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Abstract. In this paper, we have given an explicit formulation to determine the form of the fundamental
units of certain real quadratic number fields. This new algorithm for such quadratic fields is first in the
literature and it gives us a more practical way to calculate the fundamental unit. Where, the period in
the continued fraction expansion of the quadratic irrational number of the certain real quadratic fields
is equal to 8.
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1. Introduction and Notation

Determination of the fundamental units of quadratic fields has a great importance at many
branches in number theory. Although the fundamental units of real quadratic fields of Richaut-
Degert type are well-known, explicit form of the fundamental units are not known very well
and these determinations were very limited except for these type an K. therefore, Tomita has
described explicitly the form of the fundamental units of the real quadratic fields Q(+/d) such
that d is a square-free positive integer congruent to 1 modulo 4 and the period k; in the

continued fraction expansion of the quadratic irrational number w; = (1+2‘/H) in Q(v/d) is
equal to 3 and 4, 5 respectively in [4] and [5]. Later, explicit form of the fundamental units
for all real quadratic fields Q(+/d) such that the period k, in the continued fraction expansion
of the quadratic irrational number w, is equal to 6, has been described in [3].

In this paper, we will deal with all real quadratic fields Q(+/d) such that d is a square free

positive integer congruent to 1 modulo 4 and the period k; in the continued fraction expansion

of the quadratic irrational number w, = (1+2‘/H) in Q(v/d) is equal to 8 and describe explicitly

T4, Uy in the fundamental unit g5 = (M) > 1 of Q(v/d) and d itself by using at most five

parameters appearing in the continued fraction expansion of wy.
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Let I(d) be the set of all quadratic irrational numbers in Q(+/d). For an element & of I(d)
ifE>1,-1< 5/ < 0 then ¢ is called reduced, where «5/ is the conjugate of & with respect to
Q. More information on reduced irrational numbers may be found in [2]. We denote by R(d)
the set of all reduced quadratic irrational numbers in I(d). It is well known that if an element
& of I(d) is in R(d) then the continued fractional expansion of & is purely periodic. Moreover,
the denominator of its modular automorphism is equal to fundamental unit &; of Q(v/d) and
the norm of ¢, is (—1)*¢ [3]. In this paper [x] means the greatest integer less than or equal to
x and continued fraction with period k is generally denoted by [ay, aj, as,- - ., ag |-

2. Preliminaries and Lemmas

In this section some of the important required preliminaries and lemmas are given.

Now, for any square-free positive integer d, we can put d = a®>+b witha,b € Z,0 < b < 2a.
Here, since vd —1 < a < v/d the integers a and b are uniquely determined by d.

Let d be a square-free positive integer congruent to 1 modulo 4, then we consider the
following two cases:

Case 1. Ifaiseven,then b=4¢+1withle Z, {>0.
Case 2. Ifais odd, then b=4f withl e Z, { > 1.

Let denote by D the set of all positive square-free integers and by D, the set of all positive
square-free integer d such that d = k(8) and b = t(8). Hence, we have
DX ={deZ|d=k(8),b=t(8)}. Then, we get some remarks as follows:

Remark 1. d can be congruent to 1 or 5 modulo 8 since d is congruent to 1 modulo 4.

In the case of d = 1(8), b can be congruent to 0, 1 or 5 modulo 8. Therefore, the set of all
positive square-free integers congruent to 1 modulo 8 is equal Dy' UD;* UDs!. Thus the set of all
positive square free integers congruent tol modulo 8 is the union of Dy', D', Dgl.

In the case of d = 5(8), b can be congruent to 1, 4 or 5 modulo 8. So the set of all positive
square-free integers congruent to 5 modulo 8 is equal to D;°> U D> U Dg°.

Remark 2. Let d be a square-free positive integer congruent to 1 modulo 4, then:

e Ifaiseven; b can only be congruent to 1 or 5 modulo 8 since b = 1(mod4) when a is even.
Then, d belongs to D;° U Ds®> UDs! UD; " in the case of a is even.

e Ifais odd; b can be only be congruent to 0 or 4 modulo 8 since b = 0(mod4) when a is
odd. Then, d belongs to Dy' U D, in the case of a is odd.

