EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS PRE-PUBLICATION SUBMISSION DOCUMENT

ISSN 1307-5543 - www.ejpam.com

A Note on Primary and Weakly Primary Submodules

Gulsen Ulucak ${ }^{1 *}$ and Rabia Nagehan Uregen ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Gebze Technical University, 141 41400, Kocaeli, Turkey
${ }^{2}$ Yildiz Technical University, Graduate School of Natural and Applied Sciences, 34349, Istanbul, Turkey

Abstract

In this paper, the generalizations of primary submodules and weakly primary submodules are proposed as $P(N)$-locally primary submodules and $P(N)$-locally weakly primary submodules, respectively. The relationships of these submodules are investigated extensively.

2010 Mathematics Subject Classifications: 13A15, 13C99, 13F05
Key Words and Phrases: Primary, Weakly primary, $P(N)$-locally primary, $P(N)$-locally weakly primary.

1. Introduction

Throughout this paper, we assume that all rings are commutative with identity $1 \neq 0$. An ideal I of R is called a proper ideal if $I \neq R$. Then the radical of a proper ideal I of R is denoted by $\operatorname{rad}(I)$ and $\operatorname{rad}(I)=\left\{x \in R \mid x^{n} \in I\right.$ for some positive integer $\left.n\right\}$. A proper ideal P of R is called prime (primary) if $a b \in P$ for some $a, b \in R$ implies that either $a \in P$ or $b \in P$ (either $a \in P$ or $b^{n} \in P$ for some positive integer n). A proper ideal P of R is said to be a weakly prime ideal if $0 \neq a b \in P$ for some $a, b \in R$ implies that either $a \in P$ or $b \in P$, and it is called a weakly primary ideal if $0 \neq a b \in P$ for some $a, b \in R$ implies that either $a \in \mathcal{P}$ or $b^{n} \in P$ for some positive integer n (see [3], [4]).

Let M be an R-module. As submodule N of M is called a proper submodule if $N \neq M$. A proper submodule N of M is called a prime submodule if $r m \in N$ for some $r \in R$ and $m \in M$ implies that either $m \in N$ or $r M \subseteq N$ and it is said to be a weakly prime submodule if $0 \neq r m \in N$ for some $r \in R$ and $m \in M$ implies that either $m \in N$ or $r M \subseteq N$. A non empty subset S of R is said to be multiplicative closed set if $0 \notin S$ and whenever $a, b \in S$, then $a b \in S$. Let S be a multiplicative closed set in R. It can be easily seen that M_{S} is an R_{S}-module under the operations $\frac{a}{s}+\frac{b}{u}=\frac{u a+s b}{s u}$ and $\frac{r}{v} \frac{a}{s}=\frac{r a}{v s}$ for any

[^0]Email addresses: gulsenulucak@gtu.edu.tr (G. Ulucak), rnuregen@yildiz.edu.tr (R.N. Uregen)
$\frac{r}{v} \in R_{S}$ and $\frac{a}{s}, \frac{b}{u} \in M_{S}$ [5]. A proper submodule N of M is said to be $S(N)$-locally prime ($S(N)$-weakly prime) submodule if $N_{\mathfrak{M}}$ is a prime (a weakly prime) submodule of $M_{\mathfrak{M}}$ for each maximal ideal \mathfrak{M} with $S(N) \subseteq \mathfrak{M}$ [2].

A proper submodule N of M is said to be a primary submodule if $r m \in N$ for some $r \in R, m \in M$ implies that either $m \in N$ or $r^{n} M \subseteq N$ for some positive integer n and it is said to be a weakly primary submodule if $0 \neq r m \in N$ for some $r \in R, m \in M$ implies that either $m \in N$ or $r^{n} M \subseteq N$ for some positive integer n. The ideal $\{r \in R \mid r M \subseteq N\}$ will be denoted by $(N: M)$ and $(0: N)=\{r \in R \mid r N=0\}$ where N is a submodule of M. Then the annihilator of M is $(0: M)$ where $(0: M)=\{r \in R \mid r M=0\}$. An R-module M is called a faithful module if $(0: M)=(0)$. Note that if N is a primary submodule of M, then $(N: M)$ is a primary ideal of R and $\operatorname{rad}(N: M)=\left\{r \in R \mid r^{n} M \subseteq N\right.$ for some positive integer $n\}$ is a prime ideal of $R([1],[7],[6])$.

