The Asymptotic Expansion of a Generalisation of the Euler-Jacobi Series
Keywords:
Euler-Jacobi series, Poisson-Jacobi transformation, asymptotic expansionAbstract
We consider the asymptotic expansion of the sum\[S_p(a;w)=\sum_{n=1}^\infty \frac{e^{-an^p}}{n^{w}}\]
as $a\rightarrow 0$ in $|\arg\,a|<\fs\pi$ for arbitrary finite $p>$ and $w>0$.
Our attention is concentrated mainly on the case when $p$ and $w$ are both even integers, where the expansion consists of a {\it finite} algebraic expansion together with a sequence of increasingly subdominant exponential expansions. This exponentially small component produces a transformation for $S_p(a;w)$ analogous to the well-known Poisson-Jacobi
transformation for the sum with $p=2$ and $w=0$. Numerical results are given to illustrate the accuracy of the expansion obtained.
Downloads
Published
2016-01-27
Issue
Section
Mathematical Analysis
License
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.
How to Cite
The Asymptotic Expansion of a Generalisation of the Euler-Jacobi Series. (2016). European Journal of Pure and Applied Mathematics, 9(1), 3-18. https://www.ejpam.com/index.php/ejpam/article/view/2461