Remark 3. The sets Dy',D;,Ds!, D;°,D,° and Ds® are represented as follows:
Dyl ={d €D |d =a?+8m,a=1(mod2),0 < 4m < a}

D;'={deD|d=a*+8m+1,a=0(mod4),0 <4m < a}
D'={deD|d=a*+8m+5,a=2(mod4),0 <4m < a—2}
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D°>={deD|d=a*+8m+1,a=2(mod4),0 < 4m < a}
Dy’ ={deD|d=a*+8m+4,a=1(mod2),0 < 4m < a—2}
D°={deD|d=a%*+8m+5,a=0(mod4),0 < 4m < a—2}

Now in order to prove our theorems we need the following lemmas.

Lemma 1. For a square-free positive integer d > 5 congruent to 1 modulo 4, we put wy = ( 1+2‘/E ),

qo = [wg] wr =qo—1+ w. Then wy ¢ R(d), but wg € R(d) holds. Moreover for the period

k of wg, we get wp =[2q0—1,q1,...,qx—1] and wg =1[qo,q1,---,qk—1,2qo — 1]. Furthermore,
let wn = (P—1 wWr+Pip) _
R ™ Q1 wr+Qx—2)

fundamental unit £4 of Q(v/d) is given by the following formula:

(290 — 1,91, --->qk—1, wgr] be a modular automorphism of wg, then the

where Ty = (299 — 1)Qx—1 + 2Qx_s, Us = Qy_;, and Q; is determined by Q_; = 0, Qy = 1,
Qir1=9i11Qi +Q;1, (1= 0).

Proof. See [5, Lemma 1]. O
Lemma 2. For a square-free positive integer d, we put d = a>+b (0 < b < 2a), a,b € Z.
Moreover let w; = {; + %ﬂ (¢; = [w;],i = 0) be the continued fraction expansion of w = wq

in R(d). Then each w; is expressed in the form w; = w

obtained from the following recurrence formula:
_ a—ry + '\/H

Co
2a—r; =cil; +ri41,

(¢;,r; € Z), and ;, c;, 1; can be
Wo

(b+2arg— roz)

Civ1 =Ci + (ri+1 - ri)fi (l > O), where 0 < riy1 <¢Cj,C_q1 =

Co
Moreover for the period k > 1 of wg, we get
bi=l; (1<i<k-1),
i =re—ir1,6 = (1 <1 <k).
Proof. See [1, Proposition 1]. O

Lemma 3. For a square-free positive integer d congruent to 1 modulo 4, we put wy = (1+£/E ),

go =[wgq]l and wp =qo—1+[wq].
If we put w = wp in Lemma 2. , then we have the following recurrence formula:

) =r1:a_lo=a_2q0+1,
b+ 2arg—ry?
Co :2,C1:C_1:( 0 0 ),
o

lh=2q0—1,4;=q; (1<i<k-—1).
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Proof. It can be easily proved by using Lemma 2. O

3. Theorems

Theorem 1. Let d = a® + b = 1mod(4) is a square free integer for positive integers a and b

satisfying 0 < b < 2a. Let the period kg of the integral basis element of wy = (#) in Q(vd)
be 8. If a is odd then,

a+1 51(C+Z3A)_2123_rA
=[—,[, 1,1
Wq [ s t15 82583 C(r—5113)+32

2 513: ZZJ Zl)a]n

where (i =1,2,3,4), [; > 1. Then the coefficients Ty and Uy of &4
(T4, Ug) = ([(Ar +5111)(C2Ly + 2AC) + 2(C(Bly +£,) + B)], C(CL, + 24))
and
d= (Ar +5111)2 + 4rlz + 451
hold. Where A, B, C are determined by A= L1, + 1, B =1,l3+ 1, and C = l; + Als, moreover r
and s are uniquely determined with the equalities a = Ar + s;1; and
B(Bl4 + 212) = S]_[C(]. + 1314) +A13] - T(A+ Cl4)
a+1

