EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS PRE-PUBLICATION SUBMISSION DOCUMENT

ISSN 1307-5543 – www.ejpam.com

A Note on Primary and Weakly Primary Submodules

1 2

Abstract. In this paper, we generalize primary submodules and weakly primary submodules which are called P(N)-locally primary submodules and P(N)-locally weakly primary submodules, respectively. Some properties of these generalizations of submodules are investigated.

2010 Mathematics Subject Classifications: 13A15, 13C99, 13F05

Key Words and Phrases: Primary, Weakly primary, P(N)-locally primary, P(N)-locally weakly primary.

1. Introduction

The two generalization on prime submodules and weakly prime submodules, which are called S(N)-locally prime submodule and S(N)-weakly prime submodule, respectively where $S(N) = \{r \in R \mid rm \in N \text{ for some } m \notin N\}$ for a submodule N of an R-module M, have been broadly studied by A. K. Jabbar (see [2]). In this paper, our aim is to obtain the two generalization on primary submodules and weakly primary submodules of an R-module M.

Throughout this paper, we assume that all rings are commutative with identity $1 \neq 0$. An ideal I of R is called a proper ideal if $I \neq R$. Then the radical of a proper ideal I of R is denoted by \sqrt{I} and $\sqrt{I} = \{x \in R \mid x^n \in I \text{ for some positive integer } n\}$. A proper ideal P of R is called prime (primary) if $ab \in P$ for some $a, b \in R$ implies that either $a \in P$ or $b \in P$ (either $a \in P$ or $b^n \in P$ for some positive integer n). A proper ideal P of R is said to be a weakly prime ideal if $0 \neq ab \in P$ for some $a, b \in R$ implies that either $a \in P$ or $b \in P$, and it is a weakly primary ideal if $0 \neq ab \in P$ for some $a, b \in R$ implies that either $a \in P$ or $a \in P$ or $b^n \in P$ for some positive integer n (see [3], [4]).

Let M be an R-module. A submodule N of M is called a proper submodule if $N \neq M$. A proper submodule N of M is called a prime submodule if $rm \in N$ for some $r \in R$ and $m \in M$ implies that either $m \in N$ or $rM \subseteq N$ and it is said to be a weakly prime submodule if $0 \neq rm \in N$ for some $r \in R$ and $m \in M$ implies that either $m \in N$ or $rM \subseteq N$. A subset S of R is said to be multiplicative closed set if $\emptyset \neq S$, $0 \notin S$ and

1

http://www.ejpam.com

whenever $a, b \in S$, then $ab \in S$. Let S be a multiplicative closed set in R. Then an R_S -module M_S is gotten under the operations $\frac{a}{s} + \frac{b}{u} = \frac{ua+sb}{su}$ and $\frac{r}{v}\frac{a}{s} = \frac{ra}{vs}$ for any $\frac{r}{v} \in R_S$ and $\frac{a}{s}, \frac{b}{u} \in M_S$ [5]. A proper submodule N of M is said to be S(N)-locally prime (S(N)-weakly prime) submodule if N_P is a prime (a weakly prime) submodule of M_P for each maximal ideal P with $S(N) \subseteq P$ [2].

In this paper, we study two generalizations of the primary submodules and the weakly primary submodules of M. A proper submodule N of M is said to be a primary submodule if $rm \in N$ for some $r \in R$, $m \in M$ implies that either $m \in N$ or $r^nM \subseteq N$ for some positive integer n and it is said to be a weakly primary submodule if $0 \neq rm \in N$ for some $r \in R$, $m \in M$ implies that either $m \in N$ or $r^nM \subseteq N$ for some positive integer n. The ideal $\{r \in R \mid rM \subseteq N\}$ will be denoted by (N : M) and $(0 : N) = \{r \in R \mid rN = 0\}$ where N is a submodule of M. Then the annihilator of M is (0 : M) where $(0 : M) = \{r \in R \mid rM = 0\}$. An R-module M is called a faithful module if (0 : M) = (0). It is known that if N is a primary submodule of M, then (N : M) is a primary ideal of R and $\sqrt{(N : M)} = \{r \in R \mid r^nM \subseteq N \text{ for some positive integer } n\}$ is a prime ideal of R ([1], [7], [6]).

