EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 10, No. 2, 2017, 323-334 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global

bT^{μ} - compactness and bT^{μ} - connectedness in supra topological spaces

K.Krishnaveni^{1,*}, M.Vigneshwaran ²

- ¹ Research Scholar, Department of Mathematics, Coimbatore, Tamilnadu, India.
- ² Department of Mathematics, Coimbatore, Tamilnadu, India

Abstract. In this paper we newly originate the notion of bT^{μ} - compact space and inspected its several effects and characterizations. Also we newly originate and study the concept of bT^{μ} - Lindelof spaces and Connected spaces.

2010 Mathematics Subject Classifications: 54D05, 54D20, 54D30

Key Words and Phrases: bT^{μ} -open sets; bT^{μ} -compact spaces; bT^{μ} - Lindelof spaces and bT^{μ} - connected spaces.

1. Introduction

The supra topological spaces was introduced by Mashhour.et.al [6] in 1983. They studied S - continuous maps and S*- continuous maps. The supra b- open set and supra b-continuity was brought out by Sayed.et.al [8] in 2010. Recently Krishnaveni and Vigneshwaran [4] came out with supra bT -closed sets and defined their properties. In 2013, Jamal M.Mustafa.et.al[3] came out with the concect of supra b- connected and supra b-Lindelof spaces. Now we bring up with the new concepts of supra bT -compact, supra bT - Lindelof, Countably supra bT - compact and supra bT -connected spaces and reviewed several properties for these concepts.

2. Preliminaries

Definition 1 (6.8). A subfamily of μ of X is said to be a supra topology on X, if

- (i) $X, \phi \epsilon \mu$
- (ii) if $A_i \epsilon \mu$ for all $i \epsilon J$ then $\bigcup A_i \epsilon \mu$.

The pair (X,μ) is called supra topological space. The elements of μ are called supra open sets in (X,μ) and complement of a supra open set is called a supra closed set.

Email addresses: krishnavenikaliswami@gmail.com (K.Krishna), vignesh.mat@gmail.com (M.Vignesh)

^{*}Corresponding author.

Definition 2 (6).

- (i) The supra closure of a set A is denoted by $cl^{\mu}(A)$ and is defined as $cl^{\mu}(A) = \cap \{B : B \text{ is a supra closed set and } A \subseteq B\}.$
- (ii) The supra interior of a set A is denoted by $int^{\mu}(A)$ and defined as $int^{\mu}(A) = \bigcup \{B : B \text{ is a supra open set and } A \supseteq B\}.$

Definition 3 (8). Let (X,τ) be a topological spaces and μ be a supra topology on X. We call μ a supra topology associated with τ if $\tau \subset \mu$.

Definition 4 (8). Let (X,μ) be a supra topological space. A set A is called a supra b-open set if $A \subseteq cl^{\mu}(int^{\mu}(A)) \cup int^{\mu}(cl^{\mu}(A))$. The complement of a supra b-open set is called a supra b-closed set.

Definition 5 (4). A subset A of a supra topological space (X,μ) is called bT^{μ} -closed set if $bcl^{\mu}(A) \subset U$ whenever $A \subset U$ and U is T^{μ} - open in (X,μ) .

Definition 6 (4). Let (X,τ) and (Y,σ) be two topological spaces and μ be an associated supra topology with τ . A function $f:(X,\tau)\to (Y,\sigma)$ is called bT^{μ} - continuous if $f^{-1}(V)$ is bT^{μ} - closed in (X,τ) for every supra closed set V of (Y,σ) .

Definition 7 (4). Let (X,τ) and (Y,σ) be two topological spaces and μ be an associated supra topology with τ . A function $f:(X,\tau) \to (Y,\sigma)$ is called bT^{μ} - irresolute if $f^{-1}(V)$ is bT^{μ} - closed in (X,τ) for every bT^{μ} - closed set V of (Y,σ) .

Definition 8 (4). A supra topological space (X,μ) is called ${}_{bT}T_c^{\mu}$ - space, if every ${}_{b}T^{\mu}$ closed set is supra closed set.

Definition 9 (5). Let (X,τ) and (Y,σ) be two topological spaces and μ be an associated supra topology with τ . A function $f:(X,\tau) \to (Y,\sigma)$ is called strongly bT^{μ} - continuous if the inverse image of every bT^{μ} -closed in Y is supra closed in X.

Definition 10 (5). Let (X,τ) and (Y,σ) be two topological spaces and μ be an associated supra topology with τ . A function $f:(X,\tau) \to (Y,\sigma)$ is called perfectly bT^{μ} - continuous if the inverse image of every bT^{μ} -closed in Y is both supra closed and supra open in X.

3. supra bT - Compactness

Definition 11. A collection $\{A_i : i \in I\}$ of bT^{μ} - open sets in a supra topological space (X,μ) is called a bT^{μ} -open cover of a subset B of X if $B \subset \bigcup \{A_i : i \in I\}$ holds.

Definition 12. A supra topological space (X,μ) is bT^{μ} - compact if every bT^{μ} - open cover of X has a finite subcover.

