On Class Numbers of Real Quadratic Fields with Certain Fundamental Discriminants

Ayten Pekin ${ }^{1, *}$, Aydın Carus ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Sciences, Istanbul University, Istanbul, Turkey
${ }^{2}$ Department of Computer Engineering, Faculty of Engineering, Trakya University, Edirne, Turkey

Abstract

Let N denote the sets of positive integers and $D \in N$ be square free, and let $\chi_{D}, h=h(D)$ denote the non-trivial Dirichlet character, the class number of the real quadratic field $K=Q(\sqrt{D})$, respectively. Ono proved the theorem in [2] by applying Sturm's Theorem on the congruence of modular form to Cohen's half integral weight modular forms. Later, Dongho Byeon proved a theorem and corollary in [1] by refining Ono's methods. In this paper, we will give a theorem for certain real quadratic fields by considering above mentioned studies. To do this, we shall obtain an upper bound different from current bounds for $L\left(1, \chi_{D}\right)$ and use Dirichlet's class number formula.

2010 Mathematics Subject Classifications: 11R29
Key Words and Phrases: Class number, Real quadratic number field

1. Introduction

Let Z_{p}, N, Q denote the the ring of p-adic integers, positive integers and rational numbers, respectively. Let $R_{p}(D)$ denote the p-adic regulator of $K,|.|_{p}$ denote the usual multiplicative p-adic valuation normalized $|p|_{p}=\frac{1}{p}$, and let $L\left(s, \chi_{D}\right)$ denote the L-function attached to χ_{D}. Throughout $D \in N$ will be assumed square free, $K=Q(\sqrt{D})$ will denote the real quadratic field, and the class number of K will be denoted by $h=h(D)$. Let Δ denote the discriminant, ε_{D} the fundamental unit of K.

2. Preliminaries

Theorem 1 ([2]). Let $p>3$ be prime. If there is a fundamental discriminant D_{0} coprime to p for which

[^0](i) $(-1)^{\frac{p-1}{2}} D_{0}>0$
(ii) $\left|B\left(\frac{p-1}{2}, \chi_{D_{0}}\right)\right|=1$
then
$$
\#\left\{0<D<\left.X\left|\quad h(D) \not \equiv 0 \quad(\bmod p), \quad \chi_{D}(p)=0, \quad\right| \frac{R_{p}(D)}{\sqrt{D}}\right|_{p}=1\right\}>_{p} \frac{\sqrt{X}}{\log X} .
$$

Here $B\left(\frac{p-1}{2}, \chi_{D_{0}}\right)$ is the $\frac{p-1}{2}$ st generalized Bernoulli number with character $\chi_{D_{0}}$.
D. Byeon given in [1] the following theorems by refining Ono's theorem above mentioned for any prime $p>3$.

Theorem 2. Let $p>3$ be prime.
(a) If $p \equiv 1(\bmod 4)$, then the fundamental discriminant $D_{0}>0$ of the real quadratic field $Q(\sqrt{p-2})$ satisfies the conditions (i) and (ii).
(b) If $p \equiv 3(\bmod 4)$, then the fundamental discriminant $D_{0}<0$ of the real quadratic field $Q(\sqrt{-(p-4)}$ satisfies the conditions (i) and (ii).

Theorem 3. Let $p>3$ be prime. Then

$$
\#\left\{0<D<\left.X\left|\quad h(D) \not \equiv 0 \quad(\bmod p), \quad \chi_{D}(p)=\delta, \quad\right| R_{p}(D)\right|_{p}=\frac{1}{p}\right\}>_{p} \frac{\sqrt{X}}{\log X} .
$$

3. Main Theorem

Main Theorem. Let $p>3$ be a prime. If $p \equiv 3(\bmod 4)$, then the fundamental discriminant $D_{0}>0$ of the real quadratic fields $K=Q\left(\sqrt{p^{2}-4}\right)$ and $K=Q\left(\sqrt{p^{2}-2}\right)$ satisfies the conditions (i) and (ii).

In order to prove the main theorem we need the following lemmas.
Lemma 1. Assume D is a prime.
(i) If $D \equiv 1(\bmod 4)$, we have

$$
\varepsilon_{D}> \begin{cases}\|\sqrt{D \mp 1}\| & \text { if } D=n^{2} \mp 4,(n \in Z) \\ \|\sqrt{4 D \mp 1}\| & \text { otherwise }\end{cases}
$$

where "|| * ||" represents great value function of a real number.
(ii) If $D \equiv 3(\bmod 4)$, we have

$$
\varepsilon_{D}> \begin{cases}2 D \mp 1 & \text { if } D=n^{2} \mp 2, \\ 8 D \mp 1 & \text { otherwise. }\end{cases}
$$

