EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS PRE-PUBLICATION SUBMISSION DOCUMENT

ISSN 1307-5543 - www.ejpam.com

A Note on Primary and Weakly Primary Submodules

Gulsen ULUCAK ${ }^{1 *}$ and Rabia Nagehan UREGEN ${ }^{2}$
1 Department of Mathematics, Faculty of Science, Gebze Technical University, 14141400 Kocaeli, Turkey
${ }^{2}$ Yildiz Technical University, Graduate School of Natural and Applied Sciences, 34349, Istanbul, Turkey

Abstract

In this paper, we generalize primary submodules and weakly primary submodules which are called $P(N)$-locally primary submodules and $P(N)$-locally weakly primary submodules, respectively. Some properties of these generalizations of submodules are investigated.

2010 Mathematics Subject Classifications: 13A15, 13C99, 13F05
Key Words and Phrases: Primary, Weakly primary, $P(N)$-locallyprimary, $P(N)$-locally weakly primary.

1. Introduction

The two generalization on prime submodutles and weakly prime submodules, which are called $S(N)$-locally prime submodule and $S(N)$-weakly prime submodule, respectively where $S(N)=\{r \in R \mid r m \in A$ for some $m \notin N\}$ for a submodule N of an R-module M, have been broadly studie@ by A. K. Jabbar (see [2]). In this paper, our aim is to obtain the two generalization on primary submodules and weakly primary submodules of an R-module M.

Throughout this paper, we assume, that all rings are commutative with identity $1 \neq 0$. An ideal I of R is called a proper jeal if $I \neq R$. Then the radical of a proper ideal I of R is denoted by \sqrt{I} and $\sqrt{I}=\left\{\hat{\infty} \in R \mid x^{n} \in I\right.$ for some positive integer $\left.n\right\}$. A proper ideal P of R is called prime (primaxy) if $a b \in P$ for some $a, b \in R$ implies that either $a \in P$ or $b \in P$ (either $a \in P$ or $b^{n} \in P$ for some positive integer n). A proper ideal P of R is said to be a weakly prime ideal if $0 \neq a b \in P$ for some $a, b \in R$ implies that either $a \in P$ or $b \in P$, and it is a weakly primary ideal if $0 \neq a b \in P$ for some $a, b \in R$ implies that either $a \in P$ or $b^{n} \in P$ for some positive integer n (see [3], [4]).

Let M be an R-module. A submodule N of M is called a proper submodule if $N \neq M$. A proper submodule N of M is called a prime submodule if $r m \in N$ for some $r \in R$ and
${ }^{*}$ Corresponding author.
Email addresses: gulsenulucak@gtu.edu.tr (G. ULUCAK), rnuregen@yildiz.edu.tr (R.N. UREGEN)
http://www.ejpam.com 1 © 2015 EJPAM All rights reserved.
$m \in M$ implies that either $m \in N$ or $r M \subseteq N$ and it is said to be a weakly prime submodule if $0 \neq r m \in N$ for some $r \in R$ and $m \in M$ implies that either $m \in N$ or $r M \subseteq N$. A subset S of R is said to be multiplicative closed set if $\emptyset \neq S, 0 \notin S$ and whenever $a, b \in S$, then $a b \in S$. Let S be a multiplicative closed set in R. Then an R_{S}-module M_{S} is gotten under the operations $\frac{a}{s}+\frac{b}{u}=\frac{u a+s b}{s u}$ and $\frac{r}{v} \frac{a}{s}=\frac{r a}{v s}$ for any $\frac{r}{v} \in R_{S}$ and $\frac{a}{s}, \frac{b}{u} \in M_{S}$ [5]. A proper submodule N of M is said to be $S(N)$-locally prime ($S(N)$ weakly prime) submodule if N_{P} is a prime (a weakly prime) submodule of M_{P} for each maximal ideal P with $S(N) \subseteq P$ [2].

In this paper, we study two generalizations of the primary submodules and the weakly primary submodules of M. A proper submodule N of M is said to be a primary submodule if $r m \in N$ for some $r \in R, m \in M$ implies that either $m \in N$ or $r^{n} M \subseteq N$ for some positive integer n and it is said to be a weakly primary submodule if $0 \neq r m \in N$ for some $r \in R, m \in M$ implies that either $m \in N$ or $r^{n} M \subseteq N$ for some positive integer n. The ideal $\{r \in R \mid r M \subseteq N\}$ will be denoted by $(N: M)$ and $(0: N)=\{r \in R \mid r N=0\}$ where N is a submodule of M. Then the annihilator of M is $(0: M)$ where $(0: M)=$ $\{r \in R \mid r M=0\}$. An R-module M is called a faithful module if $(0: M)=(0)$. It is known that if N is a primary submodule of M, then $(N: M)$ is a primary ideal of R and $\sqrt{(N: M)}=\left\{r \in R \mid r^{n} M \subseteq N\right.$ for some positive integer $\left.n\right\}$ is a prime ideal of R ([1], [7], [6]).