Proof. Let a be an odd integer then d € Dé U Dfr. Since gy = wy = =5~ then from Lemma 3

we obtain
ro=nrq :a—2q0+ 1= 0,

¢ =2, @)

and from the Lemma 2: [; =7, [, =g, [3 =[5, wg = [%, l,15,13,14,15,15,1;,a] hold for
kg = 8. Furthermore we have ry =rg, ry =15, r3 =r¢, 14 =15, ¢; = C7, C3 = Cg, C3 = Cs.
Let d € Dy, where

D} ={d € D|d = 1(mod8), b = 0(mod8)}
={d € D|d = a® + 8m,a = 1(mod2),0 < 4m < a}
In this case we have b = 8m > m > 0. From Lemma 2, it can easily seen thatc; =c_; =4m
and 2a = 4ml; +ry (fori =1).
Since r, = 2a — 4ml; is even then there exists a positive integer r such that r, = 2r.

Therefore
2r=2a—4mly = r=a—2ml,

and so r is an odd integer. From Lemma 2, we have 2a = cyly + 19 + 13 for i = 2 and

2a:(2+2rll)'lz+r2+r3 (2)
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for cg = cq = (ry —r1)ly, ¢ = 2+ 2rl;. If we put 4m = 2rl, +s in (1) then we obtain
4m11 :212(r12+r11 + 1)+r3. (3)

Where 21, + r3 = 0(modl;) and so there exists positive integer s such that 21, + r3 = sl; then
we can obtain
rs 2311—212. (4)

Here if the value r5 is written in (3) then it is immediately seen that 4m = 2rl, +s and s is
even. If we put 4m = 2rl, +s in (1) then

2a =(2rly +s)l; +2r = 2a =2rljly +2r +sl;
= 2a= r(21112 + 2) +Sl]_
= 2a= 2r(1112 + 1) +Sl]_
hold.

If we take A =1, - [, + 1 then we have a = rA+s;l; because of s = 2s; is even, s; > 0,
s1 € Z. On the other hand, for i = 2 we have

c3 =Cy +(r3—r)ly =4m+ (ry — 1)l
ca=Cp+ (ryg—r)ls=(2+2rl))+(rg—r3)ls
c5s =C3 + (15 —r4)ly =4m+ (r3—ry)ly + (r5 —14)ly) =c3,
for (c3 =c; + (rg —ry)ly = c3 =4m+ (r3 —ry)ly).
From Lemma 2: (i = 3),
2a =c3ly + 13+ 1y,
ry=2a—c3ly—ry=>rz3=2a—(4m+ (r3—ry)ly)l3—ry
=>ry=2a—4mly+ (2r —r3)lylz—r3) fori=4
2a =cyly+ 154714,
rg=rs =>2a=(2+2rl)l + (ry—r3)lsly +2r,
rg =2rA+ 2s1l; —2rlyly — 25113+ 2rlyl3 — (sl; — 21,) (13 + 1)
= 1, = 2rA+ 25,1 — 2rlyly — 25115 + 2rlyly — sty Lyly —sly + 21515 + 21,
=14 =2rA—2rlyl3 — 25113 + 2rlyl3 — 25111 L5153 + 21513 + 21,
rq =2rlyly +2r —2rlyly — 25115 + 2rlyls + 25,11 Lyl + 21515 + 21,

hold. Therefore we obtain the value ry, as
ry = 2[(r —3113)A+ lzB] = (r _3113)A+ lzB for B = 1213 + ].,A: 1112 + 1. (5)
Furthermore