Main aim is to obtain the two generalization on primary submodules and weakly primary submodules of an R-module M.Let N be a proper submodule of M. An element $r \in R$ is said to be primary to N if $r^{n} m \in N$, where $m \in M$ and n is a positive integer, then $m \in N$. Then $r \in R$ is said to be not primary to N if $r^{n} m \in N$ for some positive integer n and for some $m \in M \backslash N$. The set of all elements of R that are not primary to N is denoted by $P(N)$. Then we get $P(N)=\left\{r \in R \mid r^{n} m \in N\right.$ for some positive integer n, for some element $m \in M \backslash N\}$. If $N=(0)$, then $P((0))=\left\{r \in R \mid r^{n} m=0\right.$ for some positive integer n, for some $0 \neq m \in M\}$. A proper submodule N of M is said to be an \mathfrak{M}-primal if $P(N)$ forms an ideal of R.

2. $P(N)$-Locally Primary and $P(N)$-Locally Weakly Primary Submodules

Definition 1. Let N be a proper submodule of an R-module M. Then N is called a $P(N)$ locally primary submodule of M if $N_{\mathfrak{M}}$ is a primary submodule of $M_{\mathfrak{M}}$ for all maximal ideal \mathfrak{M} where $P(N) \subseteq \mathfrak{M}$.

Definition 2. A proper submodule N of an R-module M is called a $P(N)$-locally weakly primary submodule of M if $N_{\mathfrak{M}}$ is a weakly primary submodule of $M_{\mathfrak{M}}$ for every maximal ideal \mathfrak{M} where $P(N) \subseteq \mathfrak{M}$.

Lemma 1. Let N be a proper submodule of an R-module M. Then $\operatorname{rad}(N: M) \subseteq P(N)$.
Proof. Let $r \in \operatorname{rad}(N: M)$. Then $r^{n} M \subseteq N$ for some positive integer n. There exists $m \in M \backslash N$ such that $r^{n} m \in N$. Then $r \in P(N)$. Thus $\operatorname{rad}(N: M) \subseteq P(N)$.

Every primary submodule N is proposed as $P(N)$-locally primary submodule and every weakly primary submodule N is proposed as $P(N)$-locally weakly primary submodule in the following propositions, respectively.

Proposition 1. A primary submodule N of an R-module M is a $P(N)$-locally primary submodule.

Proof. Let \mathfrak{M} be a maximal ideal of R where $P(N) \subseteq \mathfrak{M}$. By the previous lemma, we say that $\operatorname{rad}(N: M) \subseteq P(N) \subseteq \mathfrak{M} . N_{\mathfrak{M}}$ is a proper submodule of $M_{\mathfrak{M}}$. Indeed, if $N_{\mathfrak{M}}=M_{\mathfrak{M}}$, then $\frac{m}{1} \in M_{\mathfrak{M}}$ for any $m \in M$. Then $r m \in N$ for some $r \notin \mathfrak{M}$. We get $r^{n} \notin(N: M)$. Since N is a primary submodule of M, then $m \in N$. Thus $N=M$, a contradiction. Since $\operatorname{rad}(N: M) \cap(R \backslash \mathfrak{M})=\emptyset$, then $N_{\mathfrak{M}}$ is a primary submodule of $M_{\mathfrak{M}}$. Consequently, N is a $P(N)$-locally primary submodule.

