On Class Numbers of Real Quadratic Fields With Certain Fundamental Discriminants

Ayten Pekin

Faculty of Sciences, Department of Mathematics, İstanbul University, İSTANBUL-TURKEY
e-mail: aypekin@istanbul.edu.tr

Aydin Carus
Faculty of Engineering, Department of Computer Engineering, Trakya University, EDIRNE-TURKEY
e-mail: aydinc@trakya.edu.tr

Abstract

Let N denote the sets of positive integers and $D \in N$ be square free, and let $\chi_{D}, h=h(D)$ denote the non-trivial Dirichlet character, the class number of the real quadratic field $K=Q(\sqrt{D})$, respectively.

ONO, proved the theorem in [8] by applying Sturm's Theorem on the congruence of modular form to Cohen's half integral weight modular forms. Later, Dongho Byeon proved a theorem and corollary in [1] by refining Ono' methods.

In this paper, we will give a theorem for certain real quadratic fields. by considering above mentioned studies. To do this, we shall obtain an upper bound different from current bounds for $L\left(1, \chi_{D}\right)$ and use Dirichlet's class number formula.

AMS Classification: 11R29.
Keywords: Class number, Real quadratic number field.

1. Introduction

Let Z_{p}, N, Q denote the the ring of p-adic integers, positive integers and rational numbers, respectively. Let $R_{p}(D)$ denote the p-adic regulator of $K,|\cdot|_{p}$ denote the
usual multiplicative p-adic valuation normalized $|p|_{p}=\frac{1}{p}$, and let $L\left(s, \chi_{D}\right)$ denote the L-function attached to χ_{D}. Throughout $D \in N$ will be assumed square free, $K=Q(\sqrt{D})$ will denote the real quadratic field, and the class number of K will be denoted by $h=h(D)$. Let Δ denote the discriminant, ε_{D} the fundamental unit of K.

2. Preliminaries

Theorem 2.1 (ONO) Let $p>3$ be prime. If there is a fundamental discriminant D_{0} coprime to p for which

$$
\begin{aligned}
& i-)(-1)^{\frac{p-1}{2}} D_{0}>0 \\
& i i-)\left|B\left(\frac{p-1}{2}, \chi_{D_{0}}\right)\right|
\end{aligned}
$$

Where $B\left(\frac{p-1}{2}, \chi_{D_{0}}\right)$ is the $\frac{p-1}{2}$ st generalized Bernoulli number with character $\chi_{D_{0}}$ then

$$
\#\left\{0<D<\left.X\left|\quad h(D) \not \equiv 0 \quad(\bmod p), \quad \chi_{D}(p)=0, \quad\right| \frac{R_{p}(D)}{\sqrt{D}}\right|_{p}=1\right\}>_{p} \frac{\sqrt{X}}{\log X}
$$

D. Byeon have given in [] the following theorem and corollary by refining Ono's theorem above mentioned for any prime $p>3$

Theorem 2.2

Let $p>3$ be prime.
(a) If $p \equiv 1(\bmod 4)$, then the fundamental discriminant $D_{0}>0$ of the real quadratic field $Q(\sqrt{p-2})$ satisfies the conditions (i) and (ii).
(b) If $p \equiv 3(\bmod 4)$, then the fundamental discriminant $D_{0}<0$ of the real quadratic field $Q(\sqrt{-(p-4)}$ satisfies the conditions (i) and (ii).

Corollary 2.1

Let $p>3$ be prime. Then

$$
\#\left\{0<D<\left.X\left|\quad h(D) \not \equiv 0 \quad(\bmod p), \quad \chi_{D}(p)=\delta, \quad\right| R_{p}(D)\right|_{p}=\frac{1}{p}\right\} \gg_{p} \frac{\sqrt{X}}{\log X}
$$

3. Main Theorem Let $p>3$ be a prime. If $p \equiv 3(\bmod 4)$, then the fundamental discriminant $D_{0}>0$ of the real quadratic fields $K=Q\left(\sqrt{p^{2}-4}\right)$ and $K=Q\left(\sqrt{p^{2}-2}\right)$ satisfies the conditions (i) and (ii).

In order to main theorem we need the following lemmas.
Lemma 2.1 i-) If D is a prime with $D \equiv 1(\bmod 4)$, we have

$$
\varepsilon_{D}> \begin{cases}\|\sqrt{D \mp 1}\| & , D=n^{2} \mp 4,(n \in Z) \\ \|\sqrt{4 D \mp 1}\| & , \text { in the other cases }\end{cases}
$$

Where "\|*\|" represents great value function of a real number.
ii-) If D is a prime with $D \equiv 3(\bmod 4)$, we have

$$
\varepsilon_{D}> \begin{cases}2 D \mp 1 & , D=n^{2} \mp 2 \\ 8 D \mp 1 & , \text { in the other cases }\end{cases}
$$

