EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 9, No. 1, 2016, 27-33 ISSN 1307-5543 – www.ejpam.com

A Note on αgrw -Closed Sets

Ennis Rosas¹, N.Selvanayaki^{2*}, and Gnanambal Ilango³

Abstract. In this paper, some properties of αgrw -closed sets are discussed and also some characterizations of αgrw -closed sets are studied in topological spaces.

2010 Mathematics Subject Classifications: 54A05

Key Words and Phrases: αgrw -Closed Sets, rsker(A), s-Normal Space

1. Introduction

In 2013, αgrw -closed sets are introduced and studied by Selvanayaki and Gnanambal Ilango [14] and some basic properties of αgrw -closed sets are investigated. The class of αgrw -closed sets properly lies between the class of rw-closed sets and the class of grw-closed sets. In 2007, Benchalli and Wali [1] have introduced a new type of Kernel known as regular semi kernel. The aim of this paper is to study some properties of αgrw -closed sets and some characterizations of it.

Throughout this paper, space (X, τ) (or simply X) always means a topological space on which no separation axioms are assumed unless explicitly stated. For a subset A of a space X, cl(A), int(A) and X - A (or A^c) denote the closure of A, the interior of A and the complement of A in X, respectively.

2. Preliminaries

Definition 1. A subset A of a topological space (X, τ) is called

(i) regular open [15] if A = int(cl(A)) and regular closed if A = cl(int(A)).

Email addresses: ennisrafael@gmail.com (Ennis Rosas), selvanayaki.nataraj@gmail.com (N. Selvanayaki) and gnanamilango@yahoo.co.in (Gnanambal Ilango)

Departamento de Matemáticas, Universidad de Oriente, Cumaná, Venezuela and Facultad de Ciencias Básicas, Universidad del Atlántico, Barranquilla, Colombia.
Ãú² Department of Mathematics, Akshaya College of Engineering and Technology, Coimbatore, Tamil Nadu, India.

³ Department of Mathematics, Government Arts College, Coimbatore, Tamilnadu, India.

^{*}Corresponding author.

- (ii) semi-open [7] if $A \subseteq cl(int(A))$ and semi-closed if $int(cl(A)) \subseteq A$.
- (iii) α -open [13] if $A \subseteq int(cl(int(A)))$ and α -closed [12] if $cl(int(cl(A))) \subseteq A$.

Definition 2 ([2]). A subset A of a space (X, τ) is called regular semi-open if there is a regular open set U such that $U \subseteq A \subseteq cl(U)$. The family of all regular semi-open sets of X is denoted by RSO(X).

Definition 3 (Noiri [10]). A subset A of a space (X, τ) is said to be semi-regular open if it is both semi-open and semi-closed.

The family of all semi-regular open sets of X is denoted by SR(X). On other hand, Maio and Noiri defined a subset A of X to be semi-regular open if A = sint(scl(A)). However, these three notions are equivalent, which is given in the following theorem.

Theorem 1 ([10]). For a subset A of a space X, the followings are equivalent:

- (i) $A \in SR(X) (=RSO(X))$,
- (ii) A = sint(scl(A)),
- (iii) there exists a regular open set U of X such that $U \subseteq A \subseteq cl(U)$.

Definition 4. A subset A of a topological space (X, τ) is called

- (i) generalized closed (briefly g-closed) [8] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- (ii) α -generalized closed (briefly αg -closed)[11] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- (iii) α -generalized regular weakly closed (briefly αgrw -closed)[14] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular semi-open in X.

The set of all αgrw -closed sets in (X, τ) is denoted by $\alpha grwC(X)$.

Definition 5 ([9]). A topological space (X, τ) is said to be s-normal if for each pair of disjoint closed sets A and B, there exists disjoint semi-open sets U, V such that $A \subseteq U$ and $B \subseteq V$.

Definition 6 ([1]). The intersection of all regular semi-open subsets of (X, τ) containing A is called the regular semi-kernel of A and is denoted by rsker(A).

