EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 8, No. 4, 2015, 526-529 ISSN 1307-5543 – www.ejpam.com

On Class Numbers of Real Quadratic Fields with Certain Fundamental Discriminants

Ayten Pekin^{1,*}, Aydın Carus ²

Abstract. Let N denote the sets of positive integers and $D \in N$ be square free, and let χ_D , h = h(D) denote the non-trivial Dirichlet character, the class number of the real quadratic field $K = Q(\sqrt{D})$, respectively.

One proved the theorem in [2] by applying Sturm's Theorem on the congruence of modular form to Cohen's half integral weight modular forms. Later, Dongho Byeon proved a theorem and corollary in [1] by refining Ono's methods.

In this paper, we will give a theorem for certain real quadratic fields by considering above mentioned studies. To do this, we shall obtain an upper bound different from current bounds for $L(1, \chi_D)$ and use Dirichlet's class number formula.

2010 Mathematics Subject Classifications: 11R29

Key Words and Phrases: Class number, Real quadratic number field

1. Introduction

Let Z_p , N, Q denote the the ring of p-adic integers, positive integers and rational numbers, respectively. Let $R_p(D)$ denote the p-adic regulator of K, $|.|_p$ denote the usual multiplicative p-adic valuation normalized $|p|_p = \frac{1}{p}$, and let $L(s,\chi_D)$ denote the L-function attached to χ_D . Throughout $D \in N$ will be assumed square free, $K = Q(\sqrt{D})$ will denote the real quadratic field, and the class number of K will be denoted by h = h(D). Let Δ denote the discriminant, ε_D the fundamental unit of K.

2. Preliminaries

Theorem 1 ([2]). Let p > 3 be prime. If there is a fundamental discriminant D_0 coprime to p for which

Email addresses: aypekin@istanbul.edu.tr (A. Pekin), aydinc@trakya.edu.tr (A. Carus)

¹ Department of Mathematics, Faculty of Sciences, Istanbul University, Istanbul, Turkey

² Department of Computer Engineering, Faculty of Engineering, Trakya University, Edirne, Turkey

^{*}Corresponding author.

(i)
$$(-1)^{\frac{p-1}{2}}D_0 > 0$$

(ii)
$$|B(\frac{p-1}{2}, \chi_{D_0})| = 1$$

then

$$\#\Big\{0 < D < X | \quad h(D) \not\equiv 0 \pmod{p}, \quad \chi_D(p) = 0, \quad |\frac{R_p(D)}{\sqrt{D}}|_p = 1\Big\} \gg_p \frac{\sqrt{X}}{\log X}.$$

Here $B(\frac{p-1}{2}, \chi_{D_0})$ is the $\frac{p-1}{2}$ st generalized Bernoulli number with character χ_{D_0} .

D. Byeon given in [1] the following theorems by refining Ono's theorem above mentioned for any prime p > 3.

Theorem 2. *Let* p > 3 *be prime.*

- (a) If $p \equiv 1 \pmod{4}$, then the fundamental discriminant $D_0 > 0$ of the real quadratic field $Q(\sqrt{p-2})$ satisfies the conditions (i) and (ii).
- (b) If $p \equiv 3 \pmod{4}$, then the fundamental discriminant $D_0 < 0$ of the real quadratic field $Q(\sqrt{-(p-4)})$ satisfies the conditions (i) and (ii).

Theorem 3. Let p > 3 be prime. Then

$$\#\left\{0 < D < X | \quad h(D) \not\equiv 0 \pmod{p}, \quad \chi_D(p) = \delta, \quad |R_p(D)|_p = \frac{1}{p}\right\} \gg_p \frac{\sqrt{X}}{\log X}.$$

3. Main Theorem

Main Theorem. Let p > 3 be a prime. If $p \equiv 3 \pmod{4}$, then the fundamental discriminant $D_0 > 0$ of the real quadratic fields $K = Q(\sqrt{p^2 - 4})$ and $K = Q(\sqrt{p^2 - 2})$ satisfies the conditions (i) and (ii).

In order to prove the main theorem we need the following lemmas.

Lemma 1. Assume D is a prime.

(i) If $D \equiv 1 \pmod{4}$, we have

$$\varepsilon_D > \begin{cases} \|\sqrt{D \mp 1}\| & \text{if } D = n^2 \mp 4, (n \in \mathbb{Z}), \\ \|\sqrt{4D \mp 1}\| & \text{otherwise,} \end{cases}$$

where " $\|*\|$ " represents great value function of a real number.

