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Abstract. In this paper, the existence and uniqueness of mild solution for fractional integrodifferential

equations with nonlocal initial conditions are investigated by using Hölder’s inequality, p−mean con-

tinuity and Schauder’s fixed point theorem in Banach spaces. The Mittag-Leffler-Ulam stability results
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1. Introduction

During the past decades, fractional differential equations have attracted many authors

(see for instance [10, 11, 14] and [15]). This is mostly because they efficiently describe many

phenomena arising in engineering, physics, economy and science. There has been a significant

development in nonlocal problems for fractional differential equations or inclusions (see for

instance [1, 7, 12] and [22]).

As we all know, the main difficulty to study the fractional evolution equations is how to

obtain the suitable fractional resolvent family generated by the infinitesimal generator A in

Banach space. In order to solve this problem, some authors introduced an α-resolvent family

under the Riemann-Liouville fractional derivative and some constraints, (see, for example, [2,

6]), and the others introduced suitable operator families with the Caputo fractional derivative

in terms of some probability density functions and operator semigroup (see, for example, [17,

22] and [23]). For the latter, a pioneering work has been reported by El-Borai [4, 5].

On the other hand, in the theory of functional equations there are some special kind of data

dependence: Ulam-Hyers, Ulam-Hyers-Rassias, Ulam-Hyers-Bourgin and Aoki-Rassias (see [3,
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8] and [9]). Recently, J. Wang et al. [18, 19] discussed four type Mittag- leffler-Ulam stability

of fractional differential equations and obtained some new and interesting stability results.

Motivated by the above work, we consider the nonlocal Cauchy problem of the following form
¨

C Dαx(t) = Ax(t) + f (t, x(t), Iβ x(t)), t ∈ J := [0, b]

x(0) + g(x) = x0,
(1)

where C Dα is the Caputo fractional derivative of order 0< α < 1, Iβ is the Riemann-Liouville

fractional integration of order 0 < β < 1, b > 0, A is the infinitesimal generator of a C0

semigroup {Q(t)}t≥0 of operators on E, f : J ×E×E→ E, g : C(J ,E)→ E are given functions

satisfying some assumptions and x0 is an element of the Banach space E.

For any strongly continuous semigroup (i.e. C0 semigroup) {Q(t)}t≥0 on E, we define the

generator

Au= lim
t→0+

Q(t)u− u

t
in E.

The domain D(A) of this linear operator is the set of all u ∈ E for which the limit above exists.

Then D(A) is dense in E and A is closed, meaning that for un ∈ D(A), if un→ u and Aun→ v in

E, then u ∈ D(A) and Au= v. For more details, we refer the reader to [13].

2. Preliminaries

In this section, we introduce preliminary facts which are used throughout this paper. We

assume that E is a Banach space with the norm | · |. Let C(J ,E) be the Banach space of

continuous functions from J into E with the norm ‖x‖= supt∈J |x(t)|, where x ∈ C(J ,E).

Let B(E) be the space of all bounded linear operators from E to E with the norm

‖Q‖B(E) = sup{|Q(u)| : |u| = 1}, where Q(u) ∈ B(E) and u ∈ E. Throughout this paper, let A

be the infinitesimal generator of a C0 semigroup {Q(t)}t≥0 of operators on E. Clearly

M := sup
t∈[0,b]

‖Q‖B(E) <∞. (2)

We need some basic definitions and properties of the fractional calculus theory which are used

further in this paper. For more details, see I. Podlubny [15].

Definition 1. The fractional integral of order α with the lower limit zero for a function

h ∈ AC[0,∞) is defined as

Iαh(t) =
1

Γ(α)

∫ t

0

h(s)

(t − s)1−α
ds, t > 0, 0< α < 1,

provided the right side is point-wise defined on [0,∞), where Γ(·) is the gamma function.

Definition 2. Riemann-Liouville derivative of order α with the lower limit zero for a function

h ∈ AC[0,∞) can be written as

L Dαh(t) =
1

Γ(1−α)
d

d t

∫ t

0

h(s)

(t − s)α
ds, t > 0, 0< α < 1.
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Definition 3. The Caputo derivative of order α with the lower limit zero for a function

h ∈ AC[0,∞) can be written as

C Dαh(t) =L Dα(h(t)− h(0)), t > 0, 0< α < 1.

Remark 1. • If h(t) ∈ C1[0,∞), then

C Dαh(t) =
1

Γ(1−α)

∫ t

0

h
′
(s)

(t − s)α
ds = I1−αh

′
(t), t > 0, 0< α < 1.

• The Caputo derivative of a constant is equal to zero.

• If h is an abstract function with values in E, then integrals which appear in Definitions 1-3

are taken in Bochner’s sense.

For measurable functions m : J → R, define the norm

‖m‖Lp(J) =

(

(
∫

J
|m(t)|pd t)

1
p , 1≤ p <∞,

infµ(J̄)=0{supt∈J−J̄ |m(t)|}, p =∞,

where µ(J̄) is the Lebesgue measure on J̄ . Let Lp(J ,R) be the Banach space of all Lebesgue

measurable functions m : J → R with ‖m‖Lp(J) <∞.

Lemma 1 (Hölder’s inequality). Assume that q, p ≥ 1 and 1
q +

1
p = 1. If l ∈ Lq(J ,R) and

m ∈ Lp(J ,R), then for 1≤ p ≤∞, lm ∈ L1(J ,R) and ‖lm‖L1(J) ≤ ‖l‖Lq(J).‖m‖Lp(J).

Lemma 2 ([21] p-mean continuity). For each ψ ∈ Lp(J ,E) with 1 ≤ p < +∞, we have

limr→0

∫ b

0
‖ψ(t + r)−ψ(t)‖pd t = 0, where ψ(s) = 0 for s not in J.

Lemma 3 (Bochner’s Theorem). A measurable function H : [0, b]→ R is Bochner’s integrable

if |H| is Lebesgue integrable.

Lemma 4 (Schauder Fixed Point Theorem). If B is a closed bounded and convex subset of a

Banach space E and F : B→ B is completely continuous, then F has a fixed point in B.

We end this section with an important singular type Gronwall inequality.