Definition 13. A subset B of a supra topological space (X,μ) is said to be bT^{μ} - compact relative to (X,μ) if, for every collection $\{A_i:i\in I\}$ of bT^{μ} - open subsets of X such that $B\subset\bigcup\{A_i:i\in I\}$ there exist a finite subset I_o of I such that $B\subseteq\bigcup\{A_i:i\in I_o\}$.

Definition 14. A subset B of a supra topological space (X,μ) is said to be bT^{μ} - compact if B is bT^{μ} - compact as a subspace of X.

Theorem 1. Every bT^{μ} - compact space is supra compact.

Proof. Let $\{A_i : i \in I\}$ be a supra open cover of (X,μ) . By [4] $\{A_i : i \in I\}$ is a bT^{μ} - open cover of (X,μ) . Since (X,μ) is bT^{μ} - compact, bT^{μ} - open cover $\{A_i : i \in I\}$ of (X,μ) has a finite subcover say $\{A_i : i = 1, 2, \dots, n\}$ for X. Hence (X,μ) is a supra compact space.

Theorem 2. Every bT^{μ} - closed subset of a bT^{μ} - compact space is bT^{μ} - compact relative to X.

Proof. Let A be a bT^{μ} - closed subset of a supra topological space (X,μ) . Then A^c is bT^{μ} - open in (X,μ) . Let $S = \{A_i : i \in I\}$ be an bT^{μ} - open cover of A by bT^{μ} - open subset in (X,μ) . Let $S^* = S \cup A^c$ is a bT^{μ} - open cover of (X,μ) . That is $X = (\bigcup_{i \in I} A_i) \bigcup_{i \in I} A^c$.

By hypothesis (X,μ) is a bT^{μ} - compact and hence S^* is reducible to a finite sub cover of (X,μ) say $X = A_{i1} \cup A_{i2} \cup \cdots \cup A_{in} \cup A^c, A_{ik} \in S^*$. But A and A^c are disjoint. Hence $A \subset A_{i1} \cup A_{i2} \cup \cdots \cup A_{in} \in S$. Thus a bT^{μ} -open cover S of A contains a finite subcover. Hence A is bT^{μ} - compact relative to (X,μ) .

Theorem 3. A bT^{μ} - continuous image of a bT^{μ} - compact space is supra compact.

Proof. Let $f: X \to Y$ be a bT^{μ} - continuous map from a bT^{μ} - compact X onto a supra topological space Y. Let $\{A_i: i \in I\}$ be a supra open cover of Y. Then $f^{-1}\{A_i: i \in I\}$ is a bT^{μ} - open cover of X, as f is bT^{μ} - continuous. Since X is bT^{μ} - compact, the bT^{μ} - open cover of X, $f^{-1}\{A_i: i \in I\}$ has a finite sub cover say $\{f^{-1}(A_i): i = 1, 2, \cdots, n\}$. Therefore $X = \bigcup_{i=1}^n f^{-1}(A_i)$, which implies $f(X) = \bigcup_{i=1}^n (A_i)$, then $Y = \bigcup_{i=1}^n (A_i)$. That is $\{A_1, A_2, \cdots, A_n\}$ is a finite sub cover of $\{A_i: i \in I\}$ for Y. Hence Y is supra compact.

Theorem 4. If a map $f:(X,\tau)\to (Y,\sigma)$ is bT^{μ} - irresolute and a subset S of X is bT^{μ} - compact relative to (X,τ) , then the image f(S) is bT^{μ} - compact relative to (Y,σ) .

Proof. Let $\{A_i: i \in I\}$ be a collection of bT^{μ} - open cover of (Y, σ) , such that $f(S) \subseteq \bigcup_{i \in I} A_i$. Then $S \subseteq \bigcup_{i=1}^n f^{-1}(A_i)$, where $\{f^{-1}(A_i): i \in I)\}$ is bT^{μ} - open set in (X, τ) . Since S is bT^{μ} -compact relative to (X, τ) , there exist finite subcollection $\{A_1, A_2, \cdots, A_n\}$ such that $S \subseteq \bigcup_{i=1}^n f^{-1}(A_i)$. That is $f(S) \subseteq \bigcup_{i=1}^n A_i$. Hence f(S) is bT^{μ} - compact relative to (Y, σ) .

Theorem 5. If a map $f:(X,\tau)\to (Y,\sigma)$ is strongly bT^{μ} - continuous map from a supra compact space (X,τ) onto a supra topological space (Y,σ) , then (Y,σ) is bT^{μ} - compact.

Proof. Let $\{A_i:i\in I\}$ be a bT^μ - open cover of (Y,σ) . Since f is strongly bT^μ - continuous, $\{f^{-1}(A_i:i\in I)\}$ is an supra open cover of (X,τ) . Again, since (X,τ) is supra compact, the supra open cover $\{f^{-1}(A_i):i\in I)\}$ of (X,τ) has a finite sub cover say $\{f^{-1}(A_i):i=1,2,\cdots,n\}$. Therefore $X=\bigcup_{i=1}^n f^{-1}(A_i)$, which implies $f(X)=\bigcup_{i=1}^n (A_i)$, so that $Y=\bigcup_{i=1}^n (A_i)$. That is A_1,A_2,\cdots,A_n is a finite sub cover of $\{A_i:i\in I\}$ for (Y,σ) . Hence (Y,σ) is bT^μ -compact.