Theorem 2 ([3]). If A is open and S is semi-open in a topological space X, then $A \cap S$ is semi-open in X.

Lemma 1 ([1]). Let $A \subseteq Y \subseteq X$, where X is a topological space and Y is an open subspace of X. If $A \in RSO(X)$, then $A \in RSO(Y)$.

Lemma 2 ([1]). Let Y be regular open in X and U be a subset of Y. Then U is regular semi-open in X if and only if U is regular semi-open in the subspace Y.

Lemma 3 ([6]). Let x be a point of (X, τ) . Then $\{x\}$ is either nowhere dense or pre-open.

Lemma 4 ([5]). If A is regular semi-open in (X, τ) , then X - A is also regular semi-open.

Lemma 5 ([1]). For any subset A of (X, τ) , $A \subseteq rsker(A)$.

3. agrw-Closed Sets

Proposition 1. In a space (X, τ) , if $RSO(X) = \{\emptyset, X\}$, then every subset of X is an αgrw -closed set.

Proof. Let $RSO(X) = \{\emptyset, X\}$ and A be any subset of X. Suppose $A = \emptyset$, then A is an αgrw -closed set in X. Suppose $A \neq \emptyset$, then X is the only regular semi-open set containing A and so $\alpha cl(A) \subseteq X$. Hence A is αgrw -closed.

Remark 1. The converse of the above proposition need not be true as seen from the following example.

Example 1. Let $X = \{a, b, c\}$ with topology $\tau = \{\emptyset, \{a\}, \{b, c\}, X\}$. Then every subset of X is agrw-closed in X but $RSO(X) = \{\emptyset, \{a\}, \{b, c\}, X\}$.

Proposition 2. Every subset of (X, τ) is αgrw -closed if and only if

$$RSO(X, \tau) \subseteq \{F \subseteq X : F^c \in \tau_\alpha\},\$$

where τ_{α} is the topology generated by the α -open sets in (X, τ) .

Proof. Suppose that every subset of (X, τ) is αgrw -closed. Let $U \in RSO(X, \tau)$. Since $U \subseteq U$ and U is αgrw -closed, we have $\alpha cl(U) \subseteq U$. Thus $U \in \{F \subseteq X : F^c \in \tau_\alpha\}$ and hence $RSO(X, \tau) \subseteq \{F \subseteq X : F^c \in \tau_\alpha\}$.

Conversely, assume that $RSO(X, \tau) \subseteq \{F \subseteq X : F^c \in \tau_\alpha\}$. Let A be any subset of (X, τ) such that $A \subseteq U$, where U is regular semi-open. Thus U is α -closed and so $\alpha cl(A) \subseteq U$. Hence A is αgrw -closed in X.

Proposition 3. If A is both open and g-closed in X, then it is αgrw -closed in X.

Proof. Let *A* be open and *g*-closed in X. Let $A \subseteq U$ and *U* be regular semi-open in X. Now $A \subseteq A$, we have $cl(A) \subseteq A$. This implies $acl(A) \subseteq U$. Hence *A* is agrw-closed in *X*.

Remark 2. If A is both open and αgrw -closed in X, then A need not be g-closed in X.

Example 2. Let $X = \{a, b, c\}$ with topology $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Then $A = \{a, b\}$ is both open and αgrw -closed but not g-closed.

Proposition 4. If A is regular semi-open and αgrw -closed, then A is α -closed.

Proof. Suppose *A* is regular semi-open and αgrw -closed. We have $\alpha cl(A) \subseteq A$. Since $A \subseteq \alpha cl(A)$ always, $\alpha cl(A) = A$. Hence *A* is α -closed.

Example 3. In Example 2, the set $\{b,c\}$ is α -closed and $\alpha g r w$ -closed but is not regular semi-open.

Corollary 1. Let A be regular semi-open and αgrw -closed in X. Then $A \cap F$ is αgrw -closed in X, where F is α -closed.