Proposition 2. A weakly primary submodule N of an R-module M is a $P(N)$-locally weakly primary submodule.

Proof. Suppose that \mathfrak{M} is a maximal ideal of R where $P(N) \subseteq \mathfrak{M}$. In the same manner as in the proof of the previous proposition, we have that $N_{\mathfrak{M}}$ is a proper submodule of $M_{\mathfrak{M}}$. Let $0_{\mathfrak{M}} \neq \frac{r}{s} \frac{m}{p} \in N_{\mathfrak{M}}$ for some $\frac{r}{s} \in R_{\mathfrak{M}}$ and $\frac{m}{p} \in M_{\mathfrak{M}}$ (for some $r \in R, m \in M$ and $s, p \in R \backslash \mathfrak{M})$. Then there is a $q \in R \backslash \mathfrak{M}$ such that qrm $\in N$. Assume that $q r m=0$. Then $\frac{r}{s} \frac{m}{p}=\frac{q}{q} \frac{r}{s} \frac{m}{p}=\frac{q r m}{q s p}=0_{\mathfrak{M}}$, this is a contradiction. So $0 \neq q r m \in N$. As $\operatorname{rad}(N: M) \subseteq P(N) \subseteq \mathfrak{M}$, then $q \notin \operatorname{rad}(N: M)$. Thus $r m \in N$ since N is a weakly primary submodule. It is clear that $r m \neq 0$. Hence $0 \neq r m \in N$ implies that $m \in N$ or $r^{n} M \subseteq N$ for some positive integer n. Thus we get $\frac{m}{p} \in N_{\mathfrak{M}}$ or $\frac{r^{n}}{s^{n}} M_{\mathfrak{M}} \subseteq N_{\mathfrak{M}}$ for some positive integer n by [2, Corollary 2.9]. Then we get that $N_{\mathfrak{M}}$ is a weakly primary submodule of $M_{\mathfrak{M}}$. Consequently, N is a $P(N)$-locally weakly primary submodule.

Corollary 1. Let N be a proper submodule of an R-module M. If N is primary, then N is $P(N)$-locally weakly primary.

Proof. Assume that N is a primary submodule. Then N is a weakly primary submodule. Thus, N is a $P(N)$-locally weakly primary submodule by Proposition 2 .

Note that if N is a $P(N)$-locally primary submodule of M, then N is a $P(N)$-locally weakly primary submodule of M.

We give an example to show the converse is not true.
Example 1. Consider $R=F[X, Y, Z]-$ module $M=F[X, Y, Z] /\left(X^{2}, Y Z\right)$ and the zero submodule $N=(0)$ of M. One can easily see that $P(N)=\{0, X, Y, Z, \ldots\}$. Note that $P(N) \subseteq \mathfrak{M}=(X, Y, Z)$ which is the unique maximal ideal of R. Then $N_{\mathfrak{M}}=(0)$ is weakly primary submodule of $R_{\mathfrak{M}}$ - module $M_{\mathfrak{M}}$. Thus N is $P(N)$-weakly primary submodule. But $N_{\mathfrak{M}}$ is not primary submodule since, $\frac{Y}{1} \cdot \frac{\bar{Z}}{1}=\frac{\overline{0}}{1} \in N_{\mathfrak{M}}$ but $\left(\frac{Y}{1}\right)^{n} \notin\left(N_{\mathfrak{M}}: M_{\mathfrak{M}}\right),\left(\frac{\bar{Z}}{1}\right) \notin$ $N_{\mathfrak{M}}$ for all positive integer n. Thus N is not $P(N)$-primary.

In the following example, it is illustrated that a submodule N can be both $P(N)$ locally primary submodule of M and $P(N)$-locally weakly primary submodule of M but it is neither primary submodule of M nor weakly primary submodule of M.

