On Class Numbers of Real Quadratic Fields with Certain Fundamental Discriminants

Authors

  • Ayten Pekin Istanbul University, faculty of sciences, department of mathematics
  • Aydin Carus

Keywords:

quadratic number field, class number

Abstract

Let $N$ denote the sets of positive integers and $D \inN$ be square free,and let χD ,  $h = h(D)denotethenontrivialDirichletcharacter,theclassnumberoftherealquadraticeldK = Q\sqrt(D),respectivelyÂONO,provedthetheoremin[8]byapplyingSturmsTheoremonthecongruenceofmodularformtoCohenshalfintegralweightmodularforms.Later,DonghoByeonprovedatheoremandcorollaryin[1]byreningOnomethods.ÂInthispaper,wewillgiveatheoremforcertainrealquadraticfields.byconsideringÂabovementionedstudies.Todothis,weshallobtainanupperbounddifferentfromcurrentboundsforL(1; \chi_D)$ and use Dirichlet's class number formula.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Downloads

Published

2015-10-28

Issue

Section

Number Theory

How to Cite

On Class Numbers of Real Quadratic Fields with Certain Fundamental Discriminants. (2015). European Journal of Pure and Applied Mathematics, 8(4), 526-529. https://www.ejpam.com/index.php/ejpam/article/view/2420