Equivalence of Pepin's and the Lucas-Lehmer tests
Keywords:
Primes, primality test, Lehmer sequence, Pepin's test, Lucas-Lehmer testAbstract
Pepin's test provides a necessary and sufficient condition for a Fermat number to be prime. The Lucas-Lehmer test does similarly for a Mersenne number. These tests share a common nature. However, this is evident neither by their usual statements nor their usual treatment in the literature. Furthermore, it is unusual to even find a proof of the latter result in elementary textbooks. The intent of this paper is to bring to light the equivalent structure of these two primality tests.
Downloads
Published
Issue
Section
License
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.