Example 2. Let $R=\mathbb{Z}$ and consider the $R-\operatorname{module} M=\mathbb{Z}_{12}$. Let N be the submodule of \mathbb{Z}_{12} generated by $\overline{6}$. It is easily seen that $\overline{0} \neq 2 \overline{3}(=3 \overline{2}) \in N$ but $2 \notin(N: M)$ and $\overline{3} \notin N$
($3 \notin(N: M)$ and $\overline{2} \notin N$), that is, N is not a weakly primary submodule of M, hence N is not a primary submodule of M. Assume that N is not a $P(N)$-locally primary submodule of M. Then there exists a maximal ideal \mathfrak{M} of R with $P(N) \subseteq \mathfrak{M}$ where $N_{\mathfrak{M}}$ is not a primary submodule of $M_{\mathfrak{M}}$. Note that $2,3 \in P(N)$. Thus $1 \in \mathfrak{M}$, a contradiction. Therefore, N is a $P(N)$-locally primary submodule of M. Hence N is a $P(N)$-locally weakly primary submodule of M.

Theorem 1. Let N be a proper submodule of an R-module M. Then the following statements hold:
i) N is a primary submodule if and only if $P(N)=\operatorname{rad}(N: M)$.
ii) Let $P(0) \subseteq \operatorname{rad}(N: M)$. Then N is a primary submodule if and only if N is a weakly primary submodule.

Proof. i) Assume that N is a primary submodule. Let $r \in P(N)$. Then $r^{n} m \in N$ for some positive integer n and for some $m \in M \backslash N$. Since N is a primary submodule, then $\left(r^{n}\right)^{k} M=r^{n k} M \subseteq N$ for some positive integer k, that is, $r \in \operatorname{rad}(N: M)$. Hence $P(N) \subseteq \operatorname{rad}(N: M)$. By Lemma 1, we get $P(N)=\operatorname{rad}(N: M)$.

Suppose that $P(N)=\operatorname{rad}(N: M)$. Let $r m \in N$ and $m \in M \backslash N$ where $r \in R, m \in M$. Then $r \in P(N)$. Thus $r \in \operatorname{rad}(N: M)$, that is, $r^{k} M \subseteq N$ for some positive integer k. Consequently, N is a primary submodule.
ii) It is clear that every primary submodule is a weakly primary submodule.

Now, assume that N is a weakly primary submodule. Let $r \in P(N)$. Then $r^{n} m \in N$ for some positive integer n and for some $m \in M \backslash N$. Suppose that $r^{n} m=0$. Since $m \in M \backslash N$, then we get $m \neq 0$. So $r \in P(0)$. Thus $r \in \operatorname{rad}(N: M)$, by assumption. Hence $P(N)=\operatorname{rad}(N: M)$ by Lemma 1. Suppose that $0 \neq r^{n} m \in N$. Since $m \in M \backslash N$ and N is a weakly primary submodule, then $\left(r^{n}\right)^{k} M \subseteq N$ for some positive integer k, that is, $r \in \operatorname{rad}(N: M)$ and so $P(N)=\operatorname{rad}(N: M)$. By (i), N is a primary submodule.

Corollary 2. Let N be a proper submodule of an R-module M with $P(N)=\operatorname{rad}(N: M)$. Then N is a $P(N)$-locally primary submodule and $P(N)$-locally weakly primary submodule.

Proof. We get that N is a primary submodule by Theorem 1 (i). Then N is a $P(N)-$ locally primary submodule by Proposition 1. Since N is primary submodule, then N is weakly primary submodule. Therefore, N is $P(N)$-locally weakly primary submodule by Proposition 2.

Note that, by [2, Lemma 2.19], if \mathfrak{M} is a maximal ideal of R, then $(N: M)_{\mathfrak{M}} \subseteq\left(N_{\mathfrak{M}}\right.$: $\left.M_{\mathfrak{M}}\right)$. Now, we explain that $\operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)=\operatorname{rad}\left(N_{\mathfrak{M}}: M_{\mathfrak{M}}\right)$ when \mathfrak{M} is a maximal ideal of R with $P(N) \subseteq \mathfrak{M}$.

