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Abstract. In this paper, we propose Polynomial Integral Transform for solving differential equations.

Unlike the Laplace Transform and others, the Polynomial Integral Transform solves differential equa-

tions with a little computational effort as well as time. In addition, the Polynomial Integral Transform

entails a polynomial function as its kernel, which ensures the rapid convergence of the solution to

a differential equation. Thus, this method transforms a linear differential equation into an algebraic

equation, from which the solution is obtained. Moreover, we show the applicabilities of the Polynomial

Integral Transform and its properties.
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1. Introduction

Most of the problems encountered in science, engineering and physics involve rates of

change. Initial condition of the dependent variable is usually measured at a point. Finding

solutions to these problems are often either difficult or not feasible at all. There are many

approaches to search for solution to the differential equation. Special substitution techniques

have been adopted in finding solution to differential equation with variable coefficients. The

Cauchy-Euler method transforms a linear differential equation into an algebraic equation with

the use of appropriate substitution technique. Other methods such as methods of undeter-

mined coefficients, variation of parameters are limited in usage, see [8]. In addition, these

classical methods for search of solutions to the differential equations are tedious and cumber-

some as one has to look for the appropriate substitution expression. Thus, there is no single

substitution expression for a single type of differential equation.
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Currently, integral transform method is the concern of mathematicians and scientists in

general. Since the introduction of the Laplace integral transform, a number of integral trans-

forms have been proposed for solving differential equations. An alternative integral transform,

Laplace substitution method, for the construction of solutions of the partial differential equa-

tions was observed by [11].

The Sumudu integral transform

F(u) = s[ f (t); u] =
1

u

∫ ∞

0

e−
t
u f (t)d t, u ∈ (−τ,τ).

was proposed by [15] and applied to some controlled problems in engineering. This method

faces the similar challenges as the Laplace integral transform. Thus, Sumudu integral trans-

form solves a linear differential equation with constant coefficients. The author in [4], ob-

served some properties of the Sumudu integral transform. Several studies have made use of

the Sumudu integral transform to obtain the solutions of the differential equations. For ex-

ample, see research papers by [5, 6, 9]. Recently, in [10], they compared both the Laplace

integral transform and Sumudu integral transforms.

In [12], the authors introduced the Natural integral transform and applied it to obtain

solutions of the differential equations. Unlike the Laplace and Sumudu integral transforms,

the Natural integral transform entails

K(u, v, x) = e−
vx
u ,

where u and v are parameters, as its kernel, which transforms a linear differential equation

into an algebraic equation. The duality of both the Natural and Laplace integral transforms

was studied by [7]. Using the Natural integral transform, [2] sought the solution of differ-

ential equation on the spaces of generalized functions. Also, in [1], the author extended the

applications of the Hartley transform of differential equation on the space of the generalized

functions. In order to ensure the rapid convergence of solution of the differential equation,

the Fresnel integral transform with variables in the Boehmains space has been obtained. For

example, see a research paper by [3].

On the contrary, the integral transform method for the fractional difference equation has

been obtained. The authors in [14], implemented the S-transforms for solving such problems

in engineering.

We outline of this paper is as follows. In section 1, we give the introduction to integral

transform methods. In this section, we discuss the integral transform methods for solving

differential equations. In section 2, we present the definition and also, give the proof for

the Polynomial Integral Transform. Using the Polynomial Integral Transform, we show that

the solution of the differential equation converges for x ∈ [1,∞). The properties of the

Polynomial Integral Transform is contained in section 3. In section 4, we apply the Polynomial

Integral Transform to derivatives, some ordinary differential equations and partial differential

equation. Section 5 contains the conclusion of this paper.
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2. The Polynomial Integral Transform

In the previous section, we observed that the discussed integral transforms are either pro-

totypes or have almost the same applicabilities as the Laplace integral transform. In addition,

almost all of these integral transforms use exponential function of parameter(s) as their ker-

nels. Using the exponential function kernel does not only requires complex mathematical

structures but also takes a long time before the solution is obtained. One of the interesting

papers which has drawn much attention in the 21st century is the one given by [13]. Using

the Mellin-Barnes integrals poses the similar challenges as the Laplace integral transform and

its prototypes.

An integral transform which uses polynomial function as its kernel requires a few time for

computation as well as the convergence of the solution of the differential equation. In this

paper, we introduce a Polynomial Integral Transform to solve differential equations in Hilbert

space. This method entails a polynomial function as its kernel to transform the differential

equation into the algebraic equation. The algebraic equation is then solved to obtain the

solution of the differential equation. We state the Polynomial Integral Transform theorem for

the ordinary differential equation.

