Polynomial Integral Transform for Solving Differential Equations
Keywords:
polynomial integral transform, polynomial function, kernel, differential equationsAbstract
In this paper, we propose Polynomial Integral Transform for solving differential equations. Unlike Laplace Transform and others, the Polynomial Integral Transform solves differential equations with little computational effort as well as time. In addition, the Polynomial Integral Transform entails a polynonmial function as its kernel, which ensures the rapid convergence of the solution to a differential equation. Thus, this method transforms a linear differential equation into an algebraic equation, from which the solution is obtained. Moreover, we show the applicabilities of the Polynomial Integral Transform and its properties.Downloads
Published
2016-04-30
Issue
Section
Algebraic Geometry
License
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.
How to Cite
Polynomial Integral Transform for Solving Differential Equations. (2016). European Journal of Pure and Applied Mathematics, 9(2), 140-151. https://www.ejpam.com/index.php/ejpam/article/view/2531