C4 =(2 + rzll) + (r4 —_ r3)13 = (2 + 27"11) + [(Zr _SZS)A‘l‘ 2123 _Sll + 212]13
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:(2 + 2rl]_) + erls —5132A+ 212133 —31113 + 213
=2rC —SZBC + 2(1 + lzlg) + 212133
=C(2r —313) + 2B+ 2Blzl3
=C(2r _513) + ZB(]. + 1213)
and so we have

cq=C(2r—sl3)+ 2B? (for the values A, B and C = [; +Al). (6)

If the equalities a = rA+sly, r4 = (r —s113)A+1,B and ¢, = C(2r —sl3) + 2B are written in
l4 then

L 2a—2r, _ 2rA+sly —2(2r —sl3)A—4l,B
T, C(2r —sl3) +2B2
holds. By taking s = 2s; we obtain
- 51(C+1;A)—21,B—rA
*T C(r—s;ly) +B2

(7)

From this equation
C(T’ —5113)14 +le4 =51(C + ZBA) - 212B —rA
= BZZ4 + 212B = S]_C +5113A_ rA— rCl4 +51Clgl4
= B2l +21,B = 51(C + 13A+ Cl3l,) —rA+Cl,
= B2l, +21,B = 51[C(1 + I31,) + Al ] —r(A+Cly)

hold and this proves that r and s; are uniquely determined by a = rA+s;l;.

Now, let’s determine the coefficients T; and Uy of the fundamental unit

€4 = (M) > 1) for d = 1(mod4) and the period k; = 8. Since

Q_1=0
Qo =1
Qit1 =9i+1Q; +Qi—1, (i=0)
Q=¢1Q+Q_1=>Q;=41+0=>Q, =1
Q=¢:Q1 +Qp=>Qy =Ll +1=>Q,=A
Q3=q3Q;+Q; =>Q3=13A+1;, =>Q3=C
Q4=q4Q3=>Qs=1,C+A
Q5 =q5Q4 +Q3=> Qs =3(14,C+A)+C = Qs =3 LC+C+[3A
= Q5 =C(l3l4+ 1)+ A
Qe =l5Qs + Qs => Qs = 5[C(U3ly + 1) + £3A] + £4C + A= Cly(Lyl3 + 1) + Cly + A1 + £5€5)

holds, where if we take B = ({55 + 1)
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Q7 :£1Q6 +Q5 > Q7 == El[C(B€4 +€2) +AB] + C(€3£4 + 1) +A€3
— Q7 = CB£4€1 + C€1€2 +AB€1 + C€3€4 +C +€3A
:(C€4 +A)(€1£2£3 +€1 +€3)+CA
and so we can obtain Q, = c%t 4+ 2AC for C = (Al3 +{,). Therefore we can determine that

(T4, Uz) = ([(A, +51£1)(C%L4 + 2AC) + 2(C(BLy + £5) + AB)], C(CL4 + 2A))

and d = (A, +s1£,)> +4rl, +4s;.
Now let d € D} where,
Di ={d € D|d = 5(mod8), b = 4(mod8)}
={deD|d=a*>+8m+4,a=1(mod2),0 <4m < a—2}

therefore b = 8m + 4 and m > 0 hold. Besides we have the following equations from Lemma
2:

b
4 :£:4m+2

C1:C_1+(r1_r0)£0:>(:1:C_1:>C1:4m+2

and

2a_ rl' =Ci€l~ + rH_l > (l = ].)
2a—ry =c1l; +ry=2a=(4m+2){; + 1y,
ry=2a—2(m+1); =r  =rg,

Cy =Cy,I'yg =T7,Cy =Cg,I'3 =Tg,C3 =C5,'4 = TIs.