Theorem 1 (A Polynomial Integral Transform). Let f (x) be a function defined for x ≥ 1. Then

the integral

B( f (x)) = F(s) =

∫ ∞

1

f (ln x).x−s−1d x ,

is the Polynomial Integral Transform of f (x) for x ∈ [1,∞), provided the integral converges.

Proof. We consider the homogeneous Cauchy-Euler equation of the form:

an xn dn y

d xn
+ an−1 xn−1 dn−1 y

d xn−1
+ . . .+ a1 x

d y

d x
+ a0 y = 0.

with the corresponding distinct roots

y(x) = c1es1 ln x + c2es2 ln x + . . .+ cnesn ln x ,

where c1, c2, . . . , cn are constants. Also, consider a constant linear differential equation

an

dn y

d tn
+ an−1

dn−1 y

d tn−1
+ . . .+ a1

d y

d t
+ a0 y = 0,

with a solution

y(x) = c1es1 t + c2es1 t + . . .+ cnesn t .

We can see that equation (3) has an integral transform

B( f (t)) = F(s) =

∫ ∞

0

f (t)e−st d t.
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Again, we see from equations (2) and (4) that

t = ln x

Substituting equation (6) into equation (5), we obtain

B( f (x)) =F(s) =

∫ ∞

1

f (ln x).
1

x
e−s ln x d x

B( f (x)) =

∫ ∞

1

f (ln x).x−(s+1)d x

is the polynomial integral transform of f (x) for x ∈ [1,∞), provided the integral converges.

2.1. The Convergence of the Polynomial Integral Transform

In this subsection, we show that the Polynomial Integral Transform converges for variable

defined in [1,∞). By Taylor series expansion, we obtain

eln x−s−1

=1+ ln x−s−1 +
(ln x−(s+1))2

2!
+
(ln x−(s+1))3

3!

+
(ln x−(s+1))4

4!
+ . . .+

∞
∑

n=0

(ln x−(s+1))n

n!
+ . . .

eln x−s−1

=

∞
∑

n=0

(ln x−(s+1))n

n!

By the D’Lambert Ratio test, we obtain

lim
n→∞
|(
∞
∑

n=0

(ln x−(s+1))n+1

(n+ 1)!
÷
∞
∑

n=0

(ln x−(s+1))n

n!
)|

⇒0. ln x−(s+1)

⇒0.

Then

B( f (x)) = sup
1≤x<∞

∫ ∞

1

| f (ln x).x−s−1|d x

B( f (x))≤ sup
1≤x<∞

∫ ∞

1

| f (ln x)||x−s−1|d x

B( f (x))≤M

∫ ∞

1

| f (ln x)|d x , where M > 0.

It implies that the polynomial integral transform converges uniformly for a given s. The func-

tion f (x) must be piecewise continuous. Thus, f (x) has at most a finite number of disconti-

nuities on any interval 1≤ x ≤ A, and the limit of f (x) exist at every point of discontinuity.
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2.2. Existence of the Polynomial Integral Transform

In this subsection, we show that the Polynomial Integral Transform exists for x ∈ [1,∞).
To see this, we state the existence theorem for the Polynomial Integral Transform.

Theorem 2. Let f (x) be a piecewise continuous function on [1,∞) and of exponential order,

then the polynomial integral transform exists.

Proof. By the definition of polynomial integral transform, we obtain

I =

∫ ∞

1

f (x).x−(s+1)d x

I =

∫ A

1

f (x).x−(s+1)d x +

∫ ∞

A

f (x).x−(s+1)d x

I =I1 + I2,

where

I1 =

∫ A

1

f (x).x−(s+1)d x

and

I2 =

∫ ∞

A

f (x).x−(s+1)d x .

The integral I1 exists since f (x) is piecewise continuous. Taking

I2 =

∫ ∞

A

f (x).x−(s+1)d x

I2 =

∫ ∞

A

f (x).x−(s+1)d x ≤ M

∫ ∞

A

eαx .x−(s+1)d x .

By the Taylor series expansion, we obtain

eαx ≈
∞
∑

n=0

α
n xn

n!
.

Substituting the expression for eαx in equation (7), we obtain

I2 ≈M

∞
∑

n=0

α
n

n!

∫ ∞

A

x−(s+1−n)d x

I2 ≈M

∞
∑

n=0

α
n

n!

∫ ∞

1

x−(s+1−n)d x

I2 =M

∞
∑

n=0

Mαn

n!(s− n)
, s > n
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∫ ∞

1

f (x).x−(s+1)d x =M

∞
∑

n=0

Mαn

n!(s− n)
, s > n

This completes the proof.

3. Properties of the Polynomial Integral Transform

In this section, we give the properties of the Polynomial Integral Transform.

Theorem 3. The Polynomial Integral Transform is a linear operator.