Proposition 3. Let N be a proper submodule of an R-module M. Then $\operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)=$ $\operatorname{rad}\left(N_{\mathfrak{M}}: M_{\mathfrak{M}}\right)$ for any maximal ideal \mathfrak{M} of R with $P(N) \subseteq \mathfrak{M}$.

Proof. Since $S(N) \subseteq P(N)$ for any proper submodule N of M, it is clear from [2, Lemma 2.19 and Lemma 2.20].

Lemma 2. Let N be a proper submodule of an R-module M. Then $\operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)=$ $(\operatorname{rad}(N: M))_{\mathfrak{M}}$ for any maximal ideal \mathfrak{M} of R with $P(N) \subseteq \mathfrak{M}$.

Proof. Let $\frac{r}{p} \in \operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)$ for some $r \in R$ and $p \in R \backslash \mathfrak{M}$. Then $\left(\frac{r}{p}\right)^{n}=\frac{r^{n}}{p^{n}} \in$ $(N: M)_{\mathfrak{M}}$ for some positive integer n. There exists an element $q \in R \backslash \mathfrak{M}$ such that $q r^{n} \in(N: M)$, that is, $q r^{n} m \in N$ for every $m \in M$. Then $r^{n} m \in N$ for every $m \in M$ since $q \notin P(N)$. Thus $r \in(N: M)$. Then $\frac{r}{p} \in \operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)$. Conversely, assume that $\frac{r}{p} \in \operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)$. There is an $u \in R \backslash \mathfrak{M}$ such that ur $\in \operatorname{rad}(N: M)$. Then $(u r)^{n}=u^{n} r^{n} \in(N: M)$. Hence $\frac{u^{n}}{u^{n}} \frac{r^{n}}{p^{n}} \in(N: M)_{\mathfrak{M}}$. Consequently, $\frac{r^{n}}{p^{n}}=\left(\frac{r}{p}\right)^{n} \in(N: M)_{\mathfrak{M}}$ and so $\frac{r}{p} \in \operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)$.

Corollary 3. Let N be a proper submodule of an R-module. If \mathfrak{M} is any maximal ideal of R with $P(N) \subseteq \mathfrak{M}$, then $\operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)=\operatorname{rad}\left(N_{\mathfrak{M}}: M_{\mathfrak{M}}\right)$.

Proof. It is clear from Proposition 3 and Lemma 2.

Proposition 4. Let N be a proper submodule of an R-module M and $m \in M$. Then $\operatorname{rad}\left((N: R m)_{\mathfrak{M}}\right)=\operatorname{rad}\left(N_{\mathfrak{M}}:(R m)_{\mathfrak{M}}\right)$ for any maximal ideal \mathfrak{M} of R with $P(N) \subseteq \mathfrak{M}$.

Proof. It is clear.

If we put $N=0$ in Proposition 4, we have the following corollary.
Corollary 4. Let M be an R-module and $m \in M$. Then $\operatorname{rad}\left((0: R m)_{\mathfrak{M}}\right)=\operatorname{rad}\left(0_{\mathfrak{M}}:(R m)_{\mathfrak{M}}\right)$ for any maximal ideal \mathfrak{M} of R with $P(0) \subseteq \mathfrak{M}$.

Proposition 5. Let N be a proper submodule of an R-module M and \mathfrak{M} be a maximal ideal of R with $P(N) \subseteq \mathfrak{M}$. Then the following statements hold:
i) Let $P(0) \subseteq P(N)$. Then $\operatorname{rad}(N: M)$ is a weakly prime ideal of R if and only if $\operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)$ is a weakly prime ideal of $R_{\mathfrak{M}}$.
ii) $\operatorname{rad}(N: M)$ is a prime ideal of R if and only if $\operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)$ is a prime ideal of $R_{\mathfrak{M}}$.