Since r, is even number then 3r > r, = 2r. And so r is defined as

_Jodd ¢, even number
even {; odd number

If we take i = 2, then from Lemma 2

2a =C2€2 +r2+r3 == 2a = (2+2r€1)€2 +r2+r3

8
C2 =C0+(r2_r1)€1=(:2=2+2r£1. ( )

By using the value 2a = (4m + 2)¢; + r, and (8) we can write;

(4m +2)£1 + ry :(2+ 27"61)62 + ry + rs
— (4m +2)£1 = (2 + 2r1€1)1€2 + rs
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= (4m+2)l; =205+ 21l + 13

= 20, + r3 = 0(mod{,)

= ds€Z32,+r3=5{;

= ry =sl; —2L,.
For the value ry = s{; —2{, we obtain 4m + 2 = 2r{, +s where s = 4m + 2 — 2r/{, is even
number and so there exists s; € Z" such that s = 2s;. If we write 4m + 2 = 2r{, +s instead of

2a = (4m + 2){, + ry then we obtain 2a = 2r({,£, + 1)s{; and we can write a = rA+s,{; by
taking A=1{¢, + 1. In the same way, we have

Iy =2a —(4m + 2)63 + (21‘ —_ r3)€2€3 —TrI3
— gy = 2rA—2r€2€3 —25163 + 2r£2€3 —251618263 + 28%63 + 262
=2(r —51£3M+ ezB

forA={,{5+1 and B ={,{5 + 1. Furthermore

ca=(2+2rl)+[(2r —sl3)A+20,B—sl; + 20,5
= (4= C(Zr _23163) + 2(1 +€2£3) + 2€2£3B
=2C(r —s1{3) + 2B>

and
_ 2a —2r4 N 51(C +€3A) —2€2B —rA
4 C4 B C(r—s1€3)+B2
for C ={,+Al; and (1 +{,¢3) = B. This is completed the proof of the theorem. O]

Example 1. Let a is odd, d € D; and d = 869 = 5(mod8). Sincea =29, b=28, b=3-8+4
m = 3 then we can determine that {;{ =4, {, =5, {3 =1, ¢; = 14 and

ro=2a—(4m+2); =>ry,=58—-14-4=58—-56=2=1r =1,
¢y = 10 because of £ is even.
(4m+2)€1=(2+2r€1)-€2+r3z14-4=10-5+r3:r3=6,s=251=4.

Therefore we obtain A =21, B=6, C = 25and ry = 18, ¢, = 22, {4, = 1. If it is taken
above values then the coefficients of the fundamental units of Q(/869) is easily determined as
T; = 49377, Uy = 1675 and so g4 = 837741675V869 1 polgs;,

Theorem 2. Let d = a® + b = 1mod(4) is a square free integer for positive integers a and b

satisfying 0 < b < 2a. Let the period kg of the integral basis element of wg = (#) in Q(vd)
be 8. If a is even then,

BC +AD — 205

f%—CD ,63,62,61,61—1], 1S£l,(l:2,3)

a
Wd = [E;KJEZJEBJ
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and then the coefficients Ty and Uy of &4

Ty =[(A(r+1)+B—2)-C+2(C—£3)](Cly+2A)+2C¥,
Uy =C(Cly + 24A)

and

d=[A(r+1)+B—1P+2[A(r+1)+B—25s—2]—1
hold. Where A=40,+1,B=2s—r,C=14+Al3=14+4{3+0,03, D=Bl;—1r—1, E={5+1
and r and s are uniquely determined with the equations a =A(r + 1)+ B—1 and

Proof. Let a be even and k; = 8. If d = 1(mod8) then b = 1(mod8) or b = 5(mod8) hold.
Furthermore in the case when a is even, d can belong to Df U D55 U D51 U Dll. qo =[wgql =3
and from Lemma 3 we can write ry =1r; =a—2qy+1=>ro=r; =1,¢g = 2,{;, =a—1 and
because of k; = 8 and from Lemma 2 we have {; ={,, {5, =g, {3 ={sand r{ =15, 17y =T+,
Iy =Tg, Iy =15 and ¢; = ¢y, ¢y = Cg, C3 = Cs.