Now, we introduce the concepts that we will use. Let N be a proper submodule of M. An element $r \in R$ is said to be primary to N if $r^{n} m \in N$, where $m \in M$ and n is a positive integer, then $m \in N$. Then $r \in R$ is said to be not primary to N if $r^{n} m \in N$ for some positive integer n and for some $m \notin N$. Let us denote the set of all elements of R that are not primary to N by $P(N)$. Then we get $P(N)=\left\{r \in R \mid r^{n} m \in N\right.$ for some positive integer n, for some element $m \notin N\}$. If $N=(0)$, then $P((0))=\left\{r \in R \mid r^{n} m=0\right.$ for some positive integer n, for some $0 \neq m \in M\}$. A proper submodule N of M is said to be a P-primal if $P(N)$ forms an ideal of R.

2. $P(N)$-Locally Primary and $P(N)$-Locally Weakly Primary Submodules

Definition 1. Let N be a proper submodule of an R-module M. Then N is called a $P(N)$ locally primary submodule of M if N_{P} is a primary submodule of M_{P} for all maximal ideal P where $P(N) \subseteq P$.

Definition 2. A proper submodule N of an R-module M is called a $P(N)$-locally weakly primary submodule of M if N_{P} is a weakly primary submodule of M_{P} for every maximal ideal P where $P(N) \subseteq P$.

Lemma 1. Let N be a proper submodule of an R-module M. Then $\sqrt{(N: M)} \subseteq P(N)$.
Proof. Let $r \in \sqrt{(N: M)}$. Then $r^{n} M \subseteq N$ for some positive integer n. There exists $m \notin N$ such that $r^{n} m \in N$. Then $r \in P(N)$. Thus $\sqrt{(N: M)} \subseteq P(N)$.

The following propositions state that every primary submodule N is $P(N)$-locally primary submodule and every weakly primary submodule N is $P(N)$-locally weakly primary submodule.

Proposition 1. A primary submodule N of an R-module M is a $P(N)$-locally primary submodule.

Proof. Let P be a maximal ideal of R where $P(N) \subseteq P$. By the previous lemma, we say that $\sqrt{(N: M)} \subseteq P(N) \subseteq P$. Since $\sqrt{(N: M)} \cap(\bar{R} \backslash P)=\emptyset$, then N_{P} is a primary submodule of M_{P}. Consequently, N is a $P(N)$-locally primary submodule.

Proposition 2. A weakly primary submodule N of an R-module M is a $P(N)$-locally weakly primary submodule.

Proof. Suppose that P is a maximal ideal of R where $P(N) \subseteq P$. From [2, Corollary 2.2], if $N \neq M$, then $N_{P} \neq M_{P}$, that is, N_{P} is a proper submodule of M_{P}. Let $0_{P} \neq \frac{r}{s} \frac{m}{p} \in$ N_{P} for some $\frac{r}{s} \in R_{P}$ and $\frac{m}{p} \in M_{P}$ (for some $r \in R, m \in M$ and $s, p \notin P$). Then there is a $q \notin P$ such that $q r m \in N$. Assume that $q r m=0$. Then $\frac{r}{s} \frac{m}{p}=\frac{q}{q} \frac{r}{s} \frac{m}{p}=\frac{q r m}{q s p}=0_{P}$, this is a contradiction. So $0 \neq q r m \in N$. As $\sqrt{(N: M)} \subseteq P(N) \subseteq P$, then $q \notin \sqrt{(N: M)}$. Thus $r m \in N$ since N is a weakly primary submodule.

It is clear that $r m \neq 0$. Hence $0 \neq r m \in N$ implies that $m \in N$ or $r^{n} M \subseteq N$ for some positive integer n. Thus we get $\frac{m}{p} \in N_{P}$ or $\frac{r^{n}}{s^{n}} M_{P} \subseteq N_{P}$ for some positive integer n by $[2$, Corollary 2.9]. Then we get that N_{P} is a weakly primary submodule of M_{P}. Consequently, N is a $P(N)$-locally weakly primary submodule.

Corollary 1. Let N be a proper submodule of an R-module M. If N is a primary submodule, then N is a $P(N)$-locally weakly primary submodule.

Proof. Assume that N is a primary submodule. Then N is a weakly primary submodule. Thus, N is a $P(N)$-locally weakly primary submodule by Proposition 2.

Note that if N is a $P(N)$-locally primary submodule of M, then N is a $P(N)$-locally weakly primary submodule of M.

