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Abstract. Pepin’s test provides a necessary and sufficient condition for a Fermat number to

be prime. The Lucas-Lehmer test does similarly for a Mersenne number. These tests share a

common nature. However, this is evident neither by their usual statements nor their usual

treatment in the literature. Furthermore, it is unusual to even find a proof of the latter result

in elementary textbooks. The intent of this paper is to bring to light the equivalent structure

of these two primality tests.
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1. Introduction

A Fermat number is any integer of the form Fn = 22n
+ 1, where n ≥ 0. They

are named in honor of Pierre de Fermat (1601–1665) who had expressed a belief

that such numbers are always prime. In 1732, Leonhard Euler negatively resolved
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Fermat’s assertion by factoring F5. Today, the prevailing conjecture appears to be

that no Fermat primes beyond n = 4 exist. A necessary and sufficient condition for

the primality of a Fermat number is provided by Pepin’s test. It is named after Fr.

Théophile Pepin (1826–1904) and is found in textbooks often stated along the lines

of Fn is prime if and only if 3
Fn−1

2 ≡ −1 (mod Fn) [1], [11], or [15].

A Mersenne number is any integer given by Mn = 2n−1, where n ≥ 1, and so called

because of a rather accurate conjecture made by Fr. Marin Mersenne (1588–1648)

who asserted that such numbers are prime for n ∈ {2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257}
and composite for all other values of n ≤ 257. It took mathematicians more than 300

years to completely resolve the conjecture. Upon having done so, we learned that

Mersenne had made only five mistakes. The Lucas-Lehmer test provides a necessary

and sufficient condition for a Mersenne number to be prime. Letting p denote a

prime, the test is often described as Mp is prime if and only if rp−1 ≡ 0 (mod Mp),

where r1 = 4, and for k ≥ 2, rk = r2
k−1 − 2 (mod Mp), 0 ≤ rk < Mp. For instance [1],

[13] or [14].

Although not evident by their usual statements alone, both Pepin’s test and the

Lucas-Lehmer test are inherently derived from the properties of the Lehmer sequences

with both tests being demonstrable by similar arguments. The intent of this note to

make the common structure of these two tests more widely known.

The similarity between the two primality tests appears to have been overlooked.

For example, in [10], Pepin’s test is discussed after the section Primality tests based on

the Lucas sequences.∗ In addition, in [3], Derrick Lehmer opts not to illustrate a test

for the primality of the Fermat numbers but instead remarks in particular we could

give new tests for the primality of 22n
+ 1, but those Fermat numbers which have not

already been tested are too large for the application of any known test. Having said this,

Pepin’s test is never explicitly mentioned in Lehmer’s paper. Lastly, in [16], Williams

∗The Lucas sequences are special cases of the Lehmer sequences, where R is a perfect square.



John H. Jaroma / Eur. J. Pure Appl. Math, 2 (2009), (352-360) 354

cites that Pepin had been aware that the earlier version of his test, N = 2r + 1 is

prime if and only if 5
N−1

2 ≡ −1 (mod N), could be made into a simple Lucas-like test

by defining T1 = 52 and Ti+1 = T 2
i , where i is a positive integer. This leads to the

result that Fn is prime if and only if Fn | Tr−1+ 1. However, a direct correlation to the

Lucas-Lehmer result does not appear to be given in the book.

2. The Lehmer Sequences

Let R and Q be relatively prime integers. The Lehmer sequences {Un(
p

R,Q)} and

the companion Lehmer sequences {Vn(
p

R,Q)} are defined respectively, by

Un+2(
p

R,Q) =
p

RUn+1 −QUn, U0 = 0, U1 = 1, n ∈ {0, 1, . . .} (2.1)

Vn+2(
p

R,Q) =
p

RVn+1 −QVn, V0 = 2, V1 =
p

R, n ∈ {0, 1, . . .}. (2.2)

Furthermore, since (2.1) and (2.2) are linear, they are solvable and given explicitly

by (2.3) and (2.4), respectively.

Un(
p

R,Q) =
θ n−φn

θ −φ , n ∈ {0, 1, . . .} (2.3)

Vn(
p

R,Q) = θ n+φn, n ∈ {0, 1, . . .} (2.4)

where, θ =
p

R+
p

R−4Q

2
and φ =

p
R−
p

R−4Q

2
.

We say that the rank of apparition of a number N in a sequence is the index of

the first term in that sequence that contains N as a divisor. N is said to have maximal

rank of apparition provided that its rank of apparition is either N ± 1.