We first assume that d is in D;UD;. Then we get b = 1(mod8) and so 3m € Z* > b = 8m+1

holds. From Lemma ??? ¢_; = w = c_; =4m+a and

cg=c_q+(ry—rg)lg= c; =4m+a hold.
By taking equation 2a —r; = ¢;¢; + r;,; in Lemma 2 for i = 1, we obtain
2a—ry=cil;+ry,=>(r;=1and ¢c; =4m+a)

=>2a—1=“m+a)l;+ry
=>2a—1=4ml;+al; +r,
=>2—())a=4ml;+ry+1>0
=2—-{;>0
=/{;<2and/{;>1
=>{;=1

and so we have

wy = [%; 1,05, 05,0005, 05, 1,a—1].

Since {{ =1thena =4m+1+r, and if r, = a—4m—1 then a, 4m are even and r, > 1 is
odd and so there exists r > 0 such that r, = 2r + 1 and we can obtain ry < a.
If we use ¢;1; = c;_1 + (r;41 —1r;)¢; for i > 0 then we obtain

co=cot(rg—r )l =2+ (ry—1)1=2r+2.
Furthermore we have obtain the following equalities from Lemma 2 ¢, = 2r + 2,
2a=cyly+ro+r3=>2a=02r+2),+2r+1+r,
and by taking a =4m + 1+ ry and a = 4m + 2r + 2 we have

8m+4r+4=02r+2),+2r+1+r3=2r+2)5+r;—2r—3.
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Since a is even then

2a =(2r +2)l5 + (2r + 1) + r3 = 0(mod4)
= r3 +2r +1=0(mod4) and ¢, = 0(mod2)
=>3I5e€Zt Srg+2r+l1=4s, r3=0
=>45—2r—12>0
=>4s>2r+1

hold, where r3 = 4s —2r — 1 is odd number because of 4s is even and 2r + 1 is odd.

From Lemma 2. we have

c3=c1+(r3—r)ly=4m+a+(4s—2r—1—-2r—1)l,
=a—2r—2+a+(4s—4r—-2)(,
=2a—2r —2+ (4s—4r —2)¢,

and if the value 2a is written instead of c5 then c5 is obtained as

C3 :(Zr + 2)62 +4s—2r—2+ 43[2 —47‘[2 _262
(45— 2r)(ly +1)—2.

By using the values c3, A={, + 1 and B = 25 —r we have

2a=2r +2M0y+r3+2r+1=2r+2)y+4s—2r—1+2r+1
=2[(r +1)¢5 + 2s]
a=(r+1),+2s

and 2a =c3l3+r3+rsisery =2a—c3l3—r3

rg =2[(r+1)ly+2s]—[(4s—2r)(ly+1)—2]l5—(4s—2r —1)
=2(r+ 1)y +4s—[(4s—2r)(ly+1)—213—4s+2r +1
=2(r+ 1)y +2r+1+[(4s—2r)(ly+1)—2]l4

hold from Lemma 2. Moreover we have
a=(r+1),+2s=A(r+1)+B—1
forA={,+1,B=2s—r and

rgs=4s—2r—1=>ry=2B—1
r4 =2a—c3lz3—r3=>r,=2a—2(BA—1){;—2B+1
$r4:2r£2+£2_2BC+263+45 + A.

IfC:1+A€3:1+£3+62€3,B:25—r,

4s =2B+2r =1, =2rly+ 0, —2BC+2{3 +2B+2r +A

352

9)

(10)

(11)

(12)
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=714 =2rA+2A—2BC+2B+2{;—1

hold. For £; =1, c3 = 2BA—2 = 2(BA—1). If we take ¢, = (2r +2)+(2rA+2A—2BC +2(3){;
then
C4 =21 +2+42rAly +2Al; —2BCl3 + 203 = ¢, = 2C[r + 1 —Bl3] + 2(3

hold. Where if we take r + 1 — B{3 = —D then we obtain ¢4, = 2@% —2CD = 2(€§ —CD) and
r4 = 2rA+2A—2BC+2B+2{3—1forA={,+1, B = 2s+r, C = Al;+1. Finally r, is determined
asry =2rA+2A—2B—2ABl3+2B+2(3—1 =203 —2A(B{3—r—1)—1=2E —2AD —3 for
the values D =B{; —r —1 and E = {5+ 1. On the other hand we can write