Now, we give an example to show the converse is not true.
Example 1. Consider the \mathbb{Z}-module \mathbb{Z}_{8} and $N=(\overline{0})$. It is clear that $(\overline{0})$ is always weakly primary submodule but not a primary submodule. By Proposition 2, ($\overline{0}$) is a $P(\overline{0})$ locally weakly primary submodule. It is easily seen that $P(\overline{0})=\left\{r \in \mathbb{Z} \mid r^{n} \bar{m}=\overline{0}\right.$, for some positive integer n, for some $\left.\overline{0} \neq \bar{m} \in \mathbb{Z}_{8}\right\} \subseteq(2)=P$. Now, we show that $(\overline{0})_{P}$ is not a primary submodule of $\left(\mathbb{Z}_{8}\right)_{P}$. It is clear that $\frac{2}{p} \frac{\bar{q}}{q} \in(\overline{0})_{P}$ for some $p, q \notin P$. Then there is an $u \notin P$ with $u 2 \overline{4} \in(0)$. Thus $2 u \notin\left((\overline{0}): \mathbb{Z}_{8}\right)$ and $\overline{4} \notin(\overline{0})$. Then $\frac{2}{p}=\frac{2 u}{p u} \notin\left((\overline{0}): \mathbb{Z}_{8}\right)_{P} \subseteq\left((\overline{0})_{P}:\left(\mathbb{Z}_{8}\right)_{P}\right)$ and $\frac{\overline{4}}{q} \notin(\overline{0})_{P}$. Therefore, $(\overline{0})$ is not a $P(\overline{0})$-locally primary submodule.

In the following example, we get that a submodule N is both $P(N)$-locally primary submodule of M and $P(N)$-locally weakly primary submodule of M but neither primary submodule of M nor weakly primary submodule of M.

Example 2. Consider $R=\mathbb{Z}$-module $M=\mathbb{Z}_{12}$. Let N be the submodule of \mathbb{Z}_{12} generated by $\overline{6}$. It is easly seen that $\overline{0} \neq 2 \overline{3}(=3 \overline{2}) \in N$ but $2 \notin(N: M)$ and $\overline{3} \notin N(3 \notin(N: M)$ and $\overline{2} \notin N$), that is, N is not a weakly primary submodule of M, hence N is not a primary submodule of M. Assume that N is not a $P(N)$-locally primary submodule of M. Then there exists a maximal ideal P of R with $P(N) \subseteq P$ where N_{p} is not a primary submodule of M_{P}. Note that $2,3 \in P(N)$. Thus $1 \in P$, a contradiction. Therefore, N is a $P(N)$-locally primary submodule of M. Hence N is a $P(N)$-locally weakly primary submodule of M.

Theorem 1. Let N be a proper submodule of an R-module M. Then the following statements hold:

1) N is a primary submodule if and only if $P(N)=\sqrt{(N: M)}$.
2) Let $P(0) \subseteq \sqrt{(N: M)}$. Then N is a primary submodule if and only if N is a weakly primary submodule.

Proof. 1) (\Longrightarrow) : Assume that N is a primary submodule. Let $r \in P(N)$. Then $r^{n} m \in N$ for some positive integer n and for some $m \notin N$. Since N is a primary submodule, then $\left(r^{n}\right)^{k} M=r^{n k} M \subseteq N$ for some positive integer k, that is, $r \in \sqrt{(N: M)}$. Hence $P(N) \subseteq \sqrt{(N: M)}$. By Lemma 1, we get $P(N)=\sqrt{(N: M)}$.
(\Longleftarrow) : Suppose that $P(N)=\sqrt{(N: M)}$. Let $r m \in N$ and $m \notin N$ where $r \in R, m \in$ M. Then $r \in P(N)$. Thus $r \in \sqrt{(N: M)}$, that is, $r^{k} M \subseteq N$ for some positive integer k. Consequently, N is a primary submodule.
2) (\Longrightarrow) : Clear.
(\Longleftarrow) : Assume that N is a weakly primary submodule. Let $r \in P(N)$. Then $r^{n} m \in N$ for some positive integer n and for some $m \notin N$. Suppose that $r^{n} m=0$. Since $m \notin N$, then we get $m \neq 0$. So $r \in P(0)$. Thus $r \in \sqrt{(N: M)}$, by assumption. Hence $P(N)=$ $\sqrt{(N: M)}$ by Lemma 1. Suppose that $0 \neq r^{n} m \in N$. Since $m \notin N$ and N is a weakly primary submodule, then $\left(r^{n}\right)^{k} M \subseteq N$ for some positive integer k, that is, $r \in \sqrt{(N: M)}$ and so $P(N)=\sqrt{(N: M)}$. By (1), N is a primary submodule.