Theorem 1 ([16] Theorem 1.4). For any t ∈ [0, b), if

u(t)≤ a(t) +

n
∑

i=1

bi(t)

∫ t

0

(t − s)βi−1u(s)ds,

where all the functions are not negative and continuous. The constants βi > 0.

bi (i = 1,2, . . . , n) are the bounded and monotonic increasing functions on [0, b), then

u(t)≤ a(t) +

∞
∑

k=1





n
∑

1′ ,2′ ,··· ,k′=1

∏k

i=1[bi′ (t)Γ(βi′ )]

Γ(
∑k

i=1 βi′ )

∫ t

0

(t − s)
∑k

i=1 βi−1a(s)ds



 .
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Remark 2. For n = 2, if the constants b1, b2 ≥ 0, β1,β2 > 0, a(t) is nonnegative and locally

integrable on 0≤ t < b and u(t) is nonnegative and locally integrable on 0≤ t < b with

u(t)≤ a(t) + b1

∫ t

0

(t − s)β1−1u(s)ds+ b2

∫ t

0

(t − s)β2−1u(s)ds,

then

u(t)≤ a(t) +

∞
∑

k=1

�

(b1Γ(β1))
k

Γ(kβ1)

∫ t

0

(t − s)kβ1−1a(s)ds+
(b2Γ(β2))

k

Γ(kβ2)

∫ t

0

(t − s)kβ2−1a(s)ds

�

.

Remark 3. Under the hypotheses of Remark 2, let a(t) is a nondecreasing function on 0≤ t < b.

Then we have

u(t)≤ a(t)
�

Eβ1

�

b1Γ(β1)t
β1
�

+ Eβ2

�

b2Γ(β2)t
β2
��

,

where Eα is the Mittag-Leffler function [15] defined by Eα[z] =
∑∞

k=0
zk

Γ(kα+1)
, z ∈ C.

3. Existence and Uniqueness of Mild Solutions

We recall the following definition of a mild solution for the nonlocal Cauchy problem (1).

For more details, one can see [20, 24].

Definition 4. By the mild solution of the nonlocal Cauchy problem (1), we mean that the function

x ∈ C(J ,E) which satisfies

x(t) = S(t)(x0 − g(x)) +

∫ t

0

(t − s)α−1T (t − s) f (s, x(s), Iβ x(s))ds, t ∈ [0, b],

where

S(t) =

∫ ∞

0

ξα(θ )Q(t
αθ )dθ ,

T (t) =α

∫ ∞

0

θξα(θ )Q(t
αθ )dθ ,

ξα(θ ) =
1

α
θ−1− 1

αρα(θ
− 1
α ),

ρα (θ ) =
1

π

∞
∑

n=1

(−1)n−1θ−αn−1Γ(nα+ 1)

n!
sin(nπα), θ ∈ (0,∞),

where ξα is the probability density function defined on (0,∞), which has properties ξα(θ ) ≥ 0

for all θ ∈ (0,∞) and

∫ ∞

0

ξα(θ )dθ = 1,

∫ ∞

0

θξα(θ )dθ =
1

Γ(1+α)
. (3)
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Before stating and proving the main results, we introduce the following hypotheses.

(H1) Q(t) is a compact operator for every t > 0.

(H2) The function f : J × E × E → E satisfies that f (., x , y) : J → E is measurable for all

x , y ∈ C(J ,E) and f (t, ., .) : E × E → E is continuous for all t ∈ J and there exists a

positive function µ(·) ∈ Lp(J ,R+) for some p with 1< p <∞ such that

| f (t, x , y)| ≤ µ(t)(‖x‖+ ‖y‖), x , y ∈ C(J ,E), t ∈ J .

(H3) The function g : C(J ,E)→ E is completely continuous and there exist constants L > 0,

L′ > 0 such that:

|g(x)| ≤ L‖x‖+ L
′
, x ∈ C(J ,E).

For each positive constant k, let Bk = {x ∈ C(J ,E) : ‖x‖ ≤ k}. Then Bk is clearly a bounded

closed and convex subset in C(J ,E).

The following existence result for nonlocal Cauchy problem (1) is based on Schauder fixed

point theorem.

Theorem 2. If assumptions (H1)−(H3) are satisfied, then the nonlocal Cauchy problem (1) has

a mild solution provided that

M



L −
Mkb

α− 1
p

Γ(1+α)

�

p− 1

p+ (α− 1)p− 1

�
p−1

p



‖µ‖Lp(J ,R+) +
b
β+

p−1

p2

Γ(1+ β)
‖µ‖Lp2

(J ,R+)







 < 1.

Proof. For any positive constant k and x ∈ Bk, according to (2) and (H3), it follows that

�

�

�

�

�

∫ ∞

0

ξα(θ )Q(t
αθ )(x0 − g(x))dθ

�

�

�

�

�

≤ M(|x0|+ Lk+ L
′
). (4)

Therefore, the function
∫∞

0
ξα(θ )Q(t

αθ )(x0 − g(x))dθ exists.

In view of (2), (3) and (H2), we get

∫ t

0

�

�

�

�

�

∫ ∞

0

θ (t − s)α−1ξα(θ )Q((t − s)αθ ) f (s, x(s), Iβ x(s))dθ

�

�

�

�

�

ds

≤M

∫ t

0

∫ ∞

0

θξα(θ )(t − s)α−1
�

� f (s, x(s), Iβ x(s))
�

� dθds

≤
M

Γ(1+α)

∫ t

0

(t − s)α−1µ(s)(‖x‖+ ‖Iβ x‖)ds

≤
M

Γ(1+α)

∫ t

0

(t − s)α−1µ(s)(k+
k

Γ(β)

∫ s

0

(s−τ)β−1dτ)ds
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=
Mk

Γ(1+α)

∫ t

0

(t − s)α−1µ(s)

�

1+
sβ

βΓ(β)

�

ds

=
Mk

Γ(1+α)

�
∫ t

0

(t − s)α−1µ(s)ds+
1

Γ(1+ β)

∫ t

0

(t − s)α−1sβµ(s)ds

�

≤
Mk

Γ(1+α)





�
∫ t

0

(t − s)
(α−1)p

p−1 ds

�
p−1

p
�
∫ t

0

(µ(s))pds

� 1
p

+
1

Γ(1+ β)