Now, we introduce the concepts that we will use. Let N be a proper submodule of M. An element $r \in R$ is said to be primary to N if $r^n m \in N$, where $m \in M$ and n is a positive integer, then $m \in N$. Then $r \in R$ is said to be not primary to N if $r^n m \in N$ for some positive integer n and for some $m \notin N$. Let us denote the set of all elements of R that are not primary to N by P(N). Then we get $P(N) = \{r \in R \mid r^n m \in N \text{ for some positive integer } n, \text{ for some element } m \notin N \}$. If N = (0), then $P((0)) = \{r \in R \mid r^n m = 0 \text{ for some positive integer } n, \text{ for some } 0 \neq m \in M \}$. A proper submodule N of M is said to be a P-primal if P(N) forms an ideal of R.

2. P(N)-Locally Primary and P(N)-Locally Weakly Primary Submodules

Definition 1. Let N be a proper submodule of an R-module M. Then N is called a P(N)locally primary submodule of M if N_P is a primary submodule of M_P for all maximal ideal P where $P(N) \subseteq P$.

Definition 2. A proper submodule N of an R-module M is called a P(N)-locally weakly primary submodule of M if N_P is a weakly primary submodule of M_P for every maximal ideal P where $P(N) \subseteq P$.

Lemma 1. Let N be a proper submodule of an R-module M. Then $\sqrt{(N:M)} \subseteq P(N)$.

Proof. Let $r \in \sqrt{(N:M)}$. Then $r^n M \subseteq N$ for some positive integer n. There exists $m \notin N$ such that $r^n m \in N$. Then $r \in P(N)$. Thus $\sqrt{(N:M)} \subseteq P(N)$.

The following propositions state that every primary submodule N is P(N)-locally primary submodule and every weakly primary submodule N is P(N)-locally weakly primary submodule. **Proposition 1.** A primary submodule N of an R-module M is a P(N)-locally primary submodule.

Proof. Let P be a maximal ideal of R where $P(N) \subseteq P$. By the previous lemma, we say that $\sqrt{(N:M)} \subseteq P(N) \subseteq P$. Since $\sqrt{(N:M)} \cap (R \setminus P) = \emptyset$, then N_P is a primary submodule of M_P . Consequently, N is a P(N)-locally primary submodule.

Proposition 2. A weakly primary submodule N of an R-module M is a P(N)-locally weakly primary submodule.

Proof. Suppose that P is a maximal ideal of R where $P(N) \subseteq P$. From [2, Corollary 2.2], if $N \neq M$, then $N_P \neq M_P$, that is, N_P is a proper submodule of M_P . Let $0_P \neq \frac{r}{s} \frac{m}{p} \in N_P$ for some $\frac{r}{s} \in R_P$ and $\frac{m}{p} \in M_P$ (for some $r \in R$, $m \in M$ and $s, p \notin P$). Then there is a $q \notin P$ such that $qrm \in N$. Assume that qrm = 0. Then $\frac{r}{s} \frac{m}{p} = \frac{q}{q} \frac{r}{s} \frac{m}{p} = \frac{qrm}{qsp} = 0_P$, this is a contradiction. So $0 \neq qrm \in N$. As $\sqrt{(N:M)} \subseteq P(N) \subseteq P$, then $q \notin \sqrt{(N:M)}$. Thus $rm \in N$ since N is a weakly primary submodule.

It is clear that $rm \neq 0$. Hence $0 \neq rm \in N$ implies that $m \in N$ or $r^n M \subseteq N$ for some positive integer n. Thus we get $\frac{m}{p} \in N_P$ or $\frac{r^n}{s^n} M_P \subseteq N_P$ for some positive integer n by [2, Corollary 2.9]. Then we get that N_P is a weakly primary submodule of M_P . Consequently, N is a P(N)-locally weakly primary submodule.

Corollary 1. Let N be a proper submodule of an R-module M. If N is a primary submodule, then N is a P(N)-locally weakly primary submodule.

Proof. Assume that N is a primary submodule. Then N is a weakly primary submodule. Thus, N is a P(N)-locally weakly primary submodule by Proposition 2.

Note that if N is a P(N)-locally primary submodule of M, then N is a P(N)-locally weakly primary submodule of M.

Now, we give an example to show the converse is not true.