Corollary 2. Let N be a proper submodule of an R-module M with $P(N)=\sqrt{(N: M)}$. Then N is a $P(N)$-locally primary submodule and $P(N)$-locally weakly primary submodule.

Proof. We get that N is a primary submodule by Theorem 1 (1). Then N is a $P(N)-$ locally primary submodule by Proposition 1 . Since N is primary submodule, then N is weakly primary submodule. Therefore, N is $P(N)$-locally weakly primary submodule by Proposition 2.

By [2, Lemma 2.19], if P is a maximal ideal of R, then $(N: M)_{P} \subseteq\left(N_{P}: M_{P}\right)$. Now, we explain that $\sqrt{(N: M)_{P}}=\sqrt{\left(N_{P}: M_{P}\right)}$ when P is a maximal ideal of R with $P(N) \subseteq P$.

Proposition 3. Let N be a proper submodule of an R-module M. Then $\sqrt{(N: M)_{P}}=$ $\sqrt{\left(N_{P}: M_{P}\right)}$ for a maximal ideal P of R with $P(N) \subseteq P$.

Proof. It is clear from [2, Lemma 2.19 and Lemma 2.20] since $S(N) \subseteq P(N)$ for some proper submodule N of M.

Lemma 2. Let N be a proper submodule of an R-module M. Then $\sqrt{(N: M)_{P}}=$ $(\sqrt{(N: M)})_{P}$ for any maximal ideal P of R with $P(N) \subseteq P$.

Proof. Let $\frac{r}{p} \in \sqrt{(N: M)_{P}}$ for some $r \in R$ and $p \notin P$. Then $\left(\frac{r}{p}\right)^{n}=\frac{r^{n}}{p^{n}} \in(N: M)_{P}$ for some positive integer n. There is a $q \notin P$ such that $q r^{n} \in(N: M)$, that is, $q r^{n} m \in N$ for every $m \in M$. Then $r^{n} m \in N$ for every $m \in M$ since $q \notin P(N)$. Thus $r \in \sqrt{(N: M)}$. Then $\frac{r}{p} \in(\sqrt{(N: M)})_{P}$. Conversely, assume that $\frac{r}{p} \in(\sqrt{(N: M)})_{P}(N: M)_{P}$ and so $\frac{r}{p} \in \sqrt{(N: M)_{P}}$.

Corollary 3. Let N be a proper submodule of an R-module. If P is any maximal ideal of R with $P(N) \subseteq P$, then $(\sqrt{(N: M)})_{P}=\sqrt{\left(N_{P}: M_{P}\right)}$.

Proof. It is clear from Proposition 3 and Lemma 2.
Proposition 4. Let N be a proper submodule of an R-module M and $m \in M$. Then $\sqrt{(N: R m)_{P}}=\sqrt{\left(N_{P}:(R m)_{P}\right)}$ for a maximal ideal P of R with $P(N) \subseteq P$.

Proof. It is clear from [5, Lemma 9.12].

If we put $N=0$ in Proposition 4, we have the following corollary.
Corollary 4. Let M be an R-module and $m \in M$. Then $\sqrt{(0: R m)_{P}}=\sqrt{\left(0_{P}:(R m)_{P}\right)}$ for a maximal ideal P of R with $P(0) \subseteq P$.

Proposition 5. Let N be a proper submodule of an R-module M and P be a maximal ideal of R with $P(N) \subseteq P$. Then the following statements hold:

1) Let $P(0) \subseteq P(N)$. Then $\sqrt{(N: M)}$ is a weakly prime ideal of R if and only if $\sqrt{(N: M)_{P}}$ is a weakly prime ideal of R_{P}.
2) $\sqrt{(N: M)}$ is a prime ideal of R if and only if $\sqrt{(N: M)_{P}}$ is a prime ideal of R_{P}.