Theorem 6. If a map $f: (X,\tau) \to (Y,\sigma)$ is perfectly bT^{μ} - continuous map from a compact space (X,τ) onto a supra topological space (Y,σ) , then (Y,σ) is bT^{μ} - compact.

Proof. Let $\{A_i: i \in I\}$ be a bT^{μ} - open cover of (Y,σ) . Since f is perfectly bT^{μ} -continuous, $\{f^{-1}(A_i): i \in I)\}$ is a supra open cover of (X,τ) . Again, since (X,τ) is supra compact, the supra open cover $\{f^{-1}(A_i): i \in I\}$ of (X,τ) has a finite sub cover say $\{f^{-1}(A_i): i = 1, 2, \cdots, n\}$. Therefore $X = \bigcup_{i=1}^n f^{-1}(A_i)$, which implies $f(X) = \bigcup_{i=1}^n A_i$, so that $Y = \bigcup_{i=1}^n A_i$. That is A_1, A_2, \cdots, A_n is a finite sub cover of $\{A_i: i \in I\}$ for (Y,σ) . Hence (Y,σ) is bT^{μ} -compact.

Theorem 7. If a map $f:(X,\tau) \to (Y,\sigma)$ be bT^{μ} - irresolute map from bT^{μ} - compact space (X,τ) onto supra topological space (Y,σ) then (Y,σ) bT^{μ} - compact.

Proof. If a map $f: (X,\tau) \to (Y,\sigma)$ is bT^{μ} - irresolute map from a bT^{μ} - compact space (X,τ) onto a supra topological space (Y,σ) . Let $\{A_i:i\in I\}$ be a bT^{μ} - open cover of (Y,σ) . Then $\{f^{-1}(A_i):i\in I\}$ is an bT^{μ} - open cover of (X,τ) , since f is bT^{μ} - irresolute. As (X,τ) is bT^{μ} - compact, the bT^{μ} - open cover $\{f^{-1}(A_i):i\in I\}$ of (X,τ) has a finite sub cover say $\{f^{-1}(A_i):i=1,2,\cdots,n\}$. Therefore $X=\bigcup_{i=1}^n f^{-1}(A_i)$, which implies $f(X)=\bigcup_{i=1}^n A_i$, so that $Y=\bigcup_{i=1}^n A_i$. That is A_1,A_2,\cdots,A_n is a finite sub cover of $\{A_i:i\in I\}$ for (Y,σ) . Hence (Y,σ) is bT^{μ} -compact.

Theorem 8. If (X,τ) is compact and ${}_{bT}T_c^{\mu}$ space, then (X,τ) is bT^{μ} - compact.

Proof. Let (X,τ) is bT^{μ} - compact space. Let $\{A_i: i \in I\}$ be a bT^{μ} - open cover of (X,τ) . Since by $_{bT}T_c^{\mu}$ -space, $\{A_i: i \in I\}$ is a supra open cover of (X,τ) . Since (X,τ) is compact, supra open cover $\{A_i: i \in I\}$ of (X,τ) has a finite sub cover say $\{A_i: i = 1, 2, \cdots, n\}$ for X. Hence (X,τ) is a bT^{μ} - compact space.

Theorem 9. A supra topological space (X,τ) is bT^{μ} - compact if and only if every family of bT^{μ} -closed sets of (X,τ) having finite intersection property has a non empty intersection.

Proof. Suppose (X,τ) is bT^{μ} - compact, Let $\{A_i:i\in I\}$ be a family of bT^{μ} - closed sets with finite intersection property. Suppose $\bigcap_{i\in I}A_i=\phi$, then $X-\bigcap_{i\in I}A_i=X$. This implies $\bigcup(X-A_i)=X$. Thus the cover $\{X-A_i:i\in I\}$ is a bT^{μ} - open cover of (X,τ) . Then, the bT^{μ} -open cover $\{X-A_i:i\in I\}$ has a finite sub cover say $X-\{X-A_i:i=1,2,\cdots,n\}$. This implies $X=\bigcup_{i\in I}(X-A_i)$ which implies $X=X-\bigcap_{i=1}A_i$, which implies $X-X=X-\bigcap_{i=1}A_i$ which implies $\phi=\bigcap_{i=1}^nA_i$. This disproves the assumption. Hence $\bigcap_{i=1}^nA_i\neq\phi$ Conversely suppose (X,τ) is not bT^{μ} - compact. Then there exit an bT^{μ} - open cover of (X,τ) say $\{G_i:i\in I\}$ having no finite sub cover. This implies for any finite sub family $G_i:i=1,2,\cdots,n$ of $\{G_i:i\in I\}$, we have $\bigcup_{i=1}^nG_i\neq X$, which implies $X-\bigcup_{i=1}^nG_i\neq X$. X, therefore $\bigcap_{i\in I}(X-G_i)\neq\phi$. Then the family $\{X-G_i:i\in I\}$ of bT^{μ} - closed sets has a finite intersection property. Also by assumption $\bigcap(X-G_i)\neq\phi$ which implies X