Proof. Since *A* is regular semi-open and αgrw -closed then by Proposition 4, we have *A* is α -closed. Therefore $A \cap F$ is α -closed, since *F* is α -closed. Hence $A \cap F$ is αgrw -closed.

Proposition 5. *If A is both open and \alpha g-closed, then A is \alpha g r w-closed.*

Proof. Let *A* be an open and αg -closed. Let $A \subseteq U$ and *U* be regular semi-open. Now $A \subseteq A$ and by hypothesis $\alpha cl(A) \subseteq A$. Therefore $\alpha cl(A) \subseteq U$. Hence *A* is αgrw -closed.

Remark 3. If A is both open and αgrw -closed, then A need not be αg -closed.

Example 4. Let $X = \{a, b, c, d\}$ with topology $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$. Then the subsets $\{a, b\}$ and $\{a, b, c\}$ are $\alpha g r w$ -closed and open but not αg -closed.

Remark 4. Difference of two αgrw -closed sets is not generally αgrw -closed.

Example 5. Let $X = \{a, b, c, d\}$ with topology $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$. Then the sets $A = \{a, c, d\}$ and $B = \{c, d\}$ are $\alpha g r w$ -closed but $A - B = \{a\}$ is not $\alpha g r w$ -closed.

Proposition 6. Let $B \subseteq A \subseteq X$. If A is open in X, then $A \in \alpha grwC(X)$ implies $A \in \alpha grwC(Y)$.

Proof. Let A be αgrw -closed in X and let $A \subseteq G$ where G is regular semi-open in Y. Then $G = U \cap Y$, where U is regular semi-open in X by Lemma 1. This implies $A \subseteq U$. Since A is αgrw -closed in X, $\alpha cl(A) \subseteq U$ and so $\alpha cl(A) \cap Y \subseteq U \cap Y$. Therefore $\alpha cl_Y(A) \subseteq G$. Hence $A \in \alpha grwC(Y)$.

Proposition 7. Suppose $B \subseteq A \subseteq X$, B is αgrw -closed relative to A and A is both regular open and αgrw -closed subset of X. Then B is αgrw -closed in X.

Proof. Let $B \subseteq U$ and U be regular semi-open in X. Then we have $B \subseteq A \cap U$. Since A is open and U is semi-open in X by Theorem 2, $A \cap U$ is semi-open in X. Since every regular-open set is regular semi-open and every regular semi-open set is semi-closed, A and U are semi-closed. Therefore $A \cap U$ is semi-closed in X. Thus $A \cap U$ is regular semi-open in X. Also $A \cap U \subseteq A \subseteq X$ and A is open subspace of X by Lemma 1, $A \cap U$ is regular semi-open in A. Since B is αgrw -closed relative to A, $\alpha cl_A(B) \subseteq A \cap U$. But $\alpha cl_A(B) = A \cap \alpha cl(B)$. This implies $A \cap \alpha cl(B) \subseteq A \cap U$ and we have $A \cap \alpha cl(B) \subseteq U$. Since A is regular open and αgrw -closed by Proposition 4, $\alpha cl(A) = A$ and so $\alpha cl(B) \subseteq A$. Thus $\alpha cl(B) \subseteq U$ and hence B is αgrw -closed in X.

Proposition 8. If a subset A of (X, τ) is αgrw -closed, then $\alpha cl(A) - A$ contains no non-empty regular closed set.

Proof. Suppose that A is αgrw -closed in (X, τ) and F be a regular closed subset of $\alpha cl(A) - A$. Then $A \subseteq F^c$. Since every regular open set is regular semi-open and A is αgrw -closed, $\alpha cl(A) \subseteq F^c$. Consequently $F \subseteq [\alpha cl(A)]^c$. Thus $F \subseteq \alpha cl(A) \cap [\alpha cl(A)]^c = \emptyset$. Hence $\alpha cl(A) - A$ contains no non-empty regular closed set.