Example 1. Consider the Z-module \mathbb{Z}_8 and $N = (\overline{0})$. It is clear that $(\overline{0})$ is always weakly primary submodule but not a primary submodule. By Proposition 2, $(\overline{0})$ is a $P(\overline{0})$ locally weakly primary submodule. It is easily seen that $P(\overline{0}) = \{r \in \mathbb{Z} \mid r^n \overline{m} = \overline{0},$ for some positive integer n, for some $\overline{0} \neq \overline{m} \in \mathbb{Z}_8\} \subseteq (2) = P$. Now, we show that $(\overline{0})_P$ is not a primary submodule of $(\mathbb{Z}_8)_P$. It is clear that $\frac{2}{p} \frac{\overline{4}}{\overline{q}} \in (\overline{0})_P$ for some $p, q \notin P$. Then there is an $u \notin P$ with $u2\overline{4} \in (0)$. Thus $2u \notin ((\overline{0}) : \mathbb{Z}_8)$ and $\overline{4} \notin (\overline{0})$. Then $\frac{2}{p} = \frac{2u}{pu} \notin ((\overline{0}) : \mathbb{Z}_8)_P \subseteq ((\overline{0})_P : (\mathbb{Z}_8)_P)$ and $\frac{\overline{4}}{\overline{q}} \notin (\overline{0})_P$. Therefore, $(\overline{0})$ is not a $P(\overline{0})$ -locally primary submodule.

In the following example, we get that a submodule N is both P(N)-locally primary submodule of M and P(N)-locally weakly primary submodule of M but neither primary submodule of M nor weakly primary submodule of M. **Example 2.** Consider $R = \mathbb{Z}$ -module $M = \mathbb{Z}_{12}$. Let N be the submodule of \mathbb{Z}_{12} generated by $\overline{6}$. It is easly seen that $\overline{0} \neq 2\overline{3}(=3\overline{2}) \in N$ but $2 \notin (N : M)$ and $\overline{3} \notin N$ ($3 \notin (N : M)$) and $\overline{2} \notin N$), that is, N is not a weakly primary submodule of M, hence N is not a primary submodule of M. Assume that N is not a P(N)-locally primary submodule of M. Then there exists a maximal ideal P of R with $P(N) \subseteq P$ where N_p is not a primary submodule of M_P . Note that $2, 3 \in P(N)$. Thus $1 \in P$, a contradiction. Therefore, Nis a P(N)-locally primary submodule of M. Hence N is a P(N)-locally weakly primary submodule of M.

Theorem 1. Let N be a proper submodule of an R-module M. Then the following statements hold:

1) N is a primary submodule if and only if $P(N) = \sqrt{(N:M)}$.

2) Let $P(0) \subseteq \sqrt{(N:M)}$. Then N is a primary submodule if and only if N is a weakly primary submodule.

Proof. 1) (\Longrightarrow) : Assume that N is a primary submodule. Let $r \in P(N)$. Then $r^n m \in N$ for some positive integer n and for some $m \notin N$. Since N is a primary submodule, then $(r^n)^k M = r^{nk} M \subseteq N$ for some positive integer k, that is, $r \in \sqrt{(N:M)}$. Hence $P(N) \subseteq \sqrt{(N:M)}$. By Lemma 1, we get $P(N) = \sqrt{(N:M)}$.

 (\Leftarrow) : Suppose that $P(N) = \sqrt{(N:M)}$. Let $rm \in N$ and $m \notin N$ where $r \in R, m \in M$. Then $r \in P(N)$. Thus $r \in \sqrt{(N:M)}$, that is, $r^k M \subseteq N$ for some positive integer k. Consequently, N is a primary submodule.

 $2) \implies$: Clear.

(\Leftarrow): Assume that N is a weakly primary submodule. Let $r \in P(N)$. Then $r^n m \in N$ for some positive integer n and for some $m \notin N$. Suppose that $r^n m = 0$. Since $m \notin N$, then we get $m \neq 0$. So $r \in P(0)$. Thus $r \in \sqrt{(N:M)}$, by assumption. Hence $P(N) = \sqrt{(N:M)}$ by Lemma 1. Suppose that $0 \neq r^n m \in N$. Since $m \notin N$ and N is a weakly primary submodule, then $(r^n)^k M \subseteq N$ for some positive integer k, that is, $r \in \sqrt{(N:M)}$ and so $P(N) = \sqrt{(N:M)}$. By (1), N is a primary submodule.

Corollary 2. Let N be a proper submodule of an R-module M with $P(N) = \sqrt{(N:M)}$. Then N is a P(N)-locally primary submodule and P(N)-locally weakly primary submodule.

Proof. We get that N is a primary submodule by Theorem 1 (1). Then N is a P(N)-locally primary submodule by Proposition 1. Since N is primary submodule, then N is weakly primary submodule. Therefore, N is P(N)-locally weakly primary submodule by Proposition 2.

