Ore Extensions over ($\sigma, \delta$)-Rings
Keywords:
minimal prime ideals, ($\sigma, \delta$)-rings, 2-primal ringAbstract
Let $R$ be a Noetherian, integral domain which is also an algebraover $\mathbb{Q}$ ($\mathbb{Q}$ is the field of rational numbers).Let $\sigma$ be an automorphism of $R$ and $\delta$ a$\sigma$-derivation of $R$. A ring $R$ is called a($\sigma, \delta$)-ring if $a(\sigma(a) + \delta(a)) \in P(R)$implies that $a \in P(R)$ for $a\in R$, where $P(R)$ is the primeradical of $R$. We prove that $R$ is 2-primal if $\delta(P(R))\subseteq P(R)$. We also study the property of minimal prime idealsof $R$ and prove the following in this direction:\\\noindent Let $R$ be a Noetherian, integral domain which is also an algebra over $\mathbb{Q}$. Let $\sigma$ be an automorphism of $R$ and $\delta$ a $\sigma$-derivation of $R$ such that $R$ is a $(\sigma, \delta)$-ring. If $P \in Min.Spec (R)$ is such that$\sigma(P) = P$, then $\delta(P) \subseteq P$. Further if $\delta(P(R)) \subseteq P(R)$, then $P[x; \sigma, \delta]$ is a completely prime ideal of $R[x; \sigma, \delta]$.Downloads
Published
2015-10-28
Issue
Section
Computer Science
License
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.
How to Cite
Ore Extensions over ($\sigma, \delta$)-Rings. (2015). European Journal of Pure and Applied Mathematics, 8(4), 462-468. https://www.ejpam.com/index.php/ejpam/article/view/2383