Proof. 1) (\Longrightarrow) : Suppose that $\sqrt{(N: M)}$ is a weakly prime ideal of R. If $\sqrt{(N: M)_{P}}=$ R_{P}, then $\frac{1}{1} \in \sqrt{(N: M)_{P}}=(\sqrt{(N: M)})_{P}$ and so $q 1=q \in \sqrt{(N: M)}$ for some $q \notin P$. But by Lemma $1, \sqrt{(N: M)} \subseteq P(N) \subseteq P$, which is a contradiction. So $\sqrt{(N: M)_{P}} \neq$ R_{P}, that is, $\sqrt{(N: M)_{P}}$ is a proper ideal of R_{P}. Let $0 \neq \frac{r}{p} \frac{s}{q} \in \sqrt{(N: M)_{P}}$, where $r, s \in R$ and $p, q \notin P$. Then we have $\frac{r}{p} \frac{s}{q}=\frac{r s}{p q} \in(\sqrt{(N: M)})_{P}$, then there exists an $u \notin P$ such that urs $\in \sqrt{(N: M)}$. If urs $=0$, then $\frac{r}{p} \frac{s}{q}=\frac{u}{u} \frac{r}{p} \frac{s}{q}=\frac{u r s}{u p q}=0$, this is a contradiction. So urs $\neq 0$. Since $0 \neq$ urs $\in \sqrt{(N: M)}$ and $\sqrt{(N: M)}$ is a weakly prime ideal of R, then
$u r \in \sqrt{(N: M)}$ or $s \in \sqrt{(N: M)}$. Hence $\frac{r}{p}=\frac{u}{u} \frac{r}{p} \in(\sqrt{(N: M)})_{P}$ or $\frac{s}{q} \in(\sqrt{(N: M)})_{P}$, that is, $\frac{r}{p} \in \sqrt{(N: M)_{P}}$ or $\frac{s}{q} \in \sqrt{(N: M)_{P}}$.
$(\Longleftarrow):$ Assume that $\sqrt{(N: M)_{P}}$ is a weakly prime ideal of R_{P}. If $\sqrt{(N: M)}=R$, then $\sqrt{(N: M)_{P}}=R_{P}$, a contradiction. So $\sqrt{(N: M)}$ is a proper ideal of R. Let $0 \neq a b \in \sqrt{(N: M)}$ for some $a, b \in R$. Then $\frac{a b}{1}=\frac{a}{1} \frac{b}{1} \in \sqrt{(N: M)_{P}}$. If $\frac{a}{1} \frac{b}{1}=0$, then $q a b=0$ for some $q \notin P$. As $0 \neq a b$, then $q \in P(0)$. Thus $q \in P$, which is a contradiction. So $0 \neq \frac{a}{1} \frac{b}{1} \in \sqrt{(N: M)_{P}}$. Since $\sqrt{(N: M)_{P}}$ is a weakly prime ideal of R_{P}, then $\frac{a}{1} \in \sqrt{(N: M)_{P}}$ or $\frac{b}{1} \in \sqrt{(N: M)_{P}}$. Therefore $p a \in \sqrt{(N: M)}$ for some $p \notin P$ or $s b \in \sqrt{(N: M)}$ for some $s \notin P$. As $p \notin P$ and $s \notin P$, then $p, s \notin P(N)$. Consequently, $a \in \sqrt{(N: M)}$ or $b \in \sqrt{(N: M)}$.
2) (\Longrightarrow) : Assume that $\sqrt{(N: M)}$ is a prime ideal of R. In a similar way, we get $\sqrt{(N: M)_{P}}$ is a proper ideal of R_{P}. Now, let $\frac{r}{p} \frac{s}{q} \in \sqrt{(N: M)_{P}}$, where $r, s \in R$ and $p, q \notin P$. Then we have $\frac{r s}{p q} \in(\sqrt{(N: M)})_{P}$, then urs $\in \sqrt{(N: M)}$ for some $u \notin P$. Since $\sqrt{(N: M)}$ is a prime ideal of R, then ur $\in \sqrt{(N: M)}$ or $s \in \sqrt{(N: M)}$. Consequently, $\frac{r}{p}=\frac{u}{u} \frac{r}{p} \in(\sqrt{(N: M)})_{P}$ or $\frac{s}{q} \in(\sqrt{(N: M)})_{P}$, that is, $\frac{r}{p} \in \sqrt{(N: M)_{P}}$ or $\frac{s}{q} \in \sqrt{(N: M)_{P}}$.
(\Longleftarrow) : Suppose that $\sqrt{(N: M)_{P}}$ is a prime ideal of R_{P}. From (1), it is clear that $\sqrt{(N: M)}$ is a proper ideal of R. Then $\frac{a b}{1}=\frac{a}{1} \frac{b}{1} \in \sqrt{(N: M)_{P}}$ for some $a, b \in R$ and since $\sqrt{(N: M)_{P}}$ is a prime ideal of R_{P}, then $\frac{a}{1} \in \sqrt{(N: M)_{P}}$ or $\frac{b}{1} \in \sqrt{(N: M)_{P}}$. Thus $p a \in \sqrt{(N: M)}$ for some $p \notin P$ or $s b \in \sqrt{(N: M)}$ for some $s \notin P$. As $p \notin P$ and $s \notin P$, then $p, s \notin P(N)$. Therefore, $a \in \sqrt{(N: M)}$ or $b \in \sqrt{(N: M)}$.

Proposition 6. Let M be a faithful cyclic R-module and N be a proper submodule of M with $P(0) \subseteq P(N)$. If N is a $P(N)$-locally weakly primary submodule of M, then $\sqrt{(N: M)}$ is a weakly prime ideal of R.