�
∫ t

0

(t − s)
(α−1)p

p−1 ds

�
p−1

p
�
∫ t

0

(sβpµ(s))pds

� 1
p





≤
Mk

Γ(1+α)





�

p− 1

p+ (α− 1)p− 1

�
p−1

p

t
p+(α−1)p−1

p ‖µ‖Lp(J ,R+)

+
1

Γ(1+ β)

�

p− 1

p+ (α− 1)p− 1

�
p−1

p

t
p+(α−1)p−1

p

�
∫ t

0

s
βp2

p−1 ds

�
p−1

p2
�
∫ t

0

(µ(s))p
2

ds

� 1

p2





≤
Mk

Γ(1+α)

�

p− 1

p+ (α− 1)p− 1

�
p−1

p

t
p+(α−1)p−1

p









‖µ‖Lp(J ,R+) +
1

Γ(1+ β)





1

1+
βp2

p−1





p−1

p2

×t
βp2+p−1

p2 ‖µ‖Lp2
(J ,R+)

�

≤
Mkb

α− 1
p

Γ(1+α)

�

p− 1

p+ (α− 1)p− 1

�
p−1

p



‖µ‖Lp(J ,R+) +
b
β+

p−1

p2

Γ(1+ β)
‖µ‖Lp2

(J ,R+)



 , (5)

for all t ∈ J . Thus,

�

�

�

∫∞
0
θ (t − s)α−1ξα(θ )Q((t − s)αθ ) f (s, x(s), Iβ x(s))dθ

�

�

� is Lebesgue in-

tegrable with respect to s ∈ [0, t] for all t ∈ [0, b]. From Lemma 3 (Bochner’s theorem), it

follows that
∫∞

0
θ (t−s)α−1ξα(θ )Q((t−s)αθ ) f (s, x(s), Iβ x(s))dθ is Bochner’s integrable with

respect to s ∈ [0, t] for all t ∈ J .

For each positive constant k, define an operator F on Bk by the formula

(F x)(t) = S(t)(x0 − g(x)) +α

∫ t

0

(t − s)α−1T (t − s) f (s, x(s), Iβ x(s))ds, t ∈ [0, b], (6)
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where x ∈ Bk. Let

k =
M
�

|x0|+ L′
�

1−M

�

L − Mkb
α− 1

p

Γ(1+α)

�

p−1

p+(α−1)p−1

�
p−1

p

�

‖µ‖Lp(J ,R+) +
b
β+

p−1

p2

Γ(1+β)
‖µ‖Lp2

(J ,R+)

�� . (7)

In the following, we will prove that F has a fixed point on Bk . Our proof will be divided into

two steps.

Step I. ‖F x‖ ≤ k whenever x ∈ Bk.

For each x ∈ Bk and t ∈ J , by using the similar method as we did in (4) and (5), we have

|(F x)(t)|=

�

�

�

�

�

S(t)(x0 − g(x)) +α

∫ t

0

(t − s)α−1T (t − s) f (s, x(s), Iβ x(s))ds

�

�

�

�

�

≤

�

�

�

�

�

∫ ∞

0

ξα(θ )Q(t
αθ )(x0 − g(x))dθ

�

�

�

�

�

+α

�

�

�

�

�

∫ t

0

∫ ∞

0

θ (t − s)α−1ξα(θ )Q((t − s)αθ ) f (s, x(s), Iβ x(s))dθds

�

�

�

�

�

≤M(|x0|+ Lk+ L
′
)

+
Mkb

α− 1
p

Γ(1+α)

�

p− 1

p+ (α− 1)p− 1

�
p−1

p



‖µ‖Lp(J ,R+) +
b
β+

p−1

p2

Γ(1+ β)
‖µ‖Lp2

(J ,R+)





=k. (8)

Hence ‖F x‖ ≤ k for each x ∈ Bk.

Step II. F is a completely continuous operator.

Firstly, we will prove that F is continuous on Bk. For any xn, x ⊆ Bk, n= 1,2, . . .

with limn→∞ ‖xn − x‖= 0, we get

lim
n→∞

xn(t) = x(t), for t ∈ J .

Thus by condition (H2), we have

lim
n→∞

f (t, xn(t), Iβ xn(t)) = f (t, x(t), Iβ x(t)),

for t ∈ J .

So, we can conclude that

sup
s∈[0,b]

| f (s, xn(s), Iβ xn(s))− f (t, x(s), Iβ x(s))| → 0, as n→∞.

On the other hand, for t ∈ J

|F xn(t)− F x(t)|
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=

�

�

�

�

�

S(t)(g(xn)− g(x)) +α

∫ t

0

(t − s)α−1T (t − s)
�

f (s, xn(s), Iβ xn(s))− f (s, x(s), Iβ x(s))
�

ds

�

�

�

�

�

≤

�

�

�

�

�

∫ ∞

0

ξα(θ )Q(t
αθ )(g(xn)− g(x))dθ

�

�

�

�

�

+α

�

�

�

�

�

∫ t

0

∫ ∞

0

θ (t − s)α−1ξα(θ )Q((t − s)αθ )
�

f (s, xn(s), Iβ xn(s))− f (s, x(s), Iβ x(s))
�

dθds

�

�

�

�

�

≤M‖g(xn)− g(x)‖+
αM

Γ(α+ 1)

∫ t

0

(t − s)α−1| f (s, xn(s), Iβ xn(s))− f (s, x(s), Iβ x(s))|ds

≤M‖g(xn)− g(x)‖+
M bα

Γ(α+ 1)
sup

s∈[0,b]

| f (s, xn(s), Iβ xn(s))− f (t, x(s), Iβ x(s))|,

which implies

‖F xn − F x‖ ≤ M‖g(xn)− g(x)‖+
M bα

Γ(α+ 1)
sup

s∈[0,b]

| f (s, xn(s), Iβ xn(s))− f (t, x(s), Iβ x(s))|.

Hence, by condition (H3)we get ‖F xn−F x‖ → 0, as n→∞. This means that F is continuous.