Proof. i) Suppose that $\operatorname{rad}(N: M)$ is a weakly prime ideal of R. If $\operatorname{rad}(N: M)_{\mathfrak{M}}=$ $R_{\mathfrak{M}}$, then $\frac{1}{1} \in \operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)=(\operatorname{rad}(N: M))_{\mathfrak{M}}$ and so $q 1=q \in \operatorname{rad}(N: M)$ for some $q \in R \backslash \mathfrak{M}$. But by Lemma $1, \operatorname{rad}(N: M) \subseteq P(N) \subseteq \mathfrak{M}$, which is a contradiction. So $\operatorname{rad}\left((N: M)_{\mathfrak{M})} \neq R_{\mathfrak{M}}\right.$, that is, $\operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)$ is a proper ideal of $R_{\mathfrak{M}}$. Let $0 \neq \frac{r}{p} \frac{s}{q} \in$ $\operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)$, where $r, s \in R$ and $p, q \in R \backslash \mathfrak{M}$. Then we have $\frac{r}{p} \frac{s}{q}=\frac{r s}{p q} \in(\operatorname{rad}(N: M))_{\mathfrak{M}}$, then there exists an $u \in R \backslash \mathfrak{M}$ such that $u r s \in \operatorname{rad}(N: M)$. If urs $=0$, then $\frac{r}{p} \frac{s}{q}=$ $\frac{u}{u} \frac{r}{p} \frac{s}{q}=\frac{u r s}{u p q}=0$, this is a contradiction. So urs $\neq 0$. Since $0 \neq u r s \in \operatorname{rad}(N: M)$ and $\operatorname{rad}(N: M)$ is a weakly prime ideal of R, then $u r \in \operatorname{rad}(N: M)$ or $s \in \operatorname{rad}(N: M)$. Hence $\frac{r}{p}=\frac{u}{u} \frac{r}{p} \in(\operatorname{rad}(N: M))_{\mathfrak{M}}$ or $\frac{s}{q} \in(\operatorname{rad}(N: M))_{\mathfrak{M}}$, that is, $\frac{r}{p} \in \operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)$ or $\frac{s}{q} \in \operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)$.

Assume that $\operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)$ is a weakly prime ideal of $R_{\mathfrak{M}}$. If $\operatorname{rad}(N: M)=R$, then $\operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)=R_{\mathfrak{M}}$, a contradiction. So $\operatorname{rad}(N: M)$ is a proper ideal of R. Let $0 \neq a b \in \operatorname{rad}(N: M)$ for some $a, b \in R$. Then $\frac{a b}{1}=\frac{a}{1} \frac{b}{1} \in \operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)$. If $\frac{a}{1} \frac{b}{1}=0$, then $q a b=0$ for some $q \in R \backslash \mathfrak{M}$. As $0 \neq a b$, then $q \in P(0)$. Thus $q \in \mathfrak{M}$, which is a contradiction. So $0 \neq \frac{a}{1} \frac{b}{1} \in \operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)$. Since $\operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)$ is a weakly prime ideal of $R_{\mathfrak{M}}$, then $\frac{a}{1} \in \operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)$ or $\frac{b}{1} \in \operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)$. Therefore $p a \in \operatorname{rad}(N: M)$ for some $p \in R \backslash \mathfrak{M}$ or $s b \in \operatorname{rad}(N: M)$ for some $s \notin \mathfrak{M}$. As $p \in R \backslash \mathfrak{M}$ and $s \in R \backslash \mathfrak{M}$, then $p, s \notin P(N)$. Consequently, $a \in \operatorname{rad}(N: M)$ or $b \in \operatorname{rad}(N: M)$.
ii) Assume that $\operatorname{rad}(N: M)$ is a prime ideal of R. In a similar way, we get $\operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)$ is a proper ideal of $R_{\mathfrak{M}}$. Now, let $\frac{r}{p} \frac{s}{q} \in \operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)$, where $r, s \in R$ and $p, q \in R \backslash \mathfrak{M}$. Then we have $\frac{r s}{p q} \in(\operatorname{rad}(N: M))_{\mathfrak{M}}$ and so we have $\operatorname{urs} \in \operatorname{rad}(N: M)$ for some $u \in R \backslash \mathfrak{M}$. Since $\operatorname{rad}(N: M)$ is a prime ideal of R, then $u r \in \operatorname{rad}(N: M)$ or $s \in \operatorname{rad}(N: M)$. Consequently, $\frac{r}{p}=\frac{u}{u} \frac{r}{p} \in(\operatorname{rad}(N: M))_{\mathfrak{M}}$ or $\frac{s}{q} \in(\operatorname{rad}(N: M))_{\mathfrak{M}}$, that is, $\frac{r}{p} \in \operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)$ or $\frac{s}{q} \in \operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)$.