Remark 5. The converse of the above proposition need not be true. In Example 2, let $A = \{a\}$. Then $\alpha cl(A) - A = \{c\}$ does not contain non-empty regular closed set, but A is not an αgrw -closed set.

Proposition 9. Let $A \subseteq Y \subseteq X$ and Y is regular open in X then A is αgrw -closed in Y whenever A is αgrw -closed in X.

Proof. Let A be αgrw -closed in X and Y be regular open subset of X. Let U be any regular semi-open set in Y such that $A \subseteq U$. By Lemma 2, U is regular semi-open in X. Then we have $\alpha cl(A) \subseteq U$. That is $Y \cap \alpha cl(A) \subseteq Y \cap U = U$. Thus $\alpha cl_Y(A) \subseteq U$ and hence A is αgrw -closed in Y.

Proposition 10. A subset A of (X, τ) is αgrw -closed if and only if $\alpha cl(A) \subseteq rsker(A)$.

Proof. Suppose that A is αgrw -closed. Let $x \in \alpha cl(A)$. Suppose $x \notin rsker(A)$, then there is a regular semi-open set U containing A such that $x \notin U$. Since U is regular semi-open containing A, we have $x \notin \alpha cl(A)$, which is a contradiction. Thus $\alpha cl(A) \subseteq rsker(A)$.

Conversely, let $\alpha cl(A) \subseteq rsker(A)$. If U is any regular semi-open set containing A, then $\alpha cl(A) \subseteq rsker(A) \subseteq U$. Therefore A is αgrw -closed.

Remark 6 ([4]). In the notion of Lemma 3, we may consider the following decomposition of a given topological space (X, τ) , namely $X = X_1 \cup X_2$, where $X_1 = \{x \in X : \{x\} \text{ is nowhere dense}\}$ and $X_2 = \{x \in X : \{x\} \text{ is preopen}\}.$

Proposition 11. For any subset A of $(X, \tau), X_2 \cap \alpha cl(A) \subseteq rsker(A)$.

Proof. Let $x \in X_2 \cap \alpha cl(A)$ and suppose that $x \notin rsker(A)$. Then there is a regular semi-open set U containing A such that $x \notin U$. If F = X - U, then F is regular semi-closed and so F is semi-closed. We have $scl(\{x\}) = \{x\} \cup int(cl(\{x\})) \subseteq F$. Since $\alpha cl(\{x\}) \subseteq \alpha cl(A)$, we have $int(cl(\{x\})) \subseteq A \cup int(cl(A))$. Again since $x \in X_2$, we have $x \notin X_1$ and so $int(cl(\{x\})) \neq \emptyset$. Therefore there has to be some point $y \in A \cap int(cl(\{x\}))$ and hence $y \in F \cap A$, a contradiction. Thus $x \in rsker(A)$. Hence $X_2 \cap \alpha cl(A) \subseteq rsker(A)$. □

Proposition 12. For any subset A of (X, τ) , if $X_1 \cap \alpha cl(A) \subseteq A$, then A is αgrw -closed in X.

Proof. Suppose that $X_1 \cap \alpha cl(A) \subseteq A$. Then $X_1 \cap \alpha cl(A) \subseteq rsker(A)$, since $A \subseteq rsker(A)$. Now $\alpha cl(A) = X \cap \alpha cl(A) = (X_1 \cup X_2) \cap \alpha cl(A) = (X_1 \cap \alpha cl(A)) \cup (X_2 \cap \alpha cl(A)) \subseteq rsker(A)$, since $X_1 \cap \alpha cl(A) \subseteq rsker(A)$ and by Proposition 11. Thus A is αgrw -closed by Proposition 10. \square

Proposition 13. Let X be a regular space in which every regular semi-open subset is open. If A is compact subset of X, then A is $\alpha g r w$ -closed.

Proof. Let $A \subseteq U$ and U be regular semi-open. By assumption U is open in X. Since A is a compact subset of a regular space X, then there exists a closed set V such that $A \subseteq V = cl(V) \subseteq U$. Thus $cl(V) \subseteq U$ and so $\alpha cl(A) \subseteq U$. Hence A is αgrw -closed.