Next, we will show that {F x , x ∈ Bk} is equicontinuous. For any x ∈ Bk and

0≤ t1 ≤ t2 ≤ b, we get

|(F x)(t2)− (F x)(t1)|

=
�

�[S(t2)− S(t1)](x0 − g(x))

+ α

∫ t2

0

(t2 − s)α−1T (t2 − s) f (s, x(s), Iβ x(s))ds

− α

∫ t1

0

(t1 − s)α−1T (t1 − s) f (s, x(s), Iβ x(s))ds

�

�

�

�

�

≤

�

�

�

�

�

∫ ∞

0

ξα(θ )[Q(t
α
2θ )−Q(tα1θ )](x0 − g(x))dθ

�

�

�

�

�

+α

�

�

�

�

�

∫ t2

0

∫ ∞

0

θ (t2 − s)α−1ξα(θ )Q((t2 − s)αθ ) f (s, x(s), Iβ x(s))dθds

−

∫ t1

0

∫ ∞

0

θ (t1 − s)α−1ξα(θ )Q((t1 − s)αθ ) f (s, x(s), Iβ x(s))dθds

�

�

�

�

�

≤

�

�

�

�

�

∫ ∞

0

ξα(θ )[Q(t
α
2θ )−Q(tα1θ )](x0 − g(x))dθ

�

�

�

�

�

+α

�

�

�

�

�

∫ t2

t1

∫ ∞

0

θ (t2 − s)α−1ξα(θ )Q((t2 − s)αθ ) f (s, x(s), Iβ x(s))dθds

�

�

�

�

�
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+α

�

�

�

�

�

∫ t1

0

∫ ∞

0

θ[(t2 − s)α−1 − (t1 − s)α−1]ξα(θ )Q((t2 − s)αθ ) f (s, x(s), Iβ x(s))dθds

�

�

�

�

�

+α

�

�

�

�

�

∫ t1

0

∫ ∞

0

θ (t1 − s)α−1ξα(θ )[Q((t2 − s)αθ )−Q((t1 − s)αθ )] f (s, x(s), Iβ x(s))dθds

�

�

�

�

�

=

�

�

�

�

�

∫ ∞

0

ξα(θ )[Q(t
α
2θ )−Q(tα1θ )](x0 − g(x))dθ

�

�

�

�

�

+α(I1 + I2 + I3),

where

I1 =α

�

�

�

�

�

∫ t2

t1

∫ ∞

0

θ (t2 − s)α−1ξα(θ )Q((t2 − s)αθ ) f (s, x(s), Iβ x(s))dθds

�

�

�

�

�

,

I2 =α

�

�

�

�

�

∫ t1

0

∫ ∞

0

θ[(t2 − s)α−1 − (t1 − s)α−1]ξα(θ )Q((t2 − s)αθ ) f (s, x(s), Iβ x(s))dθds

�

�

�

�

�

,

I3 =α

�

�

�

�

�

∫ t1

0

∫ ∞

0

θ (t1 − s)α−1ξα(θ )[Q((t2 − s)αθ )−Q((t1 − s)αθ )] f (s, x(s), Iβ x(s))dθds

�

�

�

�

�

.

By using analogous argument performed in (4) and (5), we can conclude that

I1 ≤
αMk

Γ(α+ 1)

∫ t2

t1

(t2 − s)α−1µ(s)(1+
1

Γ(β + 1)
sβ )ds

≤
Mk

Γ(1+α)





�
∫ t2

t1

(t2 − s)
(α−1)p

p−1 ds

�
p−1

p
�
∫ t2

t1

(µ(s))pds

� 1
p

+
1

Γ(1+ β)

�
∫ t2

t1

(t−s)
(α−1)p

p−1 ds

�
p−1

p
�
∫ t2

t1

(sβpµ(s))pds

� 1
p





≤
Mk

Γ(1+α)

�

p− 1

p+ (α− 1)p− 1

�
p−1

p

(t2 − t1)
p+(α−1)p−1

p

×



‖µ‖Lp(J ,R+) +
1

Γ(1+ β)

�
∫ t2

t1

s
βp2

p−1 ds

�
p−1

p2
�
∫ t2

t1

(µ(s))p
2

ds

� 1

p2





≤
Mk

Γ(1+α)

�

p− 1

p+ (α− 1)p− 1

�
p−1

p

(t2 − t1)
α− 1

p

×









‖µ‖Lp(J ,R+) +
1

Γ(1+ β)





1

1+
βp2

p−1





p−1

p2

(t
βp2

p−1+1

2
− t

βp2

p−1+1

1
)

p−1

p2 ‖µ‖Lp2
(J ,R+)









.
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One can deduce that limt1→t2
I1 = 0. Also, note that

I2 ≤
αMk

Γ(α+ 1)

∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]µ(s)(1+
1

Γ(β + 1)
sβ )ds

≤
αMk

Γ(α+ 1)





�
∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]pds

� 1
p
�
∫ t1

0

(µ(s))
p

p−1 ds

�
p−1

p

+
1

Γ(β + 1)

�
∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]pds

� 1
p
�
∫ t1

0

(sβµ(s))
p

p−1 ds

�
p−1

p





≤
αMk

Γ(α+ 1)





�
∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]pds

� 1
p

‖µ‖
L

p
p−1 (J ,R+)

+
1

Γ(β + 1)

�
∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]pds

� 1
p
�
∫ t1

0

s
βp2

(p−1)2 ds

�
(p−1)2

p2

×

�
∫ t1

0

(µ(s))
p2

p−1 ds

�
p−1

p2





≤
αMk

Γ(α+ 1)









‖µ‖
L

p
p−1 (J ,R+)

+
b
β+

(p−1)2

p2

Γ(β + 1)





1

1+
βp2

(p−1)2





(p−1)2

p2

‖µ‖
L

p2

p−1 (J ,R+)









×

�
∫ b

0

[(t2 − s)α−1 − (t1 − s)α−1]pds

�
1
p

.

Using Lagrange mean value theorem, one can obtain (t2 − s)α−1 − (t1 − s)α−1→ 0 as t1→ t2,

for s ∈ J . By Lemma 2, we can deduce that
∫ b

0
[(t2 − s)α−1 − (t1 − s)α−1]pds→ 0 as t1 → t2.

Thus we deduce that limt1→t2
I2 = 0.