3. Properties of the Lehmer Sequences

Let p denote an arbitrary odd prime such that p ∤ RQ. The following propositions

are divisibility properties associated with the Lehmer sequences found in [3].
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Lemma 3.1. The greatest common factor of Un(
p

R,Q) and Vn(
p

R,Q) is 1 or 2.

Let p be an odd prime and a any integer not divisible by p. Then, the Legendre

symbol (a/p) is defined to be 1 provided that a is a quadratic residue modulo p

and -1 if a is a quadratic nonresidue modulo p. For all a such that (a, p) = 1, a is

called a quadratic residue modulo p if the congruence x2 ≡ a (mod p) has a solution.

Otherwise, a is called a quadratic nonresidue modulo p. If p | a then (a/p) = 0.

Consider the Legendre symbols σ = (R/p) and ε = (∆/p), where ∆ = R− 4Q is the

discriminant of the characteristic equation of (2.1) and (2.2).

Lemma 3.2. Let p ∤ RQ. Then, Up−σε(
p

R,Q)≡ 0 (mod p).

Let ω(p) denote the rank of apparition of p in {Un(
p

R,Q)}. The next result tells

us that every term with index equal to a multiple of ω must also contain p as a factor.

Lemma 3.3. Let ω denote the rank of apparition of p in the sequence {Un(
p

R,Q)}.
Then, p | Un(

p
R,Q) if and only if n = kω, where k ∈ {1, 2, . . .}.

So far, we have seen that almost any odd prime will divide infinitely many terms of

{Un(
p

R,Q)}. However, there are infinitely many p which do not divide {Vn(
p

R,Q)}.

Lemma 3.4. Suppose that ω is odd. Then Vn(
p

R,Q) is not divisible by p for any value

of n. On the other hand, if n is even, say 2k, then V(2n+1)k(
p

R,Q) is divisible by p for

every n but no other terms of the sequence contain p as a factor.

Let λ(p) denote the rank of apparition of p in {Vn(
p

R,Q)}.

Lemma 3.5. Let p ∤ RQ∆. Then, U p−σε
2
(
p

R,Q)≡ 0 (mod p) if and only if σ = τ, where

τ= (Q/p).

Lemma 3.6. Let p ∤ 2RQ∆. If N ± 1 is the rank of apparition of N then N is prime.
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4. Historical Background

In order to acquire a more complete understanding of these two tests, we consider

them first in their historical contexts. In 1877, Fr. Pepin formulated the following

theorem [7]:

Theorem 4.1. Pepin’s Test (Original Version) The Fermat number, Fn = 22n
+1, where

n > 1 is prime if and only if

5
Fn−1

2 ≡−1 (mod Fn).

Pepin had noted in [7] that the number 10 could be used in place of 5. Prior to

Pepin’s remark, François Proth (1852 – 1879) noted in 1876 and then again in 1878

that one may use the number 3 in lieu of 5 for our Theorem 4.1 [8], [9]) but offered

no proof of his assertion. Then, Édouard Lucas (1842 – 1891) commented that an

arbitrary integer a could be used in place of 5 provided that the Jacobi symbol (a/Fn)

has a value equal to -1 [5] and in 1879 offered a proof [6]. Thus, the result we now

call Pepin’s test is actually a theorem suggested by Proth and proved by Lucas. For a

more detailed summary of these events, the reader is directed to [16], where a more

detailed account is found. A modern version of Pepin’s test is given by:

Theorem 4.2. Pepin’s Test (Modern Version) The Fermat number, Fn = 22n
+1, where

n ≥ 1 is prime if and only if

3
Fn−1

2 ≡−1 (mod Fn).

Testing primality of the Mersenne numbers was initiated by Lucas in 1878. Lucas

proposed two tests for determining if 2n − 1 is prime [5]. However, neither theorem
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was given as necessary and sufficient. In 1930, D. H. Lehmer wrote, his [Lucas’s]

conditions for primality are sufficient but not necessary.† One is uncertain whether Lu-

cas’ tests will reveal the character of a number which is actually a prime [3]. Lehmer

furthermore noted that R. D. Carmichael in [2] had provided a set of necessary and

sufficient conditions for the primality of such numbers. However, with the exception

of two cases, they depended on the existence of an auxiliary pair of numbers to be

used in testing a given integer. Thus, according to Lehmer, from a practical point of

view these tests are not applicable since no method is given for determining in advance an

appropriate number pair. Finally, in response to his own observation Lehmer produced

an explicit necessary and sufficient condition for a Mersenne number to be prime [3].

This result today is commonly known as the Lucas-Lehmer test.

The original statement of this celebrated result is found in [3], although it had

been mistakenly noted in [13] that Lehmer’s original proof of the Lucas-Lehmer test

is given in [4].