Suppose that $\operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)$ is a prime ideal of $R_{\mathfrak{M}}$. From (i), it is clear that $\operatorname{rad}(N: M)$ is a proper ideal of R. Then $\frac{a b}{1}=\frac{a}{1} \frac{b}{1} \in \operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)$ for some $a, b \in$ R and since $\operatorname{rad}(N: M)_{\mathfrak{M}}$ is a prime ideal of $R_{\mathfrak{M}}$, then $\frac{a}{1} \in \operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)$ or $\frac{b}{1} \in$ $\operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)$. Thus $p a \in \operatorname{rad}(N: M)$ for some $p \in R \backslash \mathfrak{M}$ or $s b \in \operatorname{rad}(N: M)$ for some $s \in R \backslash \mathfrak{M}$. As $p \in R \backslash \mathfrak{M}$ and $s \in R \backslash \mathfrak{M}$, then $p, s \notin P(N)$. Therefore, $a \in \operatorname{rad}(N: M)$ or $b \in \operatorname{rad}(N: M)$.

Proposition 6. Let M be a faithful cyclic R-module and N be a proper submodule of M with $P(0) \subseteq P(N)$. If N is a $P(N)$-locally weakly primary submodule of M, then $\operatorname{rad}(N: M)$ is a weakly prime ideal of R.

Proof. Let \mathfrak{M} be a maximal ideal of R with $P(N) \subseteq \mathfrak{M}$. By [2, Proposition 2.18], $M_{\mathfrak{M}}$ is a faithful cyclic $R_{\mathfrak{M}}$-module. Then $N_{\mathfrak{M}}$ is a weakly primary submodule of $M_{\mathfrak{M}}$. Thus by [1, Proposition 2.3], $\operatorname{rad}\left(N_{\mathfrak{M}}: M_{\mathfrak{M}}\right)$ is a weakly prime submodule of $M_{\mathfrak{M}}$. By Proposition $3, \operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)$ is a weakly prime submodule of $M_{\mathfrak{M}}$. By Proposition $5(\mathrm{i}), \operatorname{rad}(N: M)$ is a weakly prime ideal of R.

Proposition 7. Let M be an R-module. Suppose that N is an \mathfrak{M}-primal and a $P(N)$ locally weakly primary submodule of M not primary submodule of M. If $P(0) \subseteq P(N)$ and I is an ideal of R such that $I \subseteq \operatorname{rad}(N: M)$, then $I N=0$. Particularly, $\operatorname{rad}(N: M) N=$ 0 .