For t1 = 0, 0 < t2 ≤ b, it is easy to see that I3 = 0. For t1 > 0 and ǫ > 0 be enough small,

we have

I3 ≤α

∫ t1−ǫ

0

∫ ∞

0

θ (t1 − s)α−1ξα(θ )‖Q((t2 − s)αθ )−Q((t1 − s)αθ )‖B(E)| f (s, x(s), Iβ x(s))|dθds

+α

∫ t1

t1−ǫ

∫ ∞

0

θ (t1 − s)α−1ξα(θ )‖Q((t2 − s)αθ )−Q((t1 − s)αθ )‖B(E)| f (s, x(s), Iβ x(s))|dθds

≤
αk

Γ(α+ 1)

∫ t1−ǫ

0

(t1 − s)α−1µ(s)(1+
sβ

Γ(β + 1)
) sup

s∈[0,t1−ǫ]
‖Q((t2 − s)αθ )−Q((t1 − s)αθ )‖B(E)ds
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+
2αMk

Γ(α+ 1)

∫ t1

t1−ǫ

(t1 − s)α−1µ(s)(1+
sβ

Γ(β + 1)
)ds

≤
αk

Γ(α+ 1)





�
∫ t1−ǫ

0

(t1 − s)
(α−1)p

p−1 ds

�
p−1

p
�
∫ t1−ǫ

0

(µ(s))pds

� 1
p

+
1

Γ(1+ β)

�
∫ t1−ǫ

0

(t1 − s)
(α−1)p

p−1 ds

�
p−1

p
�
∫ t1−ǫ

0

(sβpµ(s))pds

� 1
p





× sup
s∈[0,t1−ǫ]

‖Q((t2 − s)αθ )−Q((t1 − s)αθ )‖B(E)

+
2αMk

Γ(α+ 1)





�
∫ t1

t1−ǫ

(t1 − s)
(α−1)p

p−1 ds

�
p−1

p
�
∫ t1

t1−ǫ

(µ(s))pds

� 1
p

+
1

Γ(1+ β)

×

�
∫ t1

t1−ǫ

(t1 − s)
(α−1)p

p−1 ds

�
p−1

p
�
∫ t1

t1−ǫ

(sβpµ(s))pds

� 1
p





≤
αk

Γ(α+ 1)

�

p− 1

p+ (α− 1)p− 1

�
p−1

p
�

t
p+(α−1)p−1

p−1

1
− ǫ

p+(α−1)p−1
p−1

�
p−1

p
�

‖µ‖Lp(J ,R+) +
1

Γ(1+ β)

×

�
∫ t1−ǫ

0

s
βp2

p−1 ds

�
p−1

p2
�
∫ t1−ǫ

0

(µ(s))p
2

ds

� 1

p2



 sup
s∈[0,t1−ǫ]

‖Q((t2 − s)αθ )−Q((t1 − s)αθ )‖B(E)

+
2αMk

Γ(α+ 1)

�

p− 1

p+ (α− 1)p− 1

�
p−1

p

ǫ
p+(α−1)p−1

p



‖µ‖Lp(J ,R+) +
1

Γ(1+ β)

�
∫ t1

t1−ǫ

s
βp2

p−1 ds

�
p−1

p2

×

�
∫ t1

t1−ǫ

(µ(s))p
2

ds

� 1

p2





≤
αk

Γ(α+ 1)

�

p− 1

p+ (α− 1)p− 1

�
p−1

p
�

t
p+(α−1)p−1

p−1

1
− ǫ

p+(α−1)p−1
p−1

�
p−1

p
�

‖µ‖Lp(J ,R+) +
1

Γ(1+ β)

×





1

1+
βp2

p−1





p−1

p2

�

t1 − ǫ
�
βp2+p−1

p2 ‖µ‖Lp2
(J ,R+)









sup
s∈[0,t1−ǫ]

‖Q((t2 − s)αθ )−Q((t1 − s)αθ )‖B(E)

+
2αMk

Γ(α+ 1)

�

p− 1

p+ (α− 1)p− 1

�
p−1

p

ǫ
p+(α−1)p−1

p
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×









‖µ‖Lp(J ,R+) +
1

Γ(1+ β)





1

1+
βp2

p−1





p−1

p2

ǫ
βp2+p−1

p2 ‖µ‖Lp2
(J ,R+)









Since (H1) implies the continuity of {Q(t)}t≥0 in t in the uniform operator topology, it is

easy to see that I3 tends to zero independently of x ∈ Bk as t2 − t1 → 0, ǫ → 0. Thus

(F x)(t2)− (F x)(t1) tends to zero independently of x ∈ Bk as t2 − t1 → 0, which means that

{F x , x ∈ Bk} is equicontinuous.

It remains to prove that for t ∈ [0, b], the set V (t) = {(F x)(t), x ∈ Bk} is relatively compact

in E. Obviously, V (0) is relatively compact in E. Let 0 < t ≤ b be fixed. For ∀ǫ ∈ (0, t) and

∀δ > 0, define an operator Fǫ,δ on Bk by the formula

(Fǫ,δx)(t) =

∫ ∞

δ

ξα(θ )Q(t
αθ )(x0 − g(x))dθ

+α

∫ t−ǫ

0

∫ ∞

δ

θ (t − s)α−1ξα(θ )Q((t − s)αθ ) f (s, x(s), Iβ x(s))dθds

=Q(ǫαδ)

�
∫ ∞

δ

ξα(θ )Q(t
αθ − ǫαδ)(x0 − g(x))dθ

+

∫ t−ǫ

0

∫ ∞

δ

θ (t − s)α−1ξα(θ )Q((t − s)αθ − ǫαδ) f (s, x(s), Iβ x(s))dθds

�

,

where x ∈ Bk. Then from the compactness of Q(ǫαδ)(ǫαδ > 0), we obtain that the set Vǫ,δ(t) =

{(Fǫ,δx)(t), x ∈ Bk} is relatively compact in E. Obviously, V (0) is relatively compact in E for

∀ǫ ∈ (0, t) and ∀δ > 0. Moreover, for every x ∈ Bk , we have

|(F x)(t)− (Fǫ,δx)(t)| ≤

�

�

�

�

�

∫ δ

0

ξα(θ )Q(t
αθ )(x0 − g(x))dθ

�

�

�

�

�

+α

�

�

�

�

�

∫ t

0

∫ δ

0

θ (t − s)α−1ξα(θ )Q((t − s)αθ ) f (s, x(s), Iβ x(s))dθds

�

�

�

�

�

+

�

�

�

�

�

∫ t

0

∫ ∞

δ

θ (t − s)α−1ξα(θ )Q((t − s)αθ ) f (s, x(s), Iβ x(s))dθds

−

∫ t−ǫ

0

∫ ∞

δ

θ (t − s)α−1ξα(θ )Q((t − s)αθ ) f (s, x(s), Iβ x(s))dθds

�

�

�

�

�

≤M(x0 + Lk+ L
′
)