REFERENCES 32

Proposition 14. If (X, τ) is s-normal and $F \cap A = \emptyset$, where F is regular semi-open and A is $\alpha g r w$ -closed, then there exist disjoint semi-open sets S_1 and S_2 such that $A \subseteq S_1$ and $F \subseteq S_2$.

Proof. Since F is regular semi-open and $F \cap A = \emptyset$. Then $A \subseteq F^c$ and so $\alpha cl(A) \subseteq F^c$. Thus $\alpha cl(A) \cap F = \emptyset$. Since $\alpha cl(A)$ and F are semi-closed and X is s-normal, there exist semi-open sets S_1 and S_2 such that $\alpha cl(A) \subseteq S_1$ and $F \subseteq S_2$. This implies $A \subseteq S_1$ and $F \subseteq S_2$.

Remark 7. Disjoint αgrw -closed sets in a semi-normal space cannot be separated by semi-open sets. In Example 1, the space (X, τ) is s-normal, but $\{a, b\}$ and $\{c\}$ are disjoint αgrw -closed sets which cannot be separated by disjoint semi-open sets.

Proposition 15. If (X, τ) is normal in which every α -closed set is closed and $F \cap A = \emptyset$, where F is regular closed and A is $\alpha g r w$ -closed then there exist disjoint open sets O_1 and O_2 such that $A \subseteq O_1$ and $F \subseteq O_2$.

Proof. Similar to Proposition 14.

References

- [1] S. S. Benchalli and R. S. Walli. On *rw*-closed sets in topological spaces. *Bulletin of the Malaysian Mathematical Sciences Society*, 30(2):99–110, 2007.
- [2] D. E. Cameron. Properties of s-closed spaces. *Proceedings of the American Mathematical Society*, 72:581–586, 1978.
- [3] S. G. Crossley and S. K. Hildebrand. Semi-closure. *Texas Journal of Science*, 22:99–112, 1971.
- [4] J. Dontchev and H. Maki. On sg-closed sets and semi- λ closed sets. *Questions and Answers in General Topology*, 15:259–266, 1997.
- [5] G. L. Garg and D. Sivaraj. On *sc*-compact and *s*-closed spaces. *Bollettino dell'Unione Matematica Italiana*, 6(3B):321–332, 1984.
- [6] D. S. Jankovic and I. L. Reilly. On semi separation properties. *Indian Journal of Pure and Applied Mathematics*, 16:957–964, 1985.
- [7] N. Levine. Semi-open sets and semi-continuity in topological spaces. *The American Mathematical Monthly*, 70:36–41, 1963.
- [8] N. Levine. Generalized closed sets in topology. *Rendiconti del Circolo Matematico di Palermo*, 19:89–96, 1970.
- [9] S. N. Maheshwari and R. Prasad. On s-normal spaces. *Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie*, 22:27–29, 1978.

REFERENCES 33

[10] G. Di Maio and T. Noiri. On s-closed spaces. *Indian Journal of Pure and Applied Mathematics*, 18(3):226–233, 1987.

- [11] H. Maki, R. Devi, and K. Balachandran. Generalized α -closed sets in topology. *Buletin of Fukuoka University of Education Part-III*, 42:13–21, 1993.
- [12] A. S. Mashhour, I. A. Hasanein, and S. N. El-Deeb. α -continuous and α -open mappings. *Acta Mathematica Hungarica*, 41:213–218, 1983.
- [13] O. Njastad. On some classes of nearly open sets. *Pacific Journal of Mathematics*, 15:961–970, 1965.
- [14] N. Selvanayaki and G. Ilango. On α -generalized regular weakly closed sets in topological spaces. *Scientia Magna*, 9(1):52–58, 2013.
- [15] M. Stone. Application of the theory of boolean rings to general topology. *Transactions of the American Mathematical Society*, 41:374–481, 1937.