Theorem 4.3. Lucas-Lehmer Test (Original Version) The number, Mn = 2n − 1, is

prime if and only if it divides the (n− 1)st term of the sequence

4, 14, 194, 37634, 1416317954, . . . Sk, . . . where, Sk = S2
k−1− 2.

5. Equivalence of Pepin’s and the Lucas-Lehmer Tests

We are ready to show that Pepin’s and the Lucas-Lehmer tests share a similar

structure. To this end, we make the observation that {Vn(4, 3)} = 3n+ 1. This follows

subsequently from Theorem 5.1.

†Although Lucas did not attempt to give necessary tests, one of them is in fact necessary.
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Theorem 5.1. Let a be any integer. Then the terms of the companion Lehmer sequence

{Vn(
p

R,Q)} = {Vn(a+ 1, a)} are of the form an + 1.

The proof is straightforward in light of (2.4) by letting
p

R = a + 1 and Q = a,

and is omitted. Hence, the terms of {Vn(4, 3)} are Vn = 3n + 1. So, VFn−1
2
= 3

Fn−1
2 .

Thus, Theorem 4.2 is revised equivalently by the statement of Theorem 5.2. Its proof

requires the following identity found in [3].

U2n = UnVn (5.1)

Theorem 5.2. Pepin’s Test The Fermat number Fn = 22n
+ 1 where, n ≥ 1 is prime if

and only if

Fn | VFn−1
2
(4, 3).

Proof. Consider {Vn(4, 3)}. Then, ∆ = R− 4Q = 16− 12 = 4. Letting Fn = 22n
+ 1

be prime, it follows that ε =
�

∆

Fn

�

=
�

4
Fn

�

=
�

2
Fn

��

2
Fn

�

= 1 and σ =
�

R
Fn

�

=
�

16
Fn

�

=
�

4
Fn

��

4
Fn

�

= 1. Furthermore, since n > 1, by Gauss’s Reciprocity Law,
�

3
Fn

�

�

Fn

3

�

=
�

3
22n
+1

��

22n
+1

3

�

= (−1)
3−1

2
· 22n

+1−1
2 = (−1)2

n−1
= 1. Hence,
�

3
Fn

�

=
�

Fn

3

�

. Thus, τ =
�

Q
Fn

�

=
�

3
Fn

�

=
�

Fn

3

�

≡
�

22n
+ 1
�

3−1
2 ≡ −1 (mod 3). Since σε = 1, then by Lemma

3.2, Fn | U22n . Because τ 6= σ, it follows by Lemma 3.5 that Fn ∤ U22n−1 . Thus, the rank

of apparition of Fn in {Un(4, 3)} is 22n
; that is, Fn− 1. (Otherwise, by Lemma 3.3 the

rank of apparition is 22n−r , for some positive integer r. Also by Lemma 3.3, Fn | U2n−1 .)

Therefore, by Lemma 3.4, Fn | VFn−1
2

. Conversely, let’s suppose Fn | VFn−1
2

. Then by

(5.1), Fn | UFn−1. Specifically, Fn | U22n . By Lemma 3.3, ω(Fn) must be a divisor of

22n
. But by Lemma 3.1, U22n is relatively prime to U22n−1 . Thus, ω(Fn) = 22n

= Fn− 1.

Therefore, by Lemma 3.6, Fn is prime.

Next, we show that the sequence of numbers 4, 14, 194, 37634, 1416317954, . . .

given in Theorem 4.3 are the terms of the companion Lehmer sequence {Vn(
p

2,−1)}
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whose indices are powers of 2. But first, the following identity found in [3] is needed.

V2n = V 2
n − 2Qn. (5.2)

Now, consider {Vn(
p

2,−1)}. So, V2 = 4. Furthermore, from Theorem 4.3 Sk =

S2
k−1 − 2, where S1 = 4 = V2. Since Q = −1, by (5.2) it follows that Sk = V2k for

k ∈ {1, 2, . . .}. Hence, the statement given in the Lucas-Lehmer Test asserting Mn

divides the (n− 1)st term of 4, 14, 194, 37634, 1416317954, . . . then Mn is a factor

of V2n−1 is equivalent to saying that Mn | VMn+1
2

. Thus, we now state the following

equivalent form of Theorem 4.3.

Theorem 5.3. Lucas-Lehmer Test The number Mn = 2n − 1, where n > 2 is prime if

and only if

Mn | VMn+1
2
(
p

2,−1).

Proof. As R = 2, Q = −1, and ∆ = 6, it follows that ε = −1, σ = 1, and τ = −1.

The proof then follows similarly to that presented for Theorem 5.2. It may be found

in [3].
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