(ii) If $D \equiv 3 \pmod{4}$, we have

$$\varepsilon_D > \begin{cases} 2D \mp 1 & \text{if } D = n^2 \mp 2, \\ 8D \mp 1 & \text{otherwise.} \end{cases}$$

Proof. (i) Let $\varepsilon_D = \frac{t+u\sqrt{D}}{2} > 1$ be the fundamental unit of $K = Q(\sqrt{D})$. Since ε_D is equal to the fundamental solution of the Pell's equation $x^2 - Dy^2 = \mp 4$, then we can write

$$\varepsilon_D^2 = \left(\frac{t + u\sqrt{D}}{2}\right)^2 = \frac{1}{4}\left(\sqrt{Du^2 \mp 4} + u\sqrt{D}\right)^2 > \frac{Du^2 \mp 1}{\sqrt{2}} \ge \begin{cases} \frac{D \mp 1}{\sqrt{2}} & \text{if } u = 1, \\ \frac{4D \mp 1}{\sqrt{2}} & \text{if } u > 1. \end{cases}$$

and

$$\varepsilon_D > \begin{cases} \|\sqrt{D \mp 1}\| & \text{if } D = n^2 \mp 4 \\ \|\sqrt{4D \mp 1}\| & \text{otherwise.} \end{cases}$$

(ii) If $D \equiv 3 \pmod{4}$, then we have $\varepsilon_D^2 = (\frac{t+u\sqrt{D}}{2})^2$ from the least positive integer solution (x,y) = (t,u) of Pell's equation $x^2 - Dy^2 = \mp 1$ [4]. Similarly, we can write

$$\varepsilon_D > \begin{cases}
2D \mp 1 & \text{if } D = n^2 \mp 2 \text{ for some odd integer } n, \\
8D \mp 1 & \text{in the other cases.}
\end{cases}$$

Lemma 2. Let $D \in N$ be square free, then $h(D) < \sqrt{D}$.

In order to prove this we need the following Lemma [3].

Lemma 3. Let γ be Euler's constant, then

$$|L(1,\chi_D)| \leq \begin{cases} \frac{1}{4}(\log \Delta + 2 + \gamma - \log \pi) & \text{if } 2 \mid \Delta, \\ \frac{1}{2}(\log \Delta + 2 + \gamma - \log 4\pi) & \text{otherwise.} \end{cases}$$

Proof. [Lemma 2] By Dirichlet's class number formula, we have

$$h(D) = \frac{\sqrt{\Delta}}{2log\,\varepsilon_D} |L(1,\chi_D)|$$

where Δ is a fundamental discriminant of a quadratic field defined by

$$\Delta = \begin{cases} 4D & \text{if } D \equiv 2, 3 \pmod{4}, \\ D & \text{if } D \equiv 1 \pmod{4}. \end{cases}$$

First, we consider the case $D \equiv 1 \pmod{4}$ and $D = n^2 \mp 4$. Thus, by the upper bound for $L(1, \chi_D)$ in Lemma 3, and from Lemma 1 we have that

$$h(D) < \frac{\sqrt{D}(\log D + 1,478)}{4\log \|\sqrt{D \mp 1}\|} = \frac{\sqrt{D}(\log D + 1,478)}{2\log \|(D \mp 1)\|} < \sqrt{D}, \quad (D > 5).$$

Moreover, we can write $h(D) \leq \|\frac{\sqrt{D}(\log D + 1, 478)}{2\log(D \mp 1)}\|$ where " $\|x\|$ " is the greatest integer less than or equal to x. It is also $h(D) < \sqrt{D}$ for $D \neq n^2 \mp 4$.

REFERENCES 529

Now, we consider the case $D \equiv 3 \pmod{4}$ and $D = n^2 \mp 2$ ($n \in Z$ is odd). Similarly, by applying Lemmas 1, 3 and using class number formula, we get

$$h(D) < \frac{\sqrt{D}(\log 4D + 1,478)}{2\log(2D \mp 1)} < \sqrt{D} \text{ and } h(D) \le \|\frac{\sqrt{D}(\log 4D + 1,478)}{2\log(2D \mp 1)}\|$$

It is also true for $D \neq n^2 \mp 2$.

4. Proof of Main Theorem

Specially, if we write Ds depend on prime p in the forms of $D=p^2-4$, $D=p^2-2$ we can immediately prove that h(D) < p for the class numbers of real quadratic fields $K = Q(\sqrt{p^2-4})$, $K = Q(\sqrt{p^2-2})$ from Lemma 2. Therefore we have $h(D) \not\equiv 0 \pmod{p}$ and it is clear that $\left|\frac{R_p(D)}{\sqrt{D}}\right|_p = 1$ for above mentioned real quadratic fields.

References

- [1] D. Byeon. Existence of certain fundamental discriminants and class numbers of real quadratic fields. *Journal of Number Theory*, 98(2):432 437, 2003.
- [2] O. Ken. Indivisibility of class numbers of real quadratic fields. *Compositio Mathematica*, 119(1):1–11, 1999.
- [3] S. Louboutin. Majorations explicites de $|l(1,\chi)|$ (troisième partie). *Comptes Rendus de l'Académie des Sciences Series I Mathematics*, 332(2):95 98, 2001.
- [4] R.A Mollin. Diophantine equations and class numbers. *Journal of Number Theory*, 24(1):7 19, 1986.