By [2, Lemma 2.19], if P is a maximal ideal of R, then $(N : M)_P \subseteq (N_P : M_P)$. Now, we explain that $\sqrt{(N : M)_P} = \sqrt{(N_P : M_P)}$ when P is a maximal ideal of R with $P(N) \subseteq P$.

Proposition 3. Let N be a proper submodule of an R-module M. Then $\sqrt{(N:M)_P} = \sqrt{(N_P:M_P)}$ for a maximal ideal P of R with $P(N) \subseteq P$.

Proof. It is clear from [2, Lemma 2.19 and Lemma 2.20] since $S(N) \subseteq P(N)$ for some proper submodule N of M.

Lemma 2. Let N be a proper submodule of an R-module M. Then $\sqrt{(N:M)_P} = (\sqrt{(N:M)})_P$ for any maximal ideal P of R with $P(N) \subseteq P$.

Proof. Let $\frac{r}{p} \in \sqrt{(N:M)_P}$ for some $r \in R$ and $p \notin P$. Then $(\frac{r}{p})^n = \frac{r^n}{p^n} \in (N:M)_P$ for some positive integer n. There is a $q \notin P$ such that $qr^n \in (N:M)$, that is, $qr^n m \in N$ for every $m \in M$. Then $r^n m \in N$ for every $m \in M$ since $q \notin P(N)$. Thus $r \in \sqrt{(N:M)}$. Then $\frac{r}{p} \in (\sqrt{(N:M)})_P$. Conversely, assume that $\frac{r}{p} \in (\sqrt{(N:M)})_P(N:M)_P$ and so $\frac{r}{p} \in \sqrt{(N:M)_P}$.

Corollary 3. Let N be a proper submodule of an R-module. If P is any maximal ideal of R with $P(N) \subseteq P$, then $(\sqrt{(N:M)})_P = \sqrt{(N_P:M_P)}$.

Proof. It is clear from Proposition 3 and Lemma 2.

Proposition 4. Let N be a proper submodule of an R-module M and $m \in M$. Then $\sqrt{(N:Rm)_P} = \sqrt{(N_P:(Rm)_P)}$ for a maximal ideal P of R with $P(N) \subseteq P$.

Proof. It is clear from [5, Lemma 9.12].

If we put N = 0 in Proposition 4, we have the following corollary.

Corollary 4. Let M be an R-module and $m \in M$. Then $\sqrt{(0:Rm)_P} = \sqrt{(0_P:(Rm)_P)}$ for a maximal ideal P of R with $P(0) \subseteq P$.

Proposition 5. Let N be a proper submodule of an R-module M and P be a maximal ideal of R with $P(N) \subseteq P$. Then the following statements hold:

1) Let $P(0) \subseteq P(N)$. Then $\sqrt{(N:M)}$ is a weakly prime ideal of R if and only if $\sqrt{(N:M)_P}$ is a weakly prime ideal of R_P .

2) $\sqrt{(N:M)}$ is a prime ideal of R if and only if $\sqrt{(N:M)_P}$ is a prime ideal of R_P .