∫ δ

0

ξα(θ )dθ

+αMk

∫ t

0

∫ δ

0

θ (t − s)α−1ξα(θ )µ(s)(1+
sβ

Γ(β + 1)
)dθds
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+αMk

∫ t

t−ǫ

∫ ∞

δ

θ (t − s)α−1ξα(θ )µ(s)(1+
sβ

Γ(β + 1)
)dθds

≤M(x0 + Lk+ L
′
)

∫ δ

0

ξα(θ )dθ

+αMk

�
∫ t

0

(t − s)α−1µ(s)(1+
sβ

Γ(β + 1)
)ds

�
∫ δ

0

θξα(θ )dθ

+αMk

�
∫ t

t−ǫ

(t − s)α−1µ(s)(1+
sβ

Γ(β + 1)
)

�
∫ ∞

0

θξα(θ )dθds

≤ M(x0 + Lk+ L
′
)

∫ δ

0

ξα(θ )dθ

+αMk

�
∫ t

0

(t − s)α−1µ(s)(1+
sβ

Γ(β + 1)
)ds

�
∫ δ

0

θξα(θ )dθ

+αMk

�
∫ t

t−ǫ

(t − s)α−1µ(s)(1+
sβ

Γ(β + 1)
)

�

.

Using again the same analogous performed in (5), we have

∫ t

0

(t − s)α−1µ(s)(1+
sβ

Γ(β + 1)
)ds ≤

�

p− 1

p+ (α− 1)p− 1

�
p−1

p

t
p+(α−1)p−1

p

×



‖µ‖Lp(J ,R+) +
t
βp2+p−1

p2

Γ(1+ β)
‖µ‖Lp2

(J ,R+)



 ,

and

∫ t

t−ǫ

(t − s)α−1µ(s)(1+
sβ

Γ(β + 1)
)ds ≤

�

p− 1

p+ (α− 1)p− 1

�
p−1

p

ǫ
p+(α−1)p−1

p

×



‖µ‖Lp(J ,R+) +
ǫ
βp2+p−1

p2

Γ(1+ β)
‖µ‖Lp2

(J ,R+)



 ,

we obtain

|(F x)(t)− (Fǫ,δx)(t)| ≤M(x0 + Lk+ L
′
)

∫ δ

0

ξα(θ )dθ

+αMk

�

p− 1

p+ (α− 1)p− 1

�
p−1

p

t
p+(α−1)p−1

p



‖µ‖Lp(J ,R+) +
t
βp2+p−1

p2

Γ(1+ β)
‖µ‖Lp2

(J ,R+)
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×

∫ δ

0

θξα(θ )dθ +αMk

�

p− 1

p+ (α− 1)p− 1

�
p−1

p

× ǫ
p+(α−1)p−1

p



‖µ‖Lp(J ,R+) +
ǫ
βp2+p−1

p2

Γ(1+ β)
‖µ‖Lp2

(J ,R+)



 .

Therefore, there are relatively compact sets {(Fǫ,δx)(t), x ∈ Bk} arbitrarily close to the set

{(F x)(t), x ∈ Bk} for t ∈ (0, b]. Hence, {(F x)(t), x ∈ Bk} is relatively compact in E. Moreover,

{(F x)(t), x ∈ Bk} is uniformly bounded by (8). Therefore, {(F x)(t), x ∈ Bk} is relatively

compact by Ascoli-Arzèla Theorem.

Also, Since F is continuous on BK . Then F is a completely continuous operator. Obviously

F maps Bk into itself. Hence, Schauder fixed point theorem shows that F has a fixed point

x ∈ Bk, which means that the nonlocal Cauchy problem (1) has at least one mild solution on

J . The proof is complete.

The following existence and uniqueness result for the nonlocal Cauchy problem (1) is based

on Banach contraction principle. We will need the following assumption.

(H4) There exists a positive constant L f such that for any x , x∗, y, y∗ ∈ C(J , Bk), we have

| f (t, x , x∗)− f (t, y, y∗)| ≤ L f (‖x − y‖+ ‖x∗ − y∗)‖,

for t ∈ J , where k is defined as in (7).

Theorem 3. If assumptions (H2)−(H4) are satisfied, then the nonlocal Cauchy problem (1) has

a unique mild solution provided that

�

M L +
αM L f

Γ(α+ 1)

�

bα

α
+
Γ(α)bα+β

Γ(α+ β)

��

< 1. (9)

Proof. It is easy to see that
∫∞

0
ξα(θ )Q(t

αθ )(x0 − g(x))dθ exists and

∫ t

0

∫ ∞

0

θ (t − s)α−1ξα(θ )Q((t − s)αθ ) f (s, x(s), Iβ x(s))dθds

Bochner’s integrable with respect to s ∈ [0, t] for all t ∈ J . For x ∈ Bk, Consider the operator

F on Bk which is given by (6).

Obviously, it is sufficient to proof that F has a unique fixed point on Bk.

According to (8), we know that F is an operator from Bk into itself. For any x , y ∈ Bk and

t ∈ J , according to (H3), (H4) and (2), we have

|(F x)(t)− (F y)(t)| ≤

�

�

�

�

�

∫ ∞

0

ξα(θ )Q(t
αθ )(g(y)− g(x))dθ

�

�

�

�

�
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+α

�

�

�

�

�

∫ t

0

∫ ∞

0

θ (t − s)α−1ξα(θ )Q((t − s)αθ )[ f (s, x(s), Iβ x(s))− f (s, y(s), Iβ y(s))]dθds

�

�

�

�

�

≤M L‖x − y‖

+
αM L f

Γ(α+ 1)

�
∫ t

0

(t − s)α−1|x(s)− y(s)|ds+

∫ t

0

(t − s)α−1

∫ s

0

(s−τ)β−1

Γ(β)
|x(τ)− y(τ)|dτds

�

.