Proof. Let P be a maximal ideal of R with $P(N) \subseteq P$. By [2, Proposition 2.18], M_{P} is a faithful cyclic R_{P}-module. Then N_{P} is a weakly primary submodule of M_{P}. Thus by [1, Proposition 2.3], $\sqrt{\left(N_{P}: M_{P}\right)}$ is a weakly prime submodule of M_{P}. By Proposition 3, $\sqrt{(N: M)_{P}}$ is a weakly prime submodule of M_{P}. By Proposition $5(1), \sqrt{(N: M)}$ is a weakly prime ideal of R.

Proposition 7. Let M be an R-module. Let N be a P-primal and a $P(N)$-locally weakly primary submodule of M not primary submodule of M. If $P(0) \subseteq P(N)$ and I is an ideal of R such that $I \subseteq \sqrt{(N: M)}$, then $I N=0$. Particularly, $\sqrt{(N: M)} N=0$.

Proof. Suppose that $P(0) \subseteq P(N)$ and I is an ideal of R such that $I \subseteq \sqrt{(N: M)}$. Since N is a P-primal, then $P(N)$ is an ideal of R. As $1 \notin P(N)$, then $P(N)$ is a proper ideal. Hence there is a maximal ideal P of R such that $P(N) \subseteq P$. Then, N_{P} is a weakly primary submodule of M_{P} because N is a $P(N)$-locally weakly primary submodule of M. Our aim is to show that N_{P} is not a primary submodule of M_{P}. Assume that N_{P} is a primary submodule of M_{P}. Let $r m \in N$ for some $r \in R, m \in M$. Then $\frac{r m}{1}=\frac{r}{1} \frac{m}{1} \in N_{P}$.

By assumption, $\frac{m}{1} \in N_{P}$ or $\left(\frac{r}{1}\right)^{n} M_{P} \subseteq N_{P}$ for some positive integer n. By using a similar technique in the previous proofs, $m \in N$ or $r^{n} M \subseteq N$ for some positive integer n since $P(N) \subseteq P$, but this contradicts with N which is not a primary submodule of M. By [2, Lemma 2.19], $I_{P} \subseteq \sqrt{(N: M)_{P}} \subseteq \sqrt{\left(N_{P}: M_{P}\right)}$. By [1, Corollary 3.4], $I_{P} N_{P}=0$. We get $\frac{r}{1} \frac{m}{1}=\frac{r m}{1}=0$ for every $r \in I$ and every $m \in N$. Therefore $q r m=0$ for some $q \notin P$. If $r m \neq 0$, then $q \in P(0)$ and so $q \in P$, which is a contradiction. Hence $r m=0$, that is, $I N=0$. Particularly, by putting $I=\sqrt{(N: M)}$, we have $\sqrt{(N: M)} N=0$.

Proposition 8. ([2, Proposition 2.16]) Let M be an R-module and P be a maximal ideal of R. If \bar{I} is an ideal of R_{P} and \bar{N} is a submodule of M_{P}, then

1) $I=\left\{a \in R \left\lvert\, \frac{a}{1} \in \bar{I}\right.\right\}$ is an ideal of R and $\bar{I}=I_{P}$.
2) $N=\left\{m \in M \left\lvert\, \frac{m}{1} \in \bar{N}\right.\right\}$ is a submodule of M and $\bar{N}=N_{P}$.

Theorem 2. Let N be a P-primal submodule of an R-module M with $P(0) \subseteq P(N)$. Then N is a $P(N)$-locally weakly primary submodule of M if and only if $0 \neq I D \subseteq N$ for some ideal I of R and some submodule D of M implies $I \subseteq \sqrt{(N: M)}$ or $D \subseteq N$.