Proof. 1) (\Longrightarrow) : Suppose that $\sqrt{(N:M)}$ is a weakly prime ideal of R. If $\sqrt{(N:M)_P} = R_P$, then $\frac{1}{1} \in \sqrt{(N:M)_P} = (\sqrt{(N:M)})_P$ and so $q1 = q \in \sqrt{(N:M)}$ for some $q \notin P$. But by Lemma 1, $\sqrt{(N:M)} \subseteq P(N) \subseteq P$, which is a contradiction. So $\sqrt{(N:M)_P} \neq R_P$, that is, $\sqrt{(N:M)_P}$ is a proper ideal of R_P . Let $0 \neq \frac{r}{p}\frac{s}{q} \in \sqrt{(N:M)_P}$, where $r, s \in R$ and $p, q \notin P$. Then we have $\frac{r}{p}\frac{s}{q} = \frac{rs}{pq} \in (\sqrt{(N:M)})_P$, then there exists an $u \notin P$ such that $urs \in \sqrt{(N:M)}$. If urs = 0, then $\frac{r}{p}\frac{s}{q} = \frac{urs}{up}\frac{s}{q} = \frac{urs}{upq} = 0$, this is a contradiction. So $urs \neq 0$. Since $0 \neq urs \in \sqrt{(N:M)}$ and $\sqrt{(N:M)}$ is a weakly prime ideal of R, then $ur \in \sqrt{(N:M)}$ or $s \in \sqrt{(N:M)}$. Hence $\frac{r}{p} = \frac{u}{u}\frac{r}{p} \in (\sqrt{(N:M)})_P$ or $\frac{s}{q} \in (\sqrt{(N:M)})_P$, that is, $\frac{r}{p} \in \sqrt{(N:M)_P}$ or $\frac{s}{q} \in \sqrt{(N:M)_P}$. $(\Leftarrow): \text{Assume that } \sqrt{(N:M)_P} \text{ is a weakly prime ideal of } R_P. \text{ If } \sqrt{(N:M)} = R,$ then $\sqrt{(N:M)_P} = R_P$, a contradiction. So $\sqrt{(N:M)}$ is a proper ideal of R. Let $0 \neq ab \in \sqrt{(N:M)}$ for some $a, b \in R$. Then $\frac{ab}{1} = \frac{a}{1}\frac{b}{1} \in \sqrt{(N:M)_P}$. If $\frac{a}{1}\frac{b}{1} = 0$, then qab = 0 for some $q \notin P$. As $0 \neq ab$, then $q \in P(0)$. Thus $q \in P$, which is a contradiction. So $0 \neq \frac{a}{1}\frac{b}{1} \in \sqrt{(N:M)_P}$. Since $\sqrt{(N:M)_P}$ is a weakly prime ideal of R_P , then $\frac{a}{1} \in \sqrt{(N:M)_P}$ or $\frac{b}{1} \in \sqrt{(N:M)_P}$. Therefore $pa \in \sqrt{(N:M)}$ for some $p \notin P$ or $sb \in \sqrt{(N:M)}$ for some $s \notin P$. As $p \notin P$ and $s \notin P$, then $p, s \notin P(N)$. Consequently, $a \in \sqrt{(N:M)}$ or $b \in \sqrt{(N:M)}$.

2) (\Longrightarrow) : Assume that $\sqrt{(N:M)}$ is a prime ideal of R. In a similar way, we get $\sqrt{(N:M)_P}$ is a proper ideal of R_P . Now, let $\frac{r}{p}\frac{s}{q} \in \sqrt{(N:M)_P}$, where $r, s \in R$ and $p, q \notin P$. Then we have $\frac{rs}{pq} \in (\sqrt{(N:M)})_P$, then $urs \in \sqrt{(N:M)}$ for some $u \notin P$. Since $\sqrt{(N:M)}$ is a prime ideal of R, then $ur \in \sqrt{(N:M)}$ or $s \in \sqrt{(N:M)}$. Consequently, $\frac{r}{p} = \frac{u}{u}\frac{r}{p} \in (\sqrt{(N:M)})_P$ or $\frac{s}{q} \in (\sqrt{(N:M)})_P$, that is, $\frac{r}{p} \in \sqrt{(N:M)_P}$ or $\frac{s}{q} \in \sqrt{(N:M)_P}$.

 $(\Leftarrow): \text{Suppose that } \sqrt{(N:M)_P} \text{ is a prime ideal of } R_P. \text{ From (1), it is clear that } \sqrt{(N:M)} \text{ is a proper ideal of } R. \text{ Then } \frac{ab}{1} = \frac{a}{1}\frac{b}{1} \in \sqrt{(N:M)_P} \text{ for some } a, b \in R \text{ and } \text{ since } \sqrt{(N:M)_P} \text{ is a prime ideal of } R_P, \text{ then } \frac{a}{1} \in \sqrt{(N:M)_P} \text{ or } \frac{b}{1} \in \sqrt{(N:M)_P}. \text{ Thus } pa \in \sqrt{(N:M)} \text{ for some } p \notin P \text{ or } sb \in \sqrt{(N:M)} \text{ for some } s \notin P. \text{ As } p \notin P \text{ and } s \notin P, \text{ then } p, s \notin P(N). \text{ Therefore, } a \in \sqrt{(N:M)} \text{ or } b \in \sqrt{(N:M)}.$

Proposition 6. Let M be a faithful cyclic R-module and N be a proper submodule of M with $P(0) \subseteq P(N)$. If N is a P(N)-locally weakly primary submodule of M, then $\sqrt{(N:M)}$ is a weakly prime ideal of R.