a—ry=(r+1){,+2s—2E+2AD+3
=(r+ 1), +B+r—2E+2AD+3=r({y+1)+{5+B—2E+2AD +3
=B—2E +AB{l;+A(Bl;—1—1)+2

where D =Bl;—r—1,

a—r4=B—2E+4+AB{;+AD+2=B+ABl3+AD+2—2{;—2
=B+ AB{;+AD — 24
=B(1+Al3) +AD —2{5 = BC +AD — 2/
= a—rs=BC+AD—2l;
2(aC:r4) _ 2(32%12;2)(3) _ BCZEA_DC—DZZS ly= BCEEA_DC—DZKS. Besides
s and r are uniquely determined by €§€4 +2(3=BC+AD+2CD{, and (9).
Now, let’s determine the coefficients T; and U, of the fundamental unit €;. Since

holds and so we have [, as {4, =

d = 1(mod4) then we know that wg; = [qo;q1,--->qx—1,290— 1] and &4 = (M) > 1.
Furthermore
Q_1 =0

Qp =1

Qit1=¢i11Qi +Qi—1 (1=0)
Q=q1Q+Q1=>Q,={;, {1=1=>Q,=1
Qr=qQ1 +Qu=>Qy=4{5-1+1, (A={+1)=Q,=A
Q3 =¢3Q2+Q; > Q3 ={3A+1, (C=L3A+1)=>Q3=C
Qs =q4Q3+Qy=> Q4 ={;,C+A
Q5 =05Q4+Q3=> Q5 ={3({4,C+A)+C=>Q5=C(l3l4+ 1)+ (5A
Q6 =q6Qs5 + Q4 =U5[C(L3ly+ 1)+ L3A] +L4C+A=ClU4(lol3+ 1)+ L] +A(1 +L5L3)
=CL((A=1)(E—1)+ 1)y +£,] +A[(A—1)(E—1) + 1] for (1 + £565) = (A—1)(E—1)+1 or
Qe =(C —L3)(Cly+A)+CLy
Q7 =01Qs+Q5=1Q¢ + Q5 =(C—{3)(CLy +A)+ Cly+(Cly +A)3+C =C[Cly+2A]
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and so we obtain that

Ty =(A(r + 1) + B —2)C(Cly + 2A) + 2(C — £3)(Cl4 + A) + 2CL,
Uy =C(Cl, + 2A)

and

d=a’+b=[A(r+1)+B—1124+2A(r+1)+2B—4s—5
=[A(r+1)+B—11*+2[A(r+1)+B—2s—2]—1.

Now let d € Dé UD55 then b = 5(mod8) and 3m € Z* > b = 8m + 5. From Lemma 2 we
can obtain the following equalities:

(8m+5+2a—1)
- 2
co=Cq+(r1—rx)ly (r1—rp=0)=>c;=4m+4+a
2a—ry=cily+ry=>(r; =1, ¢, =4m+4+a)
=>2a—1=lm+4+a)-b;+r,
=>2—{))a=4ml; +4l; +r,+1>0
=>2-0,>0, (4>1
=>(;=1

€1 =>c1=4m+4+a

and then we geta =4(m+1)+ry+1
ro=a—4(m+1)—1= ry is an odd integer
sory <aholdsand ir >0, r € Z>r, =2r + 1. For i > 0 we have
ca=co+(rg—1r )1 =2+ (ry—1)1=2r+2

from relation ¢; ;1 = ¢;_1 + (riz; —1ri)l; and 2a = cyly + 19 +13. 2a = (2r +2)l, +2r + 14715
and

a=4(m+1)+1+ry,=>a=4m+2r+6
=2(4m+2r+6)=2r+2),+2r+1+r;
=2a=2r+2),+r3+2r+1=0(mod4)
= r3 +2r +1=0(mod4) and ¢, = 0(mod2)
=>3Is€Z dry+2r+1=4s, r3=0
=>4s—2r—12>0,