By changing the order of the second integral, we get

∫ t

0

∫ s

0

(t − s)α−1(s−τ)β−1|x(τ)− y(τ)|dτds =

∫ t

0

∫ t

τ

(t − s)α−1(s−τ)β−1|x(τ)− y(τ)|dsdτ

=
Γ(α)Γ(β)

Γ(α+ β)

∫ t

0

(t −τ)α+β−1|x(τ)− y(τ)|dτ

=
Γ(α)Γ(β)

Γ(α+ β)

∫ t

0

(t − s)α+β−1|x(s)− y(s)|ds.

Therefore, we get

|(F x)(t)− (F y)(t)| ≤M L‖x − y‖

+
αM L f

Γ(α+ 1)

�
∫ t

0

(t − s)α−1ds+
Γ(α)

Γ(α+ β)

∫ t

0

(t − s)α+β−1ds

�

‖x − y‖

≤M L‖x − y‖+
αM L f

Γ(α+ 1)

�

bα

α
+
Γ(α)bα+β

Γ(α+ β)

�

‖x − y‖.

Thus

‖F x − F y‖ ≤

�

M L +
αM L f

Γ(α+ 1)

�

bα

α
+
Γ(α)bα+β

Γ(α+ β)

��

‖x − y‖.

which means that F is a contraction according to (9). By applying Banach contraction princi-

ple, we know that F has a unique fixed point on Bk. The proof is complete.

4. Mittag-Leffler-Ulam Stabilities

In this section, we consider the Mittag-Leffler-Ulam stability of the nonlocal Cauchy prob-

lem (1). Let ε be a positive real number andϕ : J → R+ be a continuous function. We consider

the following inequalities

�

�
C Dα y(t)− Ay(t)− f

�

t, y(t), Iβ y(t)
��

�≤ε, t ∈ J (10)
�

�
C Dα y(t)− Ay(t)− f

�

t, y(t), Iβ y(t)
��

�≤ϕ(t), t ∈ J (11)
�

�
C Dα y(t)− Ay(t)− f

�

t, y(t), Iβ y(t)
��

�≤εϕ(t), t ∈ J (12)
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Definition 5. Eq. (1) is Mittag-Leffler-Ulam-Hyers stable, with respect to Eα if there exists a real

number c > 0 such that for each ε > 0 and for each solution y ∈ C1(J , E) of the inequality (10),

there exists a mild solution x ∈ C(J , E) of Eq. (1) with

�

�y(t)− x(t)
�

�≤ cεEα[t], t ∈ J .

Definition 6. Eq. (1) is generalized Mittag-Leffler-Ulam-Hyers stable, with respect to Eα if there

exists θ ∈ C(R+,R+), θ (0) = 0 such that for each solution y ∈ C1(J , E) of the inequality (10),

there exists a mild solution x ∈ C(J , E) of Eq. (1) with

�

�y(t)− x(t)
�

�≤ θ (ε)Eα[t], t ∈ J .

Definition 7. Eq. (1) is Mittag-Leffler-Ulam-Hyers-Rassias stable with respect to ϕEα if there

exists Cϕ > 0 such that for each ε > 0 and for each solution y ∈ C1(J , E) of the inequality (12),

there exists a mild solution x ∈ C(J , E) of Eq.(1) with

�

�y(t)− x(t)
�

�≤ Cϕεϕ(t)Eα[t], t ∈ J .

Definition 8. Eq. (1) is generalized Mittag-Leffler-Ulam-Hyers-Rassias stable with respect to ϕEα
if there exists Cϕ > 0 such that for each solution y ∈ C1(J , E) of the inequality (11), there exists

a mild solution x ∈ C(J , E) of Eq.(1) with

�

�y(t)− x(t)
�

�≤ Cϕϕ(t)Eα[t], t ∈ J .

Remark 4. It is clear that: (i) Definition 5 =⇒ Definition 6; (ii) Definition 7 =⇒ Definition 8.

Remark 5. A function y ∈ C1(J , E) is a solution of the inequality (10) if and only if there exist

a function h ∈ C(J , E) (which depend on y) such that

(i) |h(t)| ≤ ε, t ∈ J,

(ii) C Dα y(t) = Ay(t) + f
�

t, y(t), Iβ y(t)
�

+ h(t), t ∈ J.

One can have similar remarks for the inequalities (11) and (12).

Remark 6. If y ∈ C1(J , E) i a solution of the inequality (10), then y is a solution of the following

integral inequality

�

�

�

�

�

y(t)− S(t)(y0 − g(y))−

∫ t

0

(t − s)α−1T (t − s) f (s, y(s), Iβ y(s))ds

�

�

�

�

�

≤
M bα

Γ(α+ 1)
ε.

We have similar remarks for the solutions of inequalities (11) and (12).

Theorem 4. If assumptions (H3) and (H4) are satisfied, then the nonlocal Cauchy problem (1)

is Mittag-Leffler-Ulam-Hyers stable.
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Proof. Let y ∈ C1(J , E) is a solution of the inequality (10). Let us denote by x ∈ C(J , E)

the unique mild solution of the nonlocal Cauchy problem
¨

C Dαx(t) = Ax(t) + f (t, x(t), Iβ x(t)), t ∈ J

x(0) = y(0).
(13)

We have

x(t) = S(t)(y0 − g(y)) +

∫ t

0

(t − s)α−1T (t − s) f (s, y(s), Iβ y(s))ds.

Then we get
�

�

�

�

y(t)− S(t)(y0 − g(y))−

∫ t

0

(t − s)α−1T (t − s) f (s, y(s), Iβ y(s))ds

�

�

�

�

≤

�

�

�

�

�

∫ t

0

(t − s)α−1T (t − s)h(s)ds

�

�

�

�

�

≤α

∫ t

0

∫ ∞

0

θ (t − s)α−1ξα(θ )Q((t − s)α−1θ )|h(s)|dθds

≤
αM

Γ(α+ 1)
ε

∫ t

0

(t − s)α−1ds

≤
M bα

Γ(α+ 1)
ε.