Proof. Let P be a maximal ideal of R with $P(N) \subseteq P$. By [2, Proposition 2.18], M_P is a faithful cyclic R_P -module. Then N_P is a weakly primary submodule of M_P . Thus by [1, Proposition 2.3], $\sqrt{(N_P : M_P)}$ is a weakly prime submodule of M_P . By Proposition 3, $\sqrt{(N:M)_P}$ is a weakly prime submodule of M_P . By Proposition 5 (1), $\sqrt{(N:M)}$ is a weakly prime ideal of R.

Proposition 7. Let M be an R-module. Let N be a P-primal and a P(N)-locally weakly primary submodule of M not primary submodule of M. If $P(0) \subseteq P(N)$ and I is an ideal of R such that $I \subseteq \sqrt{(N:M)}$, then IN = 0. Particularly, $\sqrt{(N:M)N} = 0$.

Proof. Suppose that $P(0) \subseteq P(N)$ and I is an ideal of R such that $I \subseteq \sqrt{(N:M)}$. Since N is a P-primal, then P(N) is an ideal of R. As $1 \notin P(N)$, then P(N) is a proper ideal. Hence there is a maximal ideal P of R such that $P(N) \subseteq P$. Then, N_P is a weakly primary submodule of M_P because N is a P(N)-locally weakly primary submodule of M. Our aim is to show that N_P is not a primary submodule of M_P . Assume that N_P is a primary submodule of M_P . Let $rm \in N$ for some $r \in R$, $m \in M$. Then $\frac{rm}{1} = \frac{r}{1}\frac{m}{1} \in N_P$. By assumption, $\frac{m}{1} \in N_P$ or $(\frac{r}{1})^n M_P \subseteq N_P$ for some positive integer n. By using a similar technique in the previous proofs, $m \in N$ or $r^n M \subseteq N$ for some positive integer n since $P(N) \subseteq P$, but this contradicts with N which is not a primary submodule of M. By [2, Lemma 2.19], $I_P \subseteq \sqrt{(N:M)_P} \subseteq \sqrt{(N_P:M_P)}$. By [1, Corollary 3.4], $I_P N_P = 0$. We get $\frac{r}{1}\frac{m}{1} = \frac{rm}{1} = 0$ for every $r \in I$ and every $m \in N$. Therefore qrm = 0 for some $q \notin P$. If $rm \neq 0$, then $q \in P(0)$ and so $q \in P$, which is a contradiction. Hence rm = 0, that is, IN = 0. Particularly, by putting $I = \sqrt{(N:M)}$, we have $\sqrt{(N:M)}N = 0$.

Proposition 8. ([2, Proposition 2.16]) Let M be an R-module and P be a maximal ideal of R. If \overline{I} is an ideal of R_P and \overline{N} is a submodule of M_P , then

- 1) $I = \{a \in R \mid \frac{a}{1} \in \overline{I}\}$ is an ideal of R and $\overline{I} = I_P$.
- 2) $N = \{m \in M \mid \frac{m}{1} \in \overline{N}\}$ is a submodule of M and $\overline{N} = N_P$.

Theorem 2. Let N be a P-primal submodule of an R-module M with $P(0) \subseteq P(N)$. Then N is a P(N)-locally weakly primary submodule of M if and only if $0 \neq ID \subseteq N$ for some ideal I of R and some submodule D of M implies $I \subseteq \sqrt{(N:M)}$ or $D \subseteq N$.

Proof. (⇒): Assume that N is a P(N)-locally weakly primary submodule of M. Let $0 \neq ID \subseteq N$ for some ideal I of R and some submodule D of M. Since N is P-primal, then P(N) is an ideal of R. As $1 \notin P(N)$, then P(N) is a proper ideal. So we have $P(N) \subseteq P$ for some maximal ideal P of R. Thus N_P is a weakly primary submodule of M_P . Now, I_P is an ideal of R_P and D_P is a submodule of M_P with $(ID)_P = I_P D_P \subseteq N_P$. Suppose that $I_P D_P = 0_P$. Then $\frac{r}{1} \frac{m}{1} = \frac{rm}{1} = 0$ for every $r \in I$ and every $m \in D$. So there exists a $q \notin P$ such that qrm = 0. If $rm \neq 0$, then $q \in P(0)$. Thus $q \in P$, which is a contradiction. So rm = 0, hence ID = 0, that is a contradiction. Then $0_P \neq I_P D_P \subseteq N_P$. Since N is a P(N)-locally weakly primary submodule of M, then N_P is a weakly primary submodule of M_P . By [1, Theorem 3.6], either $I_P \subseteq \sqrt{(N_P : M_P)}$ or $D_P \subseteq N_P$. Since $P(N) \subseteq P$, then $I \subseteq \sqrt{(N : M)}$ or $D \subseteq N$.

