in \tau$ such that $U \subset A \subset Cl^*(U)$,
- 2. If $A \in SIO(X, \tau)$ and $A \subset B \subset Cl^*(A)$, then $B \in SIO(X, \tau)$.

The following theorem slightly improve the Theorem 4.5 in [6] which states that if $f:(X,\tau,I)\longrightarrow (Y,\sigma,J)$ is semi-*I*-continuous and $f^{-1}(V^*)\subset (f^{-1}(V))^*$ for each $V\in\sigma$, then f is semi-*I*-irresolute.

Theorem 4.6. If $f:(X,\tau,I) \longrightarrow (Y,\sigma,J)$ is semi-I-continuous and

 $f^{-1}(Cl^*(V)) \subset Cl^*(f^{-1}(V))$ for each $V \in \sigma$, then f is semi-I-irresolute.

Proof. Let B be any semi-*I*-open set of (Y, σ, J) . By Lemma 3, there exists $V \in \sigma$ such that $V \subset B \subset Cl^*(V)$. Therefore, we have

 $f^{-1}(V) \subset f^{-1}(B) \subset f^{-1}(Cl^*(V)) \subset Cl^*(f^{-1}(V))$. Since f is semi-I-continuous and $V \in \sigma$, $f^{-1}(V) \in SIO(X,\tau)$ and hence by Lemma 3 , $f^{-1}(B)$ is semi-I-open in (X,τ,I) . This shows that f is semi-I-irresolute.

REFERENCES 181

References

- [1] M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β open sets and β continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1983), 77-90.
- [2] M. E. Abd El-Monsef, R. A. Mahmoud and A. A. Nasef, On quasi-*I*-openness and quasi-*I*-continuity, Tamkang J. Math., 31(2000), 101-108.
- [3] S. G. Crossley and S. K. Hildebrand, Semi-topological properties, Fund. Math., 74(1972), 233-254.
- [4] J. Dontchev, On Hausdorff spaces via topological ideals and *I*-irresolute functions, In papers on General Topology and Applications, Annals of New York Academy of Sciences, Vol.767(1995), 28-38.
- [5] E. Hatir and T. Noiri, On decompositions of continuity via idealization, Acta Math. Hungar., 96(4)(2002), 314-349.
- [6] E. Hatir and T. Noiri, On semi-*I*-open sets and semi-*I*-continuous functions, Acta Math. Hungar., 107(4)(2005), 345-353.
- [7] E. Hayashi, Topologies defined by local properties, Math. Ann., 156(1964), 205-215.
- [8] D. Janković and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(1990), 295-310.
- [9] D. Janković and T. R. Hamlett, Compatible extensions of ideals, Boll. Un. Mat. Ital., (7)(6-B)(1992), 453-465.
- [10] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [11] S. N. Maheshwari and R. Prasad, Some new separation axioms, Ann. Soc. Sci. Bruxelles, 89(1975), 395-402.
- [12] R. A. Mahmoud and M. E. Abd El-Monsef, β *irresolute* and β *topo* log *ical* invariant, Proc. Pakistan Acad. Sci., 27(1990), 285-296.
- [13] A. A. Nasef, On Hausdorff spaces via ideals and quai-*I*-irresolute functions, Chaos Solitons and Fractals, 14(2002), 619-625.