Proof. (\Longrightarrow) : Assume that N is a $P(N)$-locally weakly primary submodule of M. Let $0 \neq I D \subseteq N$ for some ideal I of R and some submodule D of M. Since N is P-primal, then $P(N)$ is an ideal of R. As $1 \notin P(N)$, then $P(N)$ is a proper ideal. So we have $P(N) \subseteq P$ for some maximal ideal P of R. Thus N_{P} is a weakly primary submodule of M_{P}. Now, I_{P} is an ideal of R_{P} and D_{P} is a submodule of M_{P} with $(I D)_{P}=I_{P} D_{P} \subseteq N_{P}$. Suppose that $I_{P} D_{P}=0_{P}$. Then $\frac{r}{1} \frac{m}{1}=\frac{r m}{1}=0$ for every $r \in I$ and every $m \in D$. So there exists a $q \notin P$ such that $q r m=0$. If $r m \neq 0$, then $q \in P(0)$. Thus $q \in P$, which is a contradiction. So $r m=0$, hence $I D=0$, that is a contradiction. Then $0_{P} \neq I_{P} D_{P} \subseteq N_{P}$. Since N is a $P(N)$-locally weakly primary submodule of M, then N_{P} is a weakly primary submodule of M_{P}. By [1, Theorem 3.6], either $I_{P} \subseteq \sqrt{\left(N_{P}: M_{P}\right)}$ or $D_{P} \subseteq N_{P}$. Since $P(N) \subseteq P$, then $I \subseteq \sqrt{(N: M)}$ or $D \subseteq N$.
(\Longleftarrow) : Let P be a maximal ideal of R with $P(N) \subseteq P$. Since N is a proper ideal of R, then there is an $a \notin N$, but $\frac{a}{1} \in M_{P}$. If $\frac{a}{1} \in N_{P}$, then $q a \in N$ such that $q \notin P$. As $a \notin N$, then $q \in P(N)$, that is, $q \in P$, which is a contradiction. So $\frac{a}{1} \notin N_{P}$. Hence N_{P} is a proper ideal of R_{P}. Let \bar{I} be an ideal of R_{P} and \bar{D} be a submodule of M_{P} with $0_{P} \neq \overline{I D} \subseteq N_{P}$. By [2, Proposition 2.16], $\bar{I}=I_{P}$, for some ideal I of R and $\bar{D}=D_{P}$, for some submodule D of M. So $0_{P} \neq I_{P} D_{P} \subseteq N_{P}$, that is, $0_{P} \neq(I D)_{P} \subseteq N_{P}$. Since $P(N) \subseteq P$, then $I D \subseteq N$. Also $0 \neq I D$. On the contrary, $(I D)_{P}=0_{P}$. By the hypothesis, we have either $I \subseteq \sqrt{(N: M)}$ or $D \subseteq N$. If $I \subseteq \sqrt{(N: M)}$, then $\bar{I}=I_{P} \subseteq \sqrt{(N: M)_{P}}$. If $D \subseteq N$, then $\bar{D}=D_{P} \subseteq N_{P}$. From [1, Theorem 3.6], N_{P} is a weakly primary submodule of M_{P}. Therefore, N is a $P(N)$-locally weakly primary submodule of M.

Corollary 5. Let N be a P-primal submodule of an R-module M with $P(0) \subseteq P(N)$. Then N is a $P(N)$-locally weakly primary submodule of M if and only if N is a weakly primary submodule of M.

Proof. It is clear from Theorem 2 and [1, Theorem 3.6].

Theorem 3. Let M be an R-module and N be a P-primal submodule of M with $P(0) \subseteq$ $P(N)$. Then the following statements are equivalent:

1) N is a $P(N)$-locally weakly primary submodule of M.
2) For any $m \notin N, \sqrt{(N: R m)}=\sqrt{(N: M)} \cup(0: R m)$.
3) For any $m \notin N, \sqrt{(N: R m)}=\sqrt{(N: M)}$ or $\sqrt{(N: R m)}=(0: R m)$.