 (\Leftarrow) : Let P be a maximal ideal of R with $P(N) \subseteq P$. Since N is a proper ideal of R, then there is an $a \notin N$, but $\frac{a}{1} \in M_P$. If $\frac{a}{1} \in N_P$, then $qa \in N$ such that $q \notin P$. As $a \notin N$, then $q \in P(N)$, that is, $q \in P$, which is a contradiction. So $\frac{a}{1} \notin N_P$. Hence N_P is a proper ideal of R_P . Let \overline{I} be an ideal of R_P and \overline{D} be a submodule of M_P with $0_P \neq \overline{ID} \subseteq N_P$. By [2, Proposition 2.16], $\overline{I} = I_P$, for some ideal I of R and $\overline{D} = D_P$, for some submodule D of M. So $0_P \neq I_P D_P \subseteq N_P$, that is, $0_P \neq (ID)_P \subseteq N_P$. Since $P(N) \subseteq P$, then $ID \subseteq N$. Also $0 \neq ID$. On the contrary, $(ID)_P = 0_P$. By the hypothesis, we have either $I \subseteq \sqrt{(N:M)}$ or $D \subseteq N$. If $I \subseteq \sqrt{(N:M)}$, then $\overline{I} = I_P \subseteq \sqrt{(N:M)_P}$. If $D \subseteq N$, then $\overline{D} = D_P \subseteq N_P$. From [1, Theorem 3.6], N_P is a weakly primary submodule of M_P .

Corollary 5. Let N be a P-primal submodule of an R-module M with $P(0) \subseteq P(N)$. Then N is a P(N)-locally weakly primary submodule of M if and only if N is a weakly primary submodule of M.

Proof. It is clear from Theorem 2 and [1, Theorem 3.6].

Theorem 3. Let M be an R-module and N be a P-primal submodule of M with $P(0) \subseteq P(N)$. Then the following statements are equivalent:

- 1) N is a P(N)-locally weakly primary submodule of M.
- 2) For any $m \notin N$, $\sqrt{(N:Rm)} = \sqrt{(N:M)} \cup (0:Rm)$.
- 3) For any $m \notin N$, $\sqrt{(N:Rm)} = \sqrt{(N:M)}$ or $\sqrt{(N:Rm)} = (0:Rm)$.

Proof. $(1 \Longrightarrow 2)$: Let N be a P(N)-locally weakly primary submodule of M and let $m \notin N$. Since N is P-primal, then P(N) is an ideal of R. As $1 \notin P(N)$, then P(N) is a proper ideal. So we have $P(N) \subseteq P$ for some maximal ideal P of R. Hence N_P is a weakly primary submodule of M_P . As $m \in M$, then $\frac{m}{1} \in M_P$, but $\frac{m}{1} \notin N_P$. If $\frac{m}{1} \in N_P$, then $pm \in N$ for some $p \notin P$. Since $p \notin P(N)$, then $m \in N$, this is a contradiction. By [3, Theorem 2.15], $\sqrt{(N_P : R_P \frac{m}{1})} = \sqrt{(N_P : M_P)} \cup (0_P : R_P \frac{m}{1})$ and from [2, Corollary 2.9], $\sqrt{(N_P:(Rm)_P)} = \sqrt{(N_P:M_P)} \cup (0_P:(Rm)_P)$. Then by Proposition 3, Proposition 4 and Corollary 4, $\sqrt{(N:Rm)_P} = \sqrt{(N:M)_P} \cup (0:Rm)_P$. Let $r \in \sqrt{(N:Rm)}$. Then $\frac{r}{1} \in \sqrt{(N:Rm)_P}$ and so $\frac{r}{1} \in \sqrt{(N:M)_P}$ or $\frac{r}{1} \in (0:Rm)_P$. If $\frac{r}{1} \in \sqrt{(N:M)_P}$, then $\frac{r^n}{1} \in (N:M)_P$ for some positive integer n and thus $qr^n \in (N:M)$ for some $q \notin P$, that is, $qr^n M \subseteq N$. Assume that $r^n M \not\subseteq N$. Then $r^n m \notin N$ for some $m \in M$, however $qr^n m \in N$. Hence $q \in P(N)$. Then $q \in P$, which is a contradiction. So $r^n M \subseteq N$ for some positive integer n, that is, $r \in \sqrt{(N:M)}$. If $\frac{r}{1} \in (0:Rm)_P$, then $pr \in (0:Rm)$ for some $p \notin P$. Thus prRm = 0. Assume that $rRm \neq 0$. Then $rsm \neq 0$ for some $s \in R$, but prsm = 0. Therefore $p \in P(0)$. As $P(0) \subseteq P$, then $p \in P$, which is a contradiction. So rRm = 0. Then $r \in (0 : Rm)$. Hence $r \in \sqrt{(N : M)} \cup (0 : Rm)$. Conversely, let $r \in \sqrt{(N:M)} \cup (0:Rm)$. If $r \in \sqrt{(N:M)}$, then $r^n M \subseteq N$ for some positive integer n and so we get $r^n Rm \subseteq r^n M \subseteq N$. Thus $r \in \sqrt{(N:Rm)}$. If $r \in (0:Rm)$, then $rRm = 0 \subseteq N$. Thus $r \in (N : Rm) \subseteq \sqrt{(N : Rm)}$. $(2 \Rightarrow 3)$: Clear.