Proof. (i) Let $\varepsilon_{D}=\frac{t+u \sqrt{D}}{2}>1$ be the fundamental unit of $K=Q(\sqrt{D})$. Since ε_{D} is equal to the fundamental solution of the Pell's equation $x^{2}-D y^{2}=\mp 4$, then we can write

$$
\varepsilon_{D}^{2}=\left(\frac{t+u \sqrt{D}}{2}\right)^{2}=\frac{1}{4}\left(\sqrt{D u^{2} \mp 4}+u \sqrt{D}\right)^{2}>\frac{D u^{2} \mp 1}{\sqrt{2}} \geq \begin{cases}\frac{D \mp 1}{\sqrt{2}} & \text { if } u=1, \\ \frac{4 D \mp 1}{\sqrt{2}} & \text { if } u>1 .\end{cases}
$$

and

$$
\varepsilon_{D}> \begin{cases}\|\sqrt{D \mp 1}\| & \text { if } D=n^{2} \mp 4 \\ \|\sqrt{4 D \mp 1}\| & \text { otherwise }\end{cases}
$$

(ii) If $D \equiv 3(\bmod 4)$, then we have $\varepsilon_{D}^{2}=\left(\frac{t+u \sqrt{D}}{2}\right)^{2}$ from the least positive integer solution $(x, y)=(t, u)$ of Pell's equation $x^{2}-D y^{2}=\mp 1[4]$. Similarly, we can write

$$
\varepsilon_{D}> \begin{cases}2 D \mp 1 & \text { if } D=n^{2} \mp 2 \text { for some odd integer } n \\ 8 D \mp 1 & \text { in the other cases }\end{cases}
$$

Lemma 2. Let $D \in N$ be square free, then $h(D)<\sqrt{D}$.
In order to prove this we need the following Lemma [3].
Lemma 3. Let γ be Euler's constant, then

$$
\left|L\left(1, \chi_{D}\right)\right| \leq \begin{cases}\frac{1}{4}(\log \Delta+2+\gamma-\log \pi) & \text { if } 2 \mid \Delta \\ \frac{1}{2}(\log \Delta+2+\gamma-\log 4 \pi) & \text { otherwise. }\end{cases}
$$

Proof. [Lemma 2] By Dirichlet's class number formula, we have

$$
h(D)=\frac{\sqrt{\Delta}}{2 \log \varepsilon_{D}}\left|L\left(1, \chi_{D}\right)\right|
$$

where Δ is a fundamental discriminant of a quadratic field defined by

$$
\Delta= \begin{cases}4 D & \text { if } D \equiv 2,3 \quad(\bmod 4) \\ D & \text { if } D \equiv 1 \quad(\bmod 4)\end{cases}
$$

First, we consider the case $D \equiv 1(\bmod 4)$ and $D=n^{2} \mp 4$. Thus, by the upper bound for $L\left(1, \chi_{D}\right)$ in Lemma 3, and from Lemma 1 we have that

$$
h(D)<\frac{\sqrt{D}(\log D+1,478)}{4 \log \|\sqrt{D \mp 1}\|}=\frac{\sqrt{D}(\log D+1,478)}{2 \log \|(D \mp 1)\|}<\sqrt{D}, \quad(D>5) .
$$

Moreover, we can write $h(D) \leq\left\|\frac{\sqrt{D}(\log D+1,478)}{2 \log (D \mp 1)}\right\|$ where " $\|x\|$ " is the greatest integer less than or equal to x. It is also $h(D)<\sqrt{D}$ for $D \neq n^{2} \mp 4$.

Now, we consider the case $D \equiv 3(\bmod 4)$ and $D=n^{2} \mp 2(n \in Z$ is odd $)$. Similarly, by applying Lemmas 1,3 and using class number formula, we get

$$
h(D)<\frac{\sqrt{D}(\log 4 D+1,478)}{2 \log (2 D \mp 1)}<\sqrt{D} \text { and } h(D) \leq\left\|\frac{\sqrt{D}(\log 4 D+1,478)}{2 \log (2 D \mp 1)}\right\|
$$

It is also true for $D \neq n^{2} \mp 2$.

4. Proof of Main Theorem

Specially, if we write D s depend on prime p in the forms of $D=p^{2}-4, D=p^{2}-2$ we can immediately prove that $h(D)<p$ for the class numbers of real quadratic fields $K=Q\left(\sqrt{p^{2}-4}\right), K=Q\left(\sqrt{p^{2}-2}\right)$ from Lemma 2. Therefore we have $h(D) \not \equiv 0(\bmod p)$ and it is clear that $\left|\frac{R_{p}(D)}{\sqrt{D}}\right|_{p}=1$ for above mentioned real quadratic fields.

References

[1] D. Byeon. Existence of certain fundamental discriminants and class numbers of real quadratic fields. Journal of Number Theory, 98(2):432-437, 2003.
[2] O. Ken. Indivisibility of class numbers of real quadratic fields. Compositio Mathematica, 119(1):1-11, 1999.
[3] S. Louboutin. Majorations explicites de $|l(1, \chi)|$ (troisième partie). Comptes Rendus de l'Académie des Sciences - Series I-Mathematics, 332(2):95-98, 2001.
[4] R.A Mollin. Diophantine equations and class numbers. Journal of Number Theory, 24(1):7 - 19, 1986.

[^0]: *Corresponding author.

 Email addresses: aypekin@istanbul.edu.tr (A. Pekin), aydinc@trakya.edu.tr (A. Carus)