From these relations, we have

|y(t)− x(t)|=

�

�

�

�

�

y(t)− S(t)(y0 − g(y))−

∫ t

0

(t − s)α−1T (t − s) f (s, x(s), Iβ x(s))ds

�

�

�

�

�

≤

�

�

�

�

�

y(t)− S(t)(y0 − g(y))−

∫ t

0

(t − s)α−1T (t − s) f (s, y(s), Iβ y(s))ds

�

�

�

�

�

+

�

�

�

�

�

∫ t

0

(t − s)α−1T (t − s)[ f (s, y(s), Iβ y(s))− f (s, x(s), Iβ x(s))]ds

�

�

�

�

�

≤
M bα

Γ(α+ 1)
ε

+α

�

�

�

�

�

∫ t

0

∫ ∞

0

θ (t − s)α−1ξα(θ )Q((t − s)α−1θ )[ f (s, y(s), Iβ y(s))−

− f (s, x(s), Iβ x(s))]dθds
�

�

≤
M bα

Γ(α+ 1)
ε+

+
αM

Γ(α+ 1)

∫ t

0

(t − s)α−1| f (s, y(s), Iβ y(s))− f (s, x(s), Iβ x(s))|ds
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≤
M bα

Γ(α+ 1)
ε+

αM L f

Γ(α+ 1)

�
∫ t

0

(t − s)α−1|x(s)− y(s)|ds

+
1

Γ(β)

∫ t

0

∫ s

0

(t − s)α−1(s−τ)β−1|x(τ)− y(τ)|dτds

�

.

Using a similar manner of the second integral as in Proof of Theorem 3, we get

|y(t)− x(t)| ≤
M bα

Γ(α+ 1)
ε+

αM L f

Γ(α+ 1)

∫ t

0

(t − s)α−1|x(s)− y(s)|ds

+
M L f

Γ(α+ β)

∫ t

0

(t − s)α+β−1|x(s)− y(s)|ds.

An application of Remark 2 and Remark 3 (with b1 =
αM L f

Γ(α+1)
, b2 =

M L f

Γ(α+β)
, β1 = α and

β2 = α+ β) to the last inequality yields the desired estimation

|y(t)− x(t)| ≤
M bα

Γ(α+ 1)

�

Eα
�

M L f tα
�

+ Eα+β
�

M L f tα+β
��

ε.

Thus, the conclusion of our theorem hold.

The following theorem gives generalized Mittag-Leffler-Ulam-Hyers stability.

Theorem 5. If assumptions (H3) and (H4) are satisfied. Suppose there exist λ > 0 such that

1

Γ(α)

∫ t

0

(t − s)α−1ϕ(s)ds ≤ λϕ(t),

for all t ∈ J, where ϕ ∈ C(J ,R+) is nondecreasing. Then the nonlocal Cauchy problem (1) is

generalized Mittag-Leffler-Ulam-Hyers stable with respect to ϕEα.

Proof. Let y ∈ C1(J , E) is a solution of the inequality (11). By Remark 5, we have for t ∈ J

that y is a solution of the following integral inequality

�

�

�

�

�

y(t)− S(t)(y0 − g(y))−

∫ t

0

(t − s)α−1T (t − s) f (s, y(s), Iβ y(s))ds

�

�

�

�

�

≤ Mλ ϕ(t).

Let us denote by x ∈ C(J , E) the unique mild solution of the nonlocal Cauchy problem

¨

C Dαx(t) = Ax(t) + f (t, x(t), Iβ x(t)), t ∈ J

x(0) = y(0).
(14)

We have

x(t) = S(t)(y0 − g(y)) +

∫ t

0

(t − s)α−1T (t − s) f (s, y(s), Iβ y(s))ds.
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Then we get

�

�

�

�

y(t)− S(t)(y0 − g(y))−

∫ t

0

(t − s)α−1T (t − s) f (s, y(s), Iβ y(s))ds

�

�

�

�

≤

�

�

�

�

�

∫ t

0

(t − s)α−1T (t − s)ϕ(s)ds

�

�

�

�

�

≤α

∫ t

0

∫ ∞

0

θ (t − s)α−1ξα(θ )Q((t − s)α−1θ )ϕ(s)dθds

≤
αM

Γ(α+ 1)

∫ t

0

(t − s)α−1ϕ(s)ds

≤Mλ ϕ(t).

Again, from these relations, we have

|y(t)− x(t)|=

�

�

�

�

�

y(t)− S(t)(y0 − g(y))−

∫ t

0

(t − s)α−1T (t − s) f (s, x(s), Iβ x(s))ds

�

�

�

�

�

≤

�

�

�

�

�

y(t)− S(t)(y0 − g(y))−

∫ t

0

(t − s)α−1T (t − s) f (s, y(s), Iβ y(s))ds

�

�

�

�

�

+

�

�

�

�

�

∫ t

0

(t − s)α−1T (t − s)[ f (s, y(s), Iβ y(s))− f (s, x(s), Iβ x(s))]ds

�

�

�

�

�

≤Mλ ϕ(t) +α

�

�

�

�

�

∫ t

0

∫ ∞

0

θ (t − s)α−1ξα(θ )Q((t − s)α−1θ )

×[ f (s, y(s), Iβ y(s))− f (s, x(s), Iβ x(s))]dθds
�

�

≤Mλ ϕ(t) +
αM

Γ(α+ 1)

∫ t

0

(t − s)α−1| f (s, y(s), Iβ y(s))− f (s, x(s), Iβ x(s))|ds

≤Mλ ϕ(t) +
αM L f

Γ(α+ 1)

�
∫ t

0

(t − s)α−1|x(s)− y(s)|ds

+
1

Γ(β)

∫ t

0

∫ s

0

(t − s)α−1(s−τ)β−1|x(τ)− y(τ)|dτds

�

.

Using a similar manner of the second integral as in Proof of Theorem 3, we get

|y(t)− x(t)| ≤
M bα

Γ(α+ 1)
ε+

αM L f

Γ(α+ 1)

∫ t

0

(t − s)α−1|x(s)− y(s)|ds

+
M L f

Γ(α+ β)

∫ t

0

(t − s)α+β−1|x(s)− y(s)|ds.
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According to Remark 2 and Remark 3, we obtain our required assertion

|y(t)− x(t)| ≤ Mλ
�

Eα
�

M L f tα
�

+ Eα+β
�

M L f tα+β
��

ϕ(t).

The conclusion of our theorem hold.
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