therefore
r; =4s—2r —1is odd. 13)
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From lemma 2 we know that c3 = ¢; +(r3—ry)ly =4m+4+a+(4s—2r—1—2r—1)¢, then
we obtain

c3=a—2r—2+a+(4s—4r—2), = c3=2a—2r —2+(4s—4r —2)(,
=2r +2)5+4s —2r —2+ (4sly, —4r —2)¢,
=(4s—2r)(€2+ 1)—2

hold fora =4m+ry+5=>4m+4=a—ry,—1=a—2r—2.
If we take the values A={, +1 and B = 2s —r then

20 =2r+2)y+r3+2r+1=02r+2),+4s—2r—1+2r +1=2[(r + 1){, + 2s]
and a = (r + 1){, + 2s. If 2a = c3l5 + 13 + 1,4 then

Iy =2a—63€3—r3
=>r,=2[(r+1)l,+2s]—[(4s—2r)(ly+1)—2]43—(45s—2r —1)
Ifa=(r+1),+2s,A={,+1, B=2s—r then
a=rly+ly+2s=rlyg+lo+2s+r—r=r(ly+1)+L,+(2s—r)=Ar+A—1+B
and so
a=Alr+1)+B—1 (15)
holds. Since A={,+ 1, and B = 2s —r then
c3 =2BA—2=2(BA—1)
rgs=4s—2r—1=>ry=2B—1
r4 =2a—c3l3—r3=>r,=2a—2(BA—1){;—2B+1
=>r4=2rly+0,—2B(1+Al;)+2(3+45+A
and if we take C =1+4+Al; =143+ {53, D=B{;—r—1and E = {5+ 1 then we obtain
ra=2rly+0,—2BC+203+2B+2r + A= 203 —2A(Blz;—r—1)—1
=2({3+1)—2AD—-3
=ry=2({3+1)—2AD—3
:>r4:2E—2AD_3.

At the same way we can determine c, as

cq =(2r +2)+ (2rA+2A—2BC +2(3)l5 = 2r(1 + Al3) + 2(1 + Al3) — 2BCl5 + 2(32
=—2C(Bl3—r—1)+2(2=2({3—CD).
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2(a— . .
We know that £, = 247s) from Lemma ??? then we can determine the value of @ — r4 in the

C4
following:
a—ry=(r+1)y+B+r—2E+2AD+3
=>a—r,=B—2E+ABl;+A(Bl;—r—1)+2
=>a—ry;=B(1+Al3)+AD—2(4
= a—ry=BC+AD—2l;.

2(a—r,) _ 2(BC+AD—2{3) _ BC+AD—2{; _ BC+AD—2l,

Moreover we can easily seen that {4 = === = 2@—CD) —  B-cb —  B-CD and s
and r are uniquely determined from the relations a = A(r + 1)+ B—1 and
304+ 203 =BC +AD +2CD!,. O

Example 2. Let a is even, d = 1(mod4). If we choose D = 501 = 5(mod8) then we can
practically determine that a =22, b =17 = 1(mod8), 17=8m+1=>m =2,
cp=4m+a=c¢,=8+22=¢,=30,{;=1,{,=2,(53=4,
a=4m+1+ry=>22=94+1r,=>r,=13, 1y =2r+1=13=r=6,cy =2r +2 = ¢, = 14,
2a = coly+ 19413 13 =44—-28—-13 =3, r3+2r+1=4=>34+13=4s =5 =4,
c3=M@4s—=2r)ly,+1)=2=>c3=4-3—2=10,ry,=2a—c3l3—1r3=>1r;,=44—40—-3 =1,
A=l +1=>A=3B=2s—1r=>B=2C=14+Al3=1+{,+{,{3=>C =13,
D=—r+Bl;3—1=>D=1LE={3+1=>E=5r,=1a=22 ¢4=6=(4=7. Therefore the
fundamental unit of Q(+/501) is obtained as 4 = Mfor T; =28225, U; = 1261.
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