Proof. Suppose that f (x) and g(x) are functions and α1 and α2 are real constants.

B(α1 f (x) +α2 g(x)) =

∫ ∞

1

(α1 f (ln x) +α2 g(ln x)).x−s−1d x

B(α1 f (x) +α2 g(x)) =α1

∫ ∞

1

f (ln x).x−s−1d x +α2

∫ ∞

1

g(ln x).x−s−1d x

B(α1 f (x) +α2 g(x)) =α1B( f (x)) +α2B(g(x))

Theorem 4. The Inverse Polynomial Integral Transform is a also linear operator.

Proof. Taking the inverse integral transform of the both sides of the above equation, we

obtain

α1 f (x) +α2 g(x) =B−1(α1( f (x)) +α2B(g(x)))

α1 f (x) +α2 g(x) =α1B−1(( f (x))) +α2B−1(L(g(x)))

α1 f (x) +α2 g(x) =α1B−1(F(s)) +α2B−1(G(s))

α1 f (x) +α2 g(x) =B−1(α1F(s) +α2G(s)),

where B( f (x)) = F(s) and B(g(x)) = G(s), respectively.

Theorem 5 (First shifting theorem). If B( f (x)) = B(s), then B(eax f (x)) = B(s− a), for s > 1.

Proof. Let

B(eax f (x)) =

∫ ∞

1

ea ln x f (ln x).x−s−1d x

B(eax f (x)) =

∫ ∞

1

xa f (ln x).x−s−1d x

B(eax f (x)) =

∫ ∞

1

f (ln x).x−(s−a+1)d x
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B(eax f (x)) =B(s− a).

Theorem 6 (Second shifting theorem). Let

Hc(x) =

¨

0 0≤ x < c

1 x ≥ c

be a unit step function. Then

B(Hc f (x − c)) = F(s− c)

Proof. By applying the Polynomial Integral Transform, we obtain

B(Hc(x) f (x − c)) =

∫ ∞

1

Hc(ln x) f (ln(x − c)).x−s−1d x

B(Hc(x) f (x − c)) = lim
t→∞

∫ t

1

1. f (ln(x − c)).x−s−1d x

B(Hc(x) f (x − c)) = lim
t→∞

∫ t

1

f (ln(x − c)).x−s−1d x

We set

u= x − c

and substituting u into right hand side of the above equation, we obtain

B(Hc(x) f (x − c)) = lim
t→∞

∫ t−c

1−c

f (ln u).(u+ c)−s−1du

B(Hc(x) f (x − c)) = lim
t→∞

∫ t

1

f (ln(v − c)).v−s−1dv

B(Hc(x) f (x − c)) =F(s− c),

where v = u+ c.

Theorem 7. If f (x) is a piecewise continuous function on [0,∞), but not of exponential order,

then a polynomial integral transform

B( f (x))→ 0 as s→∞.

Proof. Let

|B( f (x))|=|

∫ ∞

1

f (ln x)x−s−1d x |
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|B( f (x))| ≤

∫ ∞

1

| f (ln x)x−s−1|d x

|B( f (x))|=

∫ ∞

1

f (ln x)|x−(s+1)|d x .

But, we observe that:

|x−(s+1)| → 0 as s→∞.

It follows that

B( f (x))→ 0 as s→∞.

4. The Polynomial Integral Transform of Derivatives

In this section, we give the Polynomial Integral Transform of derivatives of the function

f (x) with respect to x .

Theorem 8. If f , f ′, . . . f n−1 are continuous on [1,∞) and if f n(x) is piecewise continuous on

[1,∞), then

B( f (n)(x)) = snF(s)− sn−1 f (0)− sn−2 f ′(0)− . . .− f (n−1)(0),

where F(s) = B( f (x)).

Proof. Let

B( f ′(x)) =

∫ ∞

1

f ′(ln x).x−s−1d x

Using integration by parts, we obtain

L( f ′(x)) = lim
t→∞

[ f (ln x)x−s]t1 + lim
t→∞

∫ t

1

f (ln x)
1

x
x−sd x

L( f ′(x)) =sF(s)− f (0).

Proceeding a similar as above, we obtain

B( f ′′(x)) =

∫ ∞

1

f ′′(ln x).x−s−1d x

B( f ′′(x)) =− f ′(0) + sL( f ′(x))

Substituting the expression of f ′(x) into the above equation, we obtain

B( f ′′(x)) = s2F(s)− s f (0)− f ′(0).