has a finite intersection property. Also by assumption $\bigcap_{i\in I}(X-G_i)\neq \phi$ which implies X $-\bigcup_{i=1}^n G_i\neq \phi$, so that $\bigcup_{i=1}^n G_i\neq X$. This implies $\{G_i:i\in I\}$ is not a cover of (X,τ) . This disproves the fact that $\{G_i:i\in I\}$ is a cover for (X,τ) . Therefore a bT^μ - open cover $\{G_i:i\in I\}$ of (X,τ) has a finite sub cover $\{G_i:i=1,2,\cdots,n\}$. Hence (X,τ) is bT^μ - compact.

Theorem 10. Let A be a bT^{μ} - compact set relative to a supra topological space X and B be a bT^{μ} -closed subset of X. Then $A \cap B$ is bT^{μ} - compact relative to X.

Proof. Let A is bT^{μ} - compact relative to X. Suppose that $\{A_i:i\in I\}$ is a cover of A \cap B by bT^{μ} - open sets in X. Then $\{A_i:i\in I\}\cup\{B^c\}$ is a cover of A by bT^{μ} -open sets in X, but A is bT^{μ} - compact relative to X, so there exist i_1,i_2,\cdots,i_n such that $A\subseteq\bigcup\{Aij:j=1,2,\cdots,n\}\cup B^c$. Then $A\cap B\subseteq\bigcup\{\bigcup A_{ij}\cap B,j=1,2,\cdots,n\}\subseteq\bigcup\{A_{ij}:j=1,2,\cdots,n\}$. Hence $A\cap$ B is bT^{μ} - compact relative to X.

Theorem 11. If a function $f:(X,\tau)\to (Y,\sigma)$ is bT^{μ} - irresolute and a subset of X is bT^{μ} - compact relative to X, then f(B) is bT^{μ} - compact relative to Y.

Proof. Let $\{A_i : i \in I\}$ be a cover of f(B) by bT^{μ} -open subsets of Y. Then $\{f^{-1}(A_i) : i \in I\}$ is a cover of B by bT^{μ} -open subsets of X. Since B is bT^{μ} -compact relative to X, $\{f^{-1}(A_i) : i \in I\}$ has a finite subcover say $\{f^{-1}(A_1), f^{-1}(A_2), \dots, f^{-1}(A_n)\}$ for B. Now

 $\{A_1,A_2,\cdots,A_n\}$ is a finite subcover of $\{A_i:i\in I\}$ for f(B). So f(B) is bT^{μ} -compact relative to Y.

4. Countably supra bT - Compactness in supra topological spaces

In this section, we concentrate on the concept of countably bT^{μ} - Compactness and their properties.

Definition 15. A supra topological space (X,τ) is said to be countably bT^{μ} - compact if every countable bT^{μ} - open cover of X has a finite subcover.

Theorem 12. If (X,τ) is a countably bT^{μ} - compact space, then (X,τ) is countably supra compact.

Proof. Let (X,τ) is countably bT^{μ} - compact space. Let $\{A_i: i\in I\}$ be a countable supra open cover of (X,τ) . By [4], $\{A_i: i\in I\}$ is a countable bT^{μ} - open cover of (X,τ) . Since (X,τ) is countably bT^{μ} - compact, countable bT^{μ} - open cover $\{A_i: i\in I\}$ of (X,τ) has a finite subcover say $\{A_i: i=1,2,\cdots,n\}$ for X. Hence (X,τ) is a countably supra compact space.

Theorem 13. If (X,τ) is countably supra compact and $_{bT}T_c^{\mu}$ -space, then (X,τ) is countably bT^{μ} - compact.

Proof. Let (X,τ) is countably bT^{μ} - compact space. Let $\{A_i:i\in I\}$ be a countable bT^{μ} - open cover of (X,τ) . Since by ${}_{bT}T^{\mu}_{c}$ - space $\{A_i:i\in I\}$ is a countable open cover of (X,τ) . Since (X,τ) is countably supra compact, countable supra open cover $\{A_i:i\in I\}$ of (X,τ) has a finite sub cover say $\{A_i:i=1,2,\cdots,n\}$ for X. Hence (X,τ) is a countably bT^{μ} - compact space.

Theorem 14. Every bT^{μ} - compact space is countably bT^{μ} -compact.

Proof. Let (X,τ) is bT^{μ} -compact space. Let $\{A_i: i\in I\}$ be a countable bT^{μ} - pen cover of (X,τ) . Since (X,τ) is bT^{μ} - compact, bT^{μ} - pen cover $\{A_i: i\in I\}$ of (X,τ) has a finite subcover say $\{A_i: i=1,2,\cdots,n\}$ for (X,τ) . Hence (X,τ) is a countably bT^{μ} -compact space.