Proof. i-) Let $\varepsilon_{D}=\frac{t+u \sqrt{D}}{2}>1$ be the fundamental unit of $K=Q(\sqrt{D})$.
Since ε_{D} is equal to the fundamental solution of the Pell's equation $x^{2}-D y^{2}=\mp 4$, then we can write

$$
\varepsilon_{D}^{2}=\left(\frac{t+u \sqrt{D}}{2}\right)^{2}=\frac{1}{4}\left(\sqrt{D u^{2} \mp 4}+u \sqrt{D}\right)^{2}>\frac{D u^{2} \mp 1}{\sqrt{2}} \geq \begin{cases}\frac{D \mp 1}{\sqrt{2}} & , u=1 \\ \frac{4 D \mp 1}{\sqrt{2}} & , u>1\end{cases}
$$

and

$$
\varepsilon_{D}> \begin{cases}\|\sqrt{D \mp 1}\| & , D=n^{2} \mp 4 \\ \|\sqrt{4 D \mp 1}\| & , \text { in the other cases }\end{cases}
$$

ii-) If $D \equiv 3 \quad(\bmod 4)$, then we have $\varepsilon_{D}{ }^{2}=\left(\frac{t+u \sqrt{D}}{2}\right)^{2}$ from the least positive integer solution $(x, y)=(t, u)$ of the Pell's equation $x^{2}-D y^{2}=\mp 2[7]$. Similary, we can write

$$
\varepsilon_{D}> \begin{cases}2 D \mp 1 & , D=n^{2} \mp 2, \quad(n: \text { odd integer }) \\ 8 D \mp 1 & , \text { in the other cases }\end{cases}
$$

Lemma 2.2 Let $D \in N$ be square free, then $h(D)<\sqrt{D}$.
In order to prove this we need the following Lemma [5].
Lemma 2.3 Let γ be Euler's constant, then

$$
\left|L\left(1, \chi_{D}\right)\right| \leq \begin{cases}\frac{1}{4}(\log \Delta+2+\gamma-\log \pi) & , 2 \mid \Delta \\ \frac{1}{2}(\log \Delta+2+\gamma-\log 4 \pi) & , \text { otherwise }\end{cases}
$$

Proof of Lemma 2.2. By Dirichlet's class number formula, we have

$$
h(D)=\frac{\sqrt{\Delta}}{2 \log \varepsilon_{D}}\left|L\left(1, \chi_{D}\right)\right|
$$

where Δ is a fundamental discriminant of a quadratic field define by

$$
\Delta= \begin{cases}4 D & , D \equiv 2,3 \quad(\bmod 4) \\ D & , D \equiv 1 \quad(\bmod 4)\end{cases}
$$

First, we consider the case $D \equiv 1(\bmod 4)$ and $D=n^{2} \mp 4$. Thus, by the upper bound for $L\left(1, \chi_{D}\right)$ in Lemma 2.3, and from Lemma 2.1 we have that

$$
h(D)<\frac{\sqrt{D}(\log D+1,478)}{4 \log \|\sqrt{D \mp 1}\|}=\frac{\sqrt{D}(\log D+1,478)}{2 \log \|(D \mp 1)\|}<\sqrt{D}, \quad(D>5) .
$$

Moreover, we can write $\quad h(D) \leq\left\|\frac{\sqrt{D}(\log D+1,478)}{2 \log (D \mp 1)}\right\|$ where" $\|x\|$ " is the greatest integer less than or equal to x. It is also $h(D)<\sqrt{D}$ for $D \neq n^{2} \mp 4$.

Now, we consider the case $D \equiv 3(\bmod 4)$ and $D=n^{2} \mp 2(n \in Z$ is odd $)$. Similarly, by applying Lemmas 2.1, 2.3 and using class number formula, we get

$$
h(D)<\frac{\sqrt{D}(\log 4 D+1,478)}{2 \log (2 D \mp 1)}<\sqrt{D} \quad \text { and } \quad h(D) \leq\left\|\frac{\sqrt{D}(\log 4 D+1,478)}{2 \log (2 D \mp 1)}\right\|
$$

It is also true for $D \neq n^{2} \mp 2$.

4. Proof of Theorem

Specially, if we write $D \mathrm{~s}$ depend on prime p in the forms of $D=p^{2}-4, D=p^{2}-2$ we can immediately see that $h(D)<p$ for the class numbers of real quadratic fields $K=Q\left(\sqrt{p^{2}-4}\right), K=Q\left(\sqrt{p^{2}-2}\right)$ from Lemma 2.2.. Therefore we have $h(D) \not \equiv 0 \quad(\bmod p)$ for above mentioned real quadratic fields.

References

[1] D. Byeon, Existence of certain fundamental discriminants and class numbers of real quadratic fields, Journal of Number Theory, 98(2), (2003), 432-437.
[2] H. Cohen, H.W. Lenstra; Heuristics on class groups of number fields, In: Number Theory (Noodwijkerhout 1983), Lecture Notes in Math. 1068, Springer, New York, (1984), 33-62.
[3] L.K. Hua, Introduction to Number Theory, Springer-Verlag, Berlin, New York, 1982.
[4] S. Louboutin; Majoration au point 1 des fonctions L associêes aux caractêres de Dirichlet primitifs, ou au caractêre d' une extension quadratique d'un corps quadratique imaginaire principal, J Reine Angew. Math. 419 (1991), 213-219.
[5] S. Louboutin; Majoration explicites de $|L(1, \chi)|$, C.R. Acad. Sci. Paris Sêr. I, 316 (1993), 11-14.
[6] R.A. Mollin; On the insolubility of a class of Diophantine equations and the nontriviality of the class numbers of related real quadratic fields of Richaut Degert type, Nagoya Math. J. Vol. 105 (1987), 39-47.
[7] R.A. Mollin; Diophantine equations and class numbers, Journal of Number Theory, 24, (1994), 7-19.
[8] K. Ono, Indivisibility of class numbers of imaginary quadratic fields, Compositio Math. Vol. 119 (1999), 1-11.