By induction, we obtain

B( f (n)(x)) = snF(s)− sn−1 f (0)− sn−2 f ′(0)− . . .− f (n−1)(0),

where F(s) = B( f (x)).
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Corollary 1. Suppose f is a piecewise function and let F(s) by the Polynomial Integral Transform

by equation (4). Then, we obtain

L(xn f (x))(s) = (−1)nF (n)(s)

Proof. By applying the Polynomial Integral Transform, we obtain

F ′(s) =
d

ds

∫ ∞

1

f (ln x).x−s−1d x

F ′(s) =

∫ ∞

1

f (ln x).x−1 ∂

∂ s
eln x−s

d x

F ′(s) =

∫ ∞

1

f (ln x).x−1 ∂

∂ s
e−s ln x d x

F ′(s) =−

∫ ∞

1

ln x f (ln x).x−s−1d x

−F ′(s) =L(x f (x))

Proceeding in a similar manner, we obtain

F ′′(s) =
d

ds

∫ ∞

1

ln x f (ln x).x−s−1d x

F ′′(s) =L(x2 f (x))

...

(−1)nF (n)(s) =L(xn f (x))(s),

where n= 1,2, . . ..

4.1. Applications of Polynomial Integral Transform to Linear Ordinary

Differential Equation with Constant Coefficients

We apply the Polynomial Integral Transform to obtain the solutions of the ordinary differ-

ential equations as follows:

Example 1.

d2 y

d x2
−

d y

d x
− 6y(x) = 0, y(0) = 0, y ′(0) = −7

Using the polynomial integral transform, we obtain

B(y ′′(x)− y ′(x)− 6y(x)) =B(0)

y(x) =B−1(
−1

(s− 3)
+

2

(s+ 2)
)

y(x) =− e3x + 2e−2x .
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Example 2.

d2 y

d x2
− 3

d y

d x
+ 2y(x) = x , y(0) = 0, y ′(0) = 1

Applying polynomial integral transform to the above equation, we obtain

B(y ′′(x)−3y ′(x) + 2y(x)) = B(x)

y(x) =B−1(
3

4
.
1

s
+

1

4
.
1

s2
− 2.

1

(s− 1)
+

5

4
.

1

(s− 2)
)

y(x) =
3

4
+

1

2
x − 2ex +

5

4
e2x

4.2. A Polynomial Integral Transform in Two Variables

In order to obtain analytic solution of the partial differential equations PDEs, we extend

the polynomial integral transform to solve the functions in two dimensions as below:

Theorem 9. Let f be a function defined for x , t ≥ 1. Then the integral

Bx Bt( f (x , t); (p, s)) = F(p, s) =

∫ ∞

1

∫ ∞

1

f (ln x , ln t).x−p−1 t−s−1d xd t,

is the integral transform of f (x , t) for x , t ∈ [1,∞), provided the integral converges.

Proof. It follows from Theorem 1.

We then apply Polynomial Integral Transform to transform partial derivatives. By the def-

inition of the Polynomial Integral Transform in two variables, we obtain following results:

Bx Bt(
∂ f (x , t)

∂ x
; (p, s)) =pF(p, s)− F(0, s)

Bx Bt(
∂

2 f (x , t)

∂ x∂ t
; (p, s)) =psF(p, s)− pF(p, 0)− sF(0, s) + f (0,0)

Bx Bt(
∂

2 f (x , t)

∂ x2
; (p, s)) =p2F(p, s)− pF(0, s)−

∂ F(0, s)

∂ x

Bx Bt(
∂

2 f (x , t)

∂ t2
; (p, s)) =s2F(p, s)− sF(p, 0)−

∂ f (p, 0)

∂ t

We consider a wave equation below:

∂
2w

∂ t2
=
∂

2w

∂ x2
x , t ≥ 0

w(0, t) =g(t), lim
x→∞

w(x , t) = 0, x , t ≥ 0

w(x , 0) =
∂ w

∂ t
(x , 0) = 0,
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where w is the deflection of a string released from rest on the x-axis. Applying the polynomial

integral transform in two variables, we obtain

B(wt t) =B(wx x)

⇒Wx x − s2W =0

W (x , s) =A(s)esx + B(s)e−sx

W (x , s) =G(s)e−sx

w(x , t) =B−1(W (x , s))

w(x , t) =xu(t − 1)g(t − 1),

where g(t) = B−1(G(s)).

5. Conclusion

We observed that the Polynomial Integral Transform solves differential equation with a

few computations as well as time. Unlike the Laplace Integral Transform and others, the

Polynomial Integral Transform involves a polynomial function as its kernel, which is easier

and transforms complicated functions into algebraic equations. The solution of the differential

equation is then obtained from the algebraic equation. Also, using the Polynomial Integral

Transform, the convergence of the solution of the differential equation is faster as compared

with the Laplace integral transform and others. We observed that the Polynomial Integral

Transform is defined on the interval [1,∞).
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