Theorem 15. Let $f:(X,\tau)\to (Y,\sigma)$ be a bT^{μ} - continuous injective mapping. If X is countably bT^{μ} - compact space then (Y,σ) is countably supra compact.

Proof. Let $f:(X,\tau)\to (Y,\sigma)$ be a bT^μ - continuous map from a countably bT^μ - compact (X,τ) onto a supra topological space (Y,σ) . Let $\{A_i:i\in I\}$ be a countable supra open cover of Y. Then $\{f^{-1}(A_i):i\in I\}$ is a countable bT^μ - open cover of X, as f is bT^μ - continuous. Since X is countably bT^μ - compact, the countable bT^μ -open cover $\{f^{-1}(A_i):i\in I\}$ of X has a finite sub cover say $\{f^{-1}(A_i):i=1,2,\cdots,n\}$. Therefore X

 $=\bigcup_{i=1}^n\big\{f^{-1}(A_i)\big\}, \text{ which implies } \mathbf{f}(\mathbf{X})=\bigcup_{i=1}^nA_i, \text{ then } \mathbf{Y}=\bigcup_{i=1}^nA_i. \text{ That is } \{A_1,A_2,\cdots,A_n\}$ is a finite sub cover of $\{A_i:i\in I\}$ for Y. Hence Y is countably supra compact.

Theorem 16. If a map $f:(X,\tau) \to (Y,\sigma)$ is perfectly bT^{μ} - continuous map from a countably supra compact space (X,τ) onto a supra topological space (Y,σ) , then (Y,σ) is countably bT^{μ} - compact.

Proof. Let $\{A_i:i\in I\}$ be a countable bT^μ - open cover of (Y,σ) . Since f is perfectly bT^μ - continuous, $\{f^{-1}(A_i):i\in I\}$ is a countable supra open cover of (X,τ) . Again, since (X,τ) is countably supra compact, the countable supra open cover $\{f^{-1}(A_i):i\in I\}$ of (X,τ) has a finite sub cover say $\{f^{-1}(A_i):i=1,2,\cdots,n\}$. Therefore $X=\bigcup_{i=1}^n \{f^{-1}(A_i)\}$, which implies $f(X)=\bigcup_{i=1}^n \{(A_i)\}$, so that $Y=\bigcup_{i=1}^n \{(A_i)\}$. That is $\{A_1,A_2,\cdots,A_n\}$ is a finite sub cover of $\{A_i:i\in I\}$ for (Y,σ) . Hence (Y,σ) is countably bT^μ -compact.

Theorem 17. If a map $f:(X,\tau)\to (Y,\sigma)$ is strongly bT^{μ} - continuous map from a countably supra compact space (X,τ) onto a supra topological space (Y,σ) , then (Y,σ) is countably bT^{μ} - compact.

Proof. Let $\{A_i:i\in I\}$ be a countable bT^μ - open cover of (Y,σ) . Since f is strongly bT^μ - continuous, $\{f^{-1}(A_i):i=1,2,\cdots,n\}$ is an countable supra open cover of (X,τ) . Again, since (X,τ) is countably supra compact, the countable supra open cover $\{f^{-1}(A_i):i\in I\}$ of (X,τ) has a finite sub cover say $\{f^{-1}(A_i):i=1,2,\cdots,n\}$. Therefore $X=\bigcup_{i=1}^n \{f^{-1}(A_i)\}$, which implies $f(X)=\bigcup_{i=1}^n A_i$, so that $Y=\bigcup_{i=1}^n A_i$. That is $\{A_1,A_2,\cdots,A_n\}$ is a finite sub cover of $\{A_i:i\in I\}$ for (Y,σ) . Hence (Y,σ) is countably bT^μ -compact.

Theorem 18. The image of a countably bT^{μ} - compact space under a bT^{μ} - irresolute map is countably bT^{μ} - compact.

Proof. If a map $f: (X,\tau) \to (Y,\sigma)$ is bT^{μ} - irresolute map from a countably bT^{μ} - compact space (X,τ) onto a supra topological space (Y,σ) . Let $\{A_i:i\in I\}$ be a countable bT^{μ} - open cover of (Y,σ) . Then $\{f^{-1}(A_i):i=1,2,\cdots,n\}$ is an countable bT^{μ} - open cover of (X,τ) , since f is bT^{μ} - irresolute. As (X,τ) is countably bT^{μ} - compact, the countable bT^{μ} -open cover $\{f^{-1}(A_i):i\in I\}$ of (X,τ) has a finite sub cover say $\{f^{-1}(A_i):i=1,2,\cdots,n\}$. Therefore $X=\bigcup_{i=1}^n \{f^{-1}(A_i)\}$, which implies $f(X)=\bigcup_{i=1}^n \{(A_i)\}$, so that $Y=\bigcup_{i=1}^n \{(A_i)\}$. That is $\{A_1,A_2,\cdots,A_n\}$ is a finite sub cover of $\{A_i:i\in I\}$ for (Y,σ) . Hence (Y,σ) is countably bT^{μ} -compact.

