On Class Numbers of Real Quadratic Fields With Certain Fundamental Discriminants

Ayten Pekin

Faculty of Sciences, Department of Mathematics, İstanbul University, İSTANBUL-TURKEY

e-mail: aypekin@istanbul.edu.tr

Aydın Carus

Faculty of Engineering, Department of Computer Engineering, Trakya University, EDIRNE-TURKEY

e-mail: aydinc@trakya.edu.tr

Abstract: Let N denote the sets of positive integers and $D \in N$ be square free, and let χ_D , h = h(D) denote the non-trivial Dirichlet character, the class number of the real quadratic field $K = Q(\sqrt{D})$, respectively.

ONO, proved the theorem in [8] by applying Sturm's Theorem on the congruence of modular form to Cohen's half integral weight modular forms. Later, Dongho Byeon proved a theorem and corollary in [1] by refining Ono' methods.

In this paper, we will give a theorem for certain real quadratic fields. by considering above mentioned studies. To do this, we shall obtain an upper bound different from current bounds for $L(1, \chi_D)$ and use Dirichlet's class number formula.

AMS Classification: 11R29.

Keywords: Class number, Real quadratic number field.

1. Introduction

Let Z_p , N, Q denote the the ring of p-adic integers, positive integers and rational numbers, respectively. Let $R_p(D)$ denote the p-adic regulator of K, $|.|_p$ denote the usual multiplicative *p*-adic valuation normalized $|p|_p = \frac{1}{p}$, and let $L(s, \chi_D)$ denote the *L*-function attached to χ_D . Throughout $D \in N$ will be assumed square free, $K = Q(\sqrt{D})$ will denote the real quadratic field, and the class number of *K* will be denoted by h = h(D). Let Δ denote the discriminant, ε_D the fundamental unit of *K*.

2. Preliminaries

Theorem 2.1 (ONO) Let p > 3 be prime. If there is a fundamental discriminant D_0 coprime to p for which

$$i-)(-1)^{\frac{p-1}{2}}D_0 > 0$$

$$|ii-)|B(\frac{p-1}{2},\chi_{D_0})|$$

Where $B(\frac{p-1}{2}, \chi_{D_0})$ is the $\frac{p-1}{2}$ st generalized Bernoulli number with character χ_{D_0} then

$$\# \Big\{ 0 < D < X | \quad h(D) \not\equiv 0 \pmod{p}, \quad \chi_D(p) = 0, \quad \left| \frac{R_p(D)}{\sqrt{D}} \right|_p = 1 \Big\} \gg_p \frac{\sqrt{X}}{\log X}.$$

D. By eon have given in [] the following theorem and corollary by refining Ono's theorem above mentioned for any prime p > 3

Theorem 2.2

Let p > 3 be prime.

(a) If $p \equiv 1 \pmod{4}$, then the fundamental discriminant $D_0 > 0$ of the real quadratic field $Q(\sqrt{p-2})$ satisfies the conditions (i) and (ii).

(b) If $p \equiv 3 \pmod{4}$, then the fundamental discriminant $D_0 < 0$ of the real quadratic field $Q(\sqrt{-(p-4)})$ satisfies the conditions (i) and (ii).

Corollary 2.1

Let p > 3 be prime. Then

$$\#\left\{0 < D < X | \quad h(D) \not\equiv 0 \pmod{p}, \quad \chi_D(p) = \delta, \quad |R_p(D)|_p = \frac{1}{p}\right\} \gg_p \frac{\sqrt{X}}{\log X}.$$

3. Main Theorem Let p > 3 be a prime. If $p \equiv 3 \pmod{4}$, then the fundamental discriminant $D_0 > 0$ of the real quadratic fields $K = Q(\sqrt{p^2 - 4})$ and $K = Q(\sqrt{p^2 - 2})$ satisfies the conditions (i) and (ii).

In order to main theorem we need the following lemmas.

Lemma 2.1 i-) If D is a prime with $D \equiv 1 \pmod{4}$, we have

$$\varepsilon_D > \begin{cases} \|\sqrt{D \mp 1}\| &, D = n^2 \mp 4, (n \in Z) \\ \|\sqrt{4D \mp 1}\| &, \text{in the other cases} \end{cases}$$

Where " $\| * \|$ " represents great value function of a real number.

ii-) If D is a prime with $D \equiv 3 \pmod{4}$, we have

$$\varepsilon_D > \begin{cases} 2D \mp 1 &, D = n^2 \mp 2, \\ 8D \mp 1 &, \text{in the other cases} \end{cases}$$

Proof. i-) Let $\varepsilon_D = \frac{t + u\sqrt{D}}{2} > 1$ be the fundamental unit of $K = Q(\sqrt{D})$.