 $(3\Rightarrow1)$: Let P be a maximal ideal of R with $P(N) \subseteq P$. Let $\frac{m}{p} \notin N_P$ where $m \in M$, $p \notin P$. Then $m \notin N$. By the condition of the theorem, $\sqrt{(N:Rm)} = \sqrt{(N:M)}$ or $\sqrt{(N:Rm)} = (0:Rm)$ for some $m \notin N$. If $\sqrt{(N:Rm)} = \sqrt{(N:M)}$, then $\sqrt{(N:Rm)_P} = \sqrt{(N:M)_P}$ and from Proposition 3 and Proposition $4\sqrt{(N_P:(Rm)_P)} = \sqrt{(N_P:M_P)}$. By [2, Proposition 2.8], $\sqrt{(N_P:R_P\frac{m}{p})} = \sqrt{(N_P:M_P)}$. If $\sqrt{(N:Rm)_P} = (0:Rm)$, then $\sqrt{(N:Rm)_P} = (0:Rm)_P$ and by Proposition 4 and Corollary 4, $\sqrt{(N_P:(Rm)_P)} = (0:(Rm)_P)$. By [2, Proposition 2.8], $\sqrt{(N_P:R_P\frac{m}{p})} = (0:R_P\frac{m}{p})$. By [3, Theorem 2.15], N_P is a weakly primary submodule of M_P . Thus N is a P(N)-locally weakly primary submodule of M.

Theorem 4. Let M be an R-module and N be a P-primal submodule of M with $P(0) \subseteq P(N)$. Then the following statements are equivalent:

1) N is a P(N)-locally weakly primary submodule of M.

2) $0 \neq ID \subseteq N$ for any ideal I of R and any submodule D of M implies either $I \subseteq \sqrt{(N:M)}$ or $D \subseteq N$.

3)
$$\sqrt{(N:Rm)} = \sqrt{(N:M)} \cup (0:Rm)$$
 for any $m \notin N$.

4)
$$\sqrt{(N:Rm)} = \sqrt{(N:M)}$$
 or $\sqrt{(N:Rm)} = (0:Rm)$ for any $m \notin N$.

Proof. It is clear from Theorem 2 and Theorem 3.

References

- A.E.Ashour, On Weakly Primary Submodules, Journal of Al Azhar University-Gaza(Natural Sciences). 13. pps 31-40. 2011.
- [2] A.K.Jabbar, A Generalization of Prime and Weakly Prime Submodules, *Pure Math. Sciences.* 2. pps 1-11. 2013.
- [3] S.E.Atani and F.Farzalipour, On Weakly Primary Ideals, *Georgian Math. Journal.* 12. pps 423-429. 2005.
- [4] S.E.Atani and F.Farzalipour, On Weakly Prime Submodules, Tamkang Journal of Math. 38. pps 247-252. 2007.
- [5] R.Y. Sharp, Steps in Commutative Algebra, Cambridge University Press, Cambridge. 1990.
- [6] U. Tekir, A Note on Multiplication Modules, International Journal of Pure and Applied Mathematics. 27. pps 103-107. 2006
- [7] U.Tekir, On Primary Submodules, International Journal of Pure and Applied Math. 27. pps 283-289. 2006.