5. supra bT-Lindelof space

In this section, we concentrate on the concept of bT^{μ} - Lindelof space and their properties.

Definition 16. A supra topological space (X,τ) is said to be bT^{μ} - Lindelof space if every bT^{μ} - open cover of X has a countable subcover.

Theorem 19. Every bT^{μ} - Lindelof space is supra Lindelof space.

Proof. Let $\{A_i: i \in I\}$ be a supra open cover of (X,τ) . By $[4], \{A_i: i \in I\}$ is a bT^{μ} - open cover of (X,τ) . Since (X,τ) is bT^{μ} - Lindelof space, bT^{μ} - open cover $\{A_i: i\in I\}$ of (X,τ) has a countable subcover say $\{A_i: i=1,2,\cdots,n\}$ for X. Hence (X,τ) is a supra Lindelof space.

Theorem 20. If (X,τ) is supra Lindelof space and $_{bT}T_c^{\mu}$ -space, then (X,τ) is bT^{μ} -Lindelof space.

Proof. Let $\{A_i : i \in I\}$ be a bT^{μ} - open cover of (X,τ) . Since by bT_c^{μ} -space, $\{A_i : i \in I\}$ is a supra open cover of (X,τ) . Since (X,τ) is compact, supra open cover $\{A_i:i\in I\}$ of (X,τ) has a countable sub cover say $\{A_i: i=1,2,\cdots,n\}$ for X. Hence (X,τ) is a bT^{μ} -Lindelof space.

Theorem 21. Every bT^{μ} - compact space is bT^{μ} - Lindelof space.

Proof. Let $\{A_i : i \in I\}$ be a bT^{μ} - open cover of (X,τ) . Then $\{A_i : i \in I\}$ has a finite subcover say $\{A_i: i=1,2,\cdots,n\}$. Since (X,τ) is bT^{μ} - compact space. Since every finite subcover is always countable subcover and therefore $\{A_i: i=1,2,\cdots,n\}$ is countable subcover of $\{A_i:i\in I\}$. Hence (X,τ) is bT^{μ} - Lindelof space.

Theorem 22. A bT^{μ} - continuous image of a bT^{μ} - Lindelof space is supra Lindelof space.

Proof. Let f: $(X,\tau) \to (Y,\sigma)$ be a bT^{μ} - continuous map from a bT^{μ} - Lindelof space X onto a supra topological space Y. Let $\{A_i : i \in I\}$ be a supra open cover of Y. Then $\{f^{-1}(A_i): i \in I\}$ is a bT^{μ} - open cover of X, as f is bT^{μ} - continuous. Since X is bT^{μ} -Lindelof space, the bT^{μ} - open cover $\{f^{-1}(A_i): i \in I\}$ of X has a countable sub cover say

Emideror space, the of
$$i$$
 open cover $\{f^{-1}(A_i): i \in I\}$ of X has a countable sub-cover say $\{f^{-1}(A_i): i = 1, 2, \cdots, n\}$. Therefore $X = \bigcup_{i=1}^n \{f^{-1}(A_i)\}$, which implies $f(X) = \bigcup_{i=1}^n A_i$, then $Y = \bigcup_{i=1}^n A_i$. That is $\{A_1, A_2, \cdots, A_n\}$ is a countable sub-cover of $\{A_i: i \in I\}$ for Y .

Hence Y is supra Lindelof space.

Theorem 23. The image of a bT^{μ} - Lindelof space under a bT^{μ} - irresolute map is bT^{μ} - Lindelof space.

Proof. If a map $f: (X,\tau) \to (Y,\sigma)$ is bT^{μ} - irresolute map from a bT^{μ} - Lindelof space (X,τ) onto a supra topological space (Y,σ) . Let $\{A_i:i\in I\}$ be a bT^{μ} - open cover of (Y,σ) . Then $\{f^{-1}(A_i):i\in I\}$ is an bT^{μ} - open cover of (X,τ) . Since f is bT^{μ} - irresolute. As (X,τ) is bT^{μ} - Lindelof space, the bT^{μ} - open cover $\{f^{-1}(A_i):i\in I\}$ of (X,τ) has a countable sub cover say $\{f^{-1}(A_i):i=1,2,\cdots,n\}$. Therefore $X=\bigcup_{i=1}^n \{f^{-1}(A_i)\}$, which

implies $f(X) = \bigcup_{i=1}^{n} A_i$, so that $Y = \bigcup_{i=1}^{n} A_i$. That is $\{A_1, A_2, \dots, A_n\}$ is a countable sub cover of $\{A_i : i \in I\}$ for (Y, σ) . Hence (Y, σ) is bT^{μ} - Lindelof space.

Theorem 24. If (X,τ) is bT^{μ} - Lindelof space and countably bT^{μ} - compact space then (X,τ) is bT^{μ} - compact space.