Since ε_D is equal to the fundamental solution of the Pell's equation $x^2 - Dy^2 = \mp 4$, then we can write

$$\varepsilon_D{}^2 = \left(\frac{t+u\sqrt{D}}{2}\right)^2 = \frac{1}{4}\left(\sqrt{Du^2 \mp 4} + u\sqrt{D}\right)^2 > \frac{Du^2 \mp 1}{\sqrt{2}} \ge \begin{cases} \frac{D\mp 1}{\sqrt{2}} & ,u=1\\ \frac{4D\mp 1}{\sqrt{2}} & ,u>1 \end{cases}$$

and

$$\varepsilon_D > \begin{cases} \|\sqrt{D \mp 1}\| &, D = n^2 \mp 4 \\ \|\sqrt{4D \mp 1}\| &, \text{in the other cases} \end{cases}$$

ii-) If $D \equiv 3 \pmod{4}$, then we have $\varepsilon_D^2 = \left(\frac{t + u\sqrt{D}}{2}\right)^2$ from the least positive integer solution

(x,y) = (t,u) of the Pell's equation $x^2 - Dy^2 = \pm 2$ [7]. Similarly, we can write

 $\varepsilon_D > \begin{cases} 2D \mp 1 &, D = n^2 \mp 2, \quad (n: \text{ odd integer }) \\ 8D \mp 1 &, \text{in the other cases} \end{cases}$

Lemma 2.2 Let $D \in N$ be square free, then $h(D) < \sqrt{D}$.

In order to prove this we need the following Lemma [5].

Lemma 2.3 Let γ be Euler's constant, then

$$|L(1,\chi_D)| \leq \begin{cases} \frac{1}{4}(\log\Delta + 2 + \gamma - \log\pi) & , 2 \mid \Delta, \\ \frac{1}{2}(\log\Delta + 2 + \gamma - \log4\pi) & , \text{otherwise} \end{cases}$$

Proof of Lemma 2.2. By Dirichlet's class number formula, we have

$$h(D) = \frac{\sqrt{\Delta}}{2log\varepsilon_D} |L(1,\chi_D)|$$

where Δ is a fundamental discriminant of a quadratic field define by

$$\Delta = \begin{cases} 4D & , D \equiv 2, 3 \pmod{4} \\ D & , D \equiv 1 \pmod{4} \end{cases}$$

First, we consider the case $D \equiv 1 \pmod{4}$ and $D = n^2 \mp 4$. Thus, by the upper bound for $L(1, \chi_D)$ in Lemma 2.3, and from Lemma 2.1 we have that

$$h(D) < \frac{\sqrt{D}(\log D + 1, 478)}{4\log\|\sqrt{D \mp 1}\|} = \frac{\sqrt{D}(\log D + 1, 478)}{2\log\|(D \mp 1)\|} < \sqrt{D}, \quad (D > 5)$$

Moreover, we can write $h(D) \leq \|\frac{\sqrt{D}(\log D + 1, 478)}{2\log(D \mp 1)}\|$ where " $\|x\|$ " is the greatest integer less than or equal to x. It is also $h(D) < \sqrt{D}$ for $D \neq n^2 \mp 4$.

Now, we consider the case $D \equiv 3 \pmod{4}$ and $D = n^2 \mp 2$ ($n \in Z$ is odd). Similarly, by applying Lemmas 2.1, 2.3 and using class number formula, we get

$$h(D) < \frac{\sqrt{D}(\log 4D + 1, 478)}{2\log(2D \mp 1)} < \sqrt{D} \quad \text{and} \quad h(D) \le \|\frac{\sqrt{D}(\log 4D + 1, 478)}{2\log(2D \mp 1)}\|$$

It is also true for $D \neq n^2 \mp 2$.

4. Proof of Theorem

Specially, if we write Ds depend on prime p in the forms of $D = p^2 - 4$, $D = p^2 - 2$ we can immediately see that h(D) < p for the class numbers of real quadratic fields $K = Q(\sqrt{p^2 - 4}), K = Q(\sqrt{p^2 - 2})$ from Lemma 2.2.. Therefore we have $h(D) \not\equiv 0 \pmod{p}$ for above mentioned real quadratic fields.

References

- D. Byeon, Existence of certain fundamental discriminants and class numbers of real quadratic fields, Journal of Number Theory, 98(2), (2003), 432-437.
- H. Cohen, H.W. Lenstra; *Heuristics on class groups of number fields*, In: Number Theory (Noodwijkerhout 1983), Lecture Notes in Math. 1068, Springer, New York, (1984), 33-62.
- [3] L.K. Hua, Introduction to Number Theory, Springer-Verlag, Berlin, New York, 1982.
- [4] S. Louboutin; Majoration au point 1 des fonctions L associées aux caractères de Dirichlet primitifs, ou au caractère d' une extension quadratique d'un corps quadratique imaginaire principal, J Reine Angew. Math. 419 (1991), 213-219.
- [5] S. Louboutin; Majoration explicites de $|L(1,\chi)|$, C.R. Acad. Sci. Paris Sêr. I , 316 (1993), 11-14.
- [6] R.A. Mollin; On the insolubility of a class of Diophantine equations and the nontriviality of the class numbers of related real quadratic fields of Richaut Degert type, Nagoya Math. J. Vol.105 (1987), 39-47.
- [7] R.A. Mollin; Diophantine equations and class numbers, Journal of Number Theory, 24, (1994), 7-19.
- [8] K. Ono, Indivisibility of class numbers of imaginary quadratic fields, Compositio Math. Vol.119 (1999), 1-11.