Proof. ($1 \Longrightarrow$ 2): Let N be a $P(N)$-locally weakly primary submodule of M and let $m \notin N$. Since N is P-primal, then $P(N)$ is an ideal of R. As $1 \notin P(N)$, then $P(N)$ is a proper ideal. So we have $P(N) \subseteq P$ for some maximal ideal P of R. Hence N_{P} is a weakly primary submodule of M_{P}. As $m \in M$, then $\frac{m}{1} \in M_{P}$, but $\frac{m}{1} \notin N_{P}$. If $\frac{m}{1} \in N_{P}$, then $p m \in N$ for some $p \notin P$. Since $p \notin P(N)$, then $m \in N$, this is a contradiction. By [3, Theorem 2.15], $\sqrt{\left(N_{P}: R_{P} \frac{m}{1}\right)}=\sqrt{\left(N_{P}: M_{P}\right)} \cup\left(0_{P}: R_{P} \frac{m}{1}\right)$ and from [2, Corollary 2.9], $\sqrt{\left(N_{P}:(R m)_{P}\right)}=\sqrt{\left(N_{P}: M_{P}\right)} \cup\left(0_{P}:(R m)_{P}\right)$. Then by Proposition 3, Proposition 4 and Corollary 4, $\sqrt{(N: R m)_{P}}=\sqrt{(N: M)_{P}} \cup(0: R m)_{P}$. Let $r \in \sqrt{(N: R m)}$. Then $\frac{r}{1} \in \sqrt{(N: R m)_{P}}$ and so $\frac{r}{1} \in \sqrt{(N: M)_{P}}$ or $\frac{r}{1} \in(0: R m)_{P}$. If $\frac{r}{1} \in \sqrt{(N: M)_{P}}$, then $\frac{r^{n}}{1} \in(N: M)_{P}$ for some positive integer n and thus $q r^{n} \in(N: M)$ for some $q \notin P$, that is, $q r^{n} M \subseteq N$. Assume that $r^{n} M \nsubseteq N$. Then $r^{n} m \notin N$ for some $m \in M$, however $q r^{n} m \in N$. Hence $q \in P(N)$. Then $q \in P$, which is a contradiction. So $r^{n} M \subseteq N$ for some positive integer n, that is, $r \in \sqrt{(N: M)}$. If $\frac{r}{1} \in(0: R m)_{P}$, then $p r \in(0: R m)$ for some $p \notin P$. Thus $p r R m=0$. Assume that $r R m \neq 0$. Then $r s m \neq 0$ for some $s \in R$, but prsm $=0$. Therefore $p \in P(0)$. As $P(0) \subseteq P$, then $p \in P$, which is a contradiction. So $r R m=0$. Then $r \in(0: R m)$. Hence $r \in \sqrt{(N: M)} \cup(0: R m)$. Conversely, let $r \in \sqrt{(N: M)} \cup(0: R m)$. If $r \in \sqrt{(N: M)}$, then $r^{n} M \subseteq N$ for some positive integer n and so we get $r^{n} R m \subseteq r^{n} M \subseteq N$. Thus $r \in \sqrt{(N: R m)}$. If $r \in(0: R m)$, then $r R m=0 \subseteq N$. Thus $r \in(N: R m) \subseteq \sqrt{(N: R m)}$.
$(2 \Rightarrow 3)$: Clear.
$(3 \Rightarrow 1)$: Let P be a maximal ideal of R with $P(N) \subseteq P$. Let $\frac{m}{p} \notin N_{P}$ where $m \in M$, $p \notin P$. Then $m \notin N$. By the condition of the theorem, $\sqrt{(N: R m)}=\sqrt{(N: M)}$ or $\sqrt{(N: R m)}=(0: R m)$ for some $m \notin N$. If $\sqrt{(N: R m)}=\sqrt{(N: M)}$, then $\sqrt{(N: R m)_{P}}=\sqrt{(N: M)_{P}}$ and from Proposition 3 and Proposition $4 \sqrt{\left(N_{P}:(R m)_{P}\right)}=$ $\sqrt{\left(N_{P}: M_{P}\right)}$. By [2, Proposition 2.8], $\sqrt{\left(N_{P}: R_{P} \frac{m}{p}\right)}=\sqrt{\left(N_{P}: M_{P}\right)}$. If $\sqrt{(N: R m)}=$ $(0: R m)$, then $\sqrt{(N: R m)_{P}}=(0: R m)_{P}$ and by Proposition 4 and Corollary 4, $\sqrt{\left(N_{P}:(R m)_{P}\right)}=\left(0:(R m)_{P}\right)$. By [2, Proposition 2.8], $\sqrt{\left(N_{P}: R_{P} \frac{m}{p}\right)}=\left(0: R_{P} \frac{m}{p}\right)$. By [3, Theorem 2.15], N_{P} is a weakly primary submodule of M_{P}. Thus N is a $P(N)$-locally weakly primary submodule of M.

Theorem 4. Let M be an R-module and N be a P-primal submodule of M with $P(0) \subseteq$ $P(N)$. Then the following statements are equivalent:

1) N is a $P(N)$-locally weakly primary submodule of M.
2) $0 \neq I D \subseteq N$ for any ideal I of R and any submodule D of M implies either $I \subseteq \sqrt{(N: M)}$ or $D \subseteq N$.
3) $\sqrt{(N: R m)}=\sqrt{(N: M)} \cup(0: R m)$ for any $m \notin N$.
4) $\sqrt{(N: R m)}=\sqrt{(N: M)}$ or $\sqrt{(N: R m)}=(0: R m)$ for any $m \notin N$.

Proof. It is clear from Theorem 2 and Theorem 3.

References

[1] A.E.Ashour, On Weakly Primary Submodules, Journal of Al Azhar UniversityGaza(Natural Sciences). 13. pps 31-40. 2011.
[2] A.K.Jabbar, A Generalization of Prime and Weakly Prime Submodules, Pure Math. Sciences. 2. pps 1-11. 2013.
[3] S.E.Atani and F.Farzalipour, On Weakly Primary Ideals, Georgian Math. Journal. 12. pps 423-429. 2005.
[4] S.E.Atani and F.Farzalipour, On Weakly Prime Submodules, Tamkang Journal of Math. 38. pps 247-252. 2007.
[5] R.Y. Sharp, Steps in Commutative Algebra, Cambridge University Press, Cambridge. 1990.
[6] U. Tekir, A Note on Multiplication Modules, International Journal of Pure and Applied Mathematics. 27. pps 103-107. 2006
[7] U.Tekir, On Primary Submodules, International Journal of Pure and Applied Math. 27. pps 283-289. 2006.