Proof. Suppose (X,τ) is bT^{μ} - Lindelof space and countably bT^{μ} - compact space. Let $\{A_i:i\in I\}$ be a bT^{μ} - open cover of (X,τ) . Since (X,τ) is bT^{μ} - Lindelof space, $\{A_i:i\in I\}$ has a countable subcover say $\{A_{in}:i\in I,n\in N\}$, therefore $\{A_{in}:i\in I,n\in N\}$ is a countable subcover of (X,τ) and $\{A_{in}:i\in I,n\in N\}$ is subfamily of $\{A_i:i\in I\}$ and so $\{A_{in}:i\in I,n\in N\}$ is a countable bT^{μ} - open cover of (X,τ) . Again, since (X,τ) is countably bT^{μ} - compact, $\{A_{in}:i\in I,n\in N\}$ has a finite subcover and $\{A_{ik}:i\in I,k=1,2n\}$. Therefore $\{A_{ik}:i\in I,k=1,2,\cdots,n\}$ is a finite subcover of $\{A_i:i\in I\}$ for (X,τ) . Hence (X,τ) is bT^{μ} - compact space.

Theorem 25. If a function $f:(X,\tau)\to (Y,\sigma)$ is bT^{μ} - irresolute and a subset of X is bT^{μ} - Lindelof relative to X, then f(B) is bT^{μ} - Lindelof relative to Y.

Proof. Let $\{A_i: i \in I\}$ be a cover of f(B) by bT^{μ} -open subsets of Y. Then $\{f^{-1}(A_i): i \in I\}$ is a cover of B by bT^{μ} -open subsets of X. Since B is bT^{μ} -Lindelof relative to X, $\{f^{-1}(A_i): i \in I\}$ has a countable subcover say $\{f^{-1}(A_1), f^{-1}(A_2), \cdots, f^{-1}(A_n)\}$ for B. Now $\{A_1, A_2, \cdots, A_n\}$ is a countable subcover of $\{A_i: i \in I\}$ for f(B). So f(B) is bT^{μ} -Lindelof relative to Y.

6. supra bT-Connectedness in Supra Topological space

Definition 17. A supra topological space (X,μ) is said to be bT^{μ} - Connected if X cannot be written as a disjoint union of two non empty bT^{μ} -open sets. A subsets of (X,μ) is bT^{μ} -connected if it is bT^{μ} -connected as a subspace.

Theorem 26. Every bT^{μ} -connected space is supra connected.

Proof. Let A and B are supra open sets in X. Since every supra open sets is bT^{μ} -open set. Therefore A and B are bT^{μ} -open and X is bT^{μ} - connected space. Therefore $X \neq A \cup B$. Therefore X is supra connected.

Example 1. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}\}$. Then it is bT^{μ} -connected.

Remark 1. The converse of the above theorem need not be true in general, which follows from the following example.

Example 2. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}\}$. Clearly (X, τ) is supra connected. The bT^{μ} - open sets of X are $\{X, \phi, \{b, c\}, \{a, c\}, \{a, b\}, \{b\}, \{a\}\}\}$. Therefore (X, τ) is not a bT^{μ} -connected space, since $X = \{b, c\} \cup \{a\}$ where $\{b, c\}$ and $\{a\}$ are non empty bT^{μ} -open sets.

Theorem 27. For a supra topological space (X,τ) the following are equivalent

- (i) (X,τ) is bT^{μ} -connected.
- (ii) The only subset of (X,τ) which are both bT^{μ} open and bT^{μ} -closed are the empty set X and ϕ .
- (iii) Each bT^{μ} -continuous map of (X,τ) into a discrete space (Y,σ) with at least two points is a constant map.
- *Proof.* (1) \Rightarrow (2) Let G be a bT^{μ} -open and bT^{μ} closed subset of (X, τ). Then X-G is also both bT^{μ} -open and bT^{μ} -closed. Then X = G \cup (X-G) a disjoint union of two non empty bT^{μ} -open sets which contradicts the fact that (X, τ) is bT^{μ} -connected. Hence G = ϕ (or) X.
- $(2)\Rightarrow(1)$ Suppose that $X = A \cup B$ where A and B are disjoint non empty bT^{μ} -open subsets of (X,τ) . Since A = X-B, then A is both bT^{μ} -open and bT^{μ} closed. By assumption A $=\phi$ or X, which is a contradiction. Hence (X,τ) is bT^{μ} -connected.
- $(2)\Rightarrow(3)$ Let $f\colon (X,\tau)\to (Y,\sigma)$ be a bT^{μ} -continuous map, where (Y,σ) is discrete space with at least two points. Then $f^{-1}(y)$ is bT^{μ} -closed and bT^{μ} -open for each $y\in Y$. That is (X,τ) is covered by bT^{μ} -closed and bT^{μ} -open covering $\{f^{-1}\{y\}:y\in Y\}$. By assumption, $\{f^{-1}\{y\}\}=\phi$ or X for each $y\in Y$. If $f^{-1}\{y\}=\phi$ for each $y\in Y$, then f fails to be a map. Therefore their exist at least one point say $f^{-1}\{y_1\}\neq \phi, y_1\in Y$ such that $f^{-1}(\{y_1\})=X$. This shows that f is a constant map.
- $(3)\Rightarrow(2)$ Let G be both bT^{μ} -open and bT^{μ} -closed in (X,τ) . Suppose $G\neq \phi$. Let f: $(X,\tau)\to (Y,\sigma)$ be a bT^{μ} -continuous map defined by $f(G)=\{a\}$ and $f(X-G)=\{b\}$ where $a\neq b$ and $a,b\in Y$. By assumption , f is constant so G=X.

Theorem 28. Let $f:(X,\tau) \to (Y,\sigma)$ be a bT^{μ} -continuous surjection and (X,τ) is bT^{μ} -connected, then (Y,σ) is supra connected.

Proof. Suppose (Y,σ) is not supra connected. Let $Y = A \cup B$, where A and B are disjoint non empty supra open subsets in (Y,σ) . Since f is bT^{μ} -continuous, $X = f^{-1}(A) \bigcup f^{-1}(B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint non empty bT^{μ} -open subsets in (X,τ) . This disproves the fact that (X,τ) is bT^{μ} -connected. Hence (Y,σ) is supra connected.

Theorem 29. If $f:(X,\tau)\to (Y,\sigma)$ is a bT^{μ} -irresolute surjection and X is bT^{μ} -connected, then Y is bT^{μ} -connected.

Proof. Suppose that Y is bT^{μ} -connected. Let Y = A \cup B, where A and B are non empty bT^{μ} -open set in Y. Since f is bT^{μ} -irresolute and onto, X = $f^{-1}(A) \cup f^{-1}(B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint non empty bT^{μ} -open sets in (X,τ) . This contradicts the fact that (X,τ) is bT^{μ} - connected. Hence (Y,σ) is bT^{μ} -connected.

Theorem 30. Suppose that X is a ${}_{bT}T_c^{\mu}$ -space and X is supra connected then bT^{μ} -connected.

Proof. Suppose that X is supra connected. Then X cannot be expressed as disjoint union of two non empty proper subset of X. Suppose X is not bT^{μ} -connected space. Let A and B be any two bT^{μ} -open subsets of X such that $X = A \cup B$, where $A \cap B = \phi$ and $A \subset X$, $B \subset X$. Since X is ${}_{bT}T^{\mu}_{c}$ -space and A, B are bT^{μ} -open. A,B are open subsets of X, which contradicts that X is supra connected. Therefore X is bT^{μ} -connected.

Theorem 31. If the bT^{μ} -open sets C and D form a separation of X and if Y is bT^{μ} connected subspace of X, then Y lies entirely within C or D.

Proof. Since C and D are both bT^{μ} -open in X. The set $C \cap Y$ and $D \cap Y$ are bT^{μ} -open in Y, these two sets are disjoint and their union is Y. If they were both non empty, they would constitute a separation of Y. Therefore, one of them is empty. Hence Y must lie entirely in C or D.

Theorem 32. Let A be a bT^{μ} -connected subspace of X. If $A \subset B \subset bT^{\mu}cl(A)$, then B is also bT^{μ} -connected.

Proof. Let A be bT^{μ} -connected.Let $A \subset B \subset bT^{\mu}cl(A)$. Suppose that $B = C \cup D$ is a separation of B by bT^{μ} -open sets. Thus by previous theorem above A must lie entirely in C or D.Suppose that $A \subset C$, then $bT^{\mu}cl(A) \subseteq bT^{\mu}cl(C)$. Since $bT^{\mu}cl(C)$ and D are disjoint, B cannot intersect D.This disproves the fact that D is non empty subset of B.So $D = \phi$ which implies B is bT^{μ} -connected.

7. References

- 1 D.Andrijevic, On b- open sets, *Mat. Vesnik*, 48(1996), no.1-2,59-64.
- 2 R.Devi, S.Sampathkumar and M.Caldas, On supra α open sets and S-continuous maps, General Mathematics, 16(2), (2008), 77-84.
- 3 Jamal M.Mustafa, Supra b-compact and supra b-Lindelof spaces, *J.Mat.App.* 36,(2013),79-83.
- 4 K.Krishnaveni and M.Vigneshwaran, On bT^{μ} -Closed sets in supra topological Spaces, Int. J. Mat. Arc., 4(2),(2013),1-6.

- 5 K.Krishnaveni and M.Vigneshwaran, Some Stronger forms of supra bT^{μ} - continuous function, $Int.J.Mat.\ Stat.Inv.,1(2),(2013),\ 84-87.$
- 6 A.S.Mashhour, A.A.Allam, F.S.Mohamoud and F.H.Khedr, On supra topological spaces, *Indian J.Pure and Appl.Math.*, No.4,14(1983), 502-510.
- 7 P.G.Patil,w -compactness and w-connectedness in topological spaces, *Thai. J. Mat.*, (12),(2014),499-507.
- 8 O.R. Sayed and Takashi Noiri, On b-open sets and supra b-Continuity on topological spaces, Eur. J. Pure and App. Mat., 3(2)(2010), 295-302.