Proof. Suppose that $P(0) \subseteq P(N)$ and I is an ideal of R such that $I \subseteq \operatorname{rad}(N: M)$. Since N is \mathfrak{M}-primal, then $P(N)$ is an ideal of R. As $1 \notin P(N)$, then $P(N)$ is a proper ideal. Hence there is a maximal ideal \mathfrak{M} of R such that $P(N) \subseteq \mathfrak{M}$. Then, $N_{\mathfrak{M}}$ is a weakly primary submodule of $M_{\mathfrak{M}}$ because N is a $P(N)$-locally weakly primary submodule of M. Our aim is to show that $N_{\mathfrak{M}}$ is not a primary submodule of $M_{\mathfrak{M}}$. Assume that $N_{\mathfrak{M}}$ is a primary submodule of $M_{\mathfrak{M}}$. Let $r m \in N$ for some $r \in R, m \in M$. Then $\frac{r m}{1}=\frac{r}{1} \frac{m}{1} \in N_{\mathfrak{M}}$. By assumption, $\frac{m}{1} \in N_{\mathfrak{M}}$ or $\left(\frac{r}{1}\right)^{n} M_{\mathfrak{M}} \subseteq N_{\mathfrak{M}}$ for some positive integer n. By using a similar technique in the previous proofs, $m \in N$ or $r^{n} M \subseteq N$ for some positive integer
n since $P(N) \subseteq \mathfrak{M}$, but this contradicts with N which is not a primary submodule of M. By [2, Lemma 2.19], $I_{\mathfrak{M}} \subseteq \operatorname{rad}\left((N: M)_{\mathfrak{M}}\right) \subseteq \operatorname{rad}\left(N_{\mathfrak{M}}: M_{\mathfrak{M}}\right)$. By [1, Corollary 3.4], $I_{\mathfrak{M}} N_{\mathfrak{M}}=0$. We get $\frac{r}{1} \frac{m}{1}=\frac{r m}{1}=0$ for every $r \in I$ and every $m \in N$. Therefore $q r m=0$ for some $q \in R \backslash \mathfrak{M}$. If $r m \neq 0$, then $q \in P(0)$ and so $q \in \mathfrak{M}$, which is a contradiction. Hence $r m=0$, that is, $I N=0$. Particularly, by putting $I=\operatorname{rad}(N: M)$, we have $\operatorname{rad}(N: M) N=0$.

Proposition 8. ([2, Proposition 2.16]) Let M be an R-module and \mathfrak{M} be a maximal ideal of R. If \bar{I} is an ideal of $R_{\mathfrak{M}}$ and \bar{N} is a submodule of $M_{\mathfrak{M}}$, then
i) $I=\left\{a \in R \left\lvert\, \frac{a}{1} \in \bar{I}\right.\right\}$ is an ideal of R and $\bar{I}=I_{\mathfrak{M}}$.
ii) $N=\left\{m \in M \left\lvert\, \frac{m}{1} \in \bar{N}\right.\right\}$ is a submodule of M and $\bar{N}=N_{\mathfrak{M}}$.

Theorem 2. Let N be an \mathfrak{M}-primal submodule of an R-module M with $P(0) \subseteq P(N)$. Then N is a $P(N)$-locally weakly primary submodule of M if and only if $0 \neq I D \subseteq N$ for some ideal I of R and some submodule D of M implies $I \subseteq \operatorname{rad}(N: M)$ or $D \subseteq N$.

Proof. Assume that N is a $P(N)$-locally weakly primary submodule of M. Let $0 \neq$ $I D \subseteq N$ for some ideal I of R and some submodule D of M. Since N is \mathfrak{M}-primal, then $P(N)$ is an ideal of R. As $1 \notin P(N)$, then $P(N)$ is a proper ideal. So we have $P(N) \subseteq \mathfrak{M}$ for some maximal ideal \mathfrak{M} of R. Thus $N_{\mathfrak{M}}$ is a weakly primary submodule of $M_{\mathfrak{M}}$. Now, $I_{\mathfrak{M}}$ is an ideal of $R_{\mathfrak{M}}$ and $D_{\mathfrak{M}}$ is a submodule of $M_{\mathfrak{M}}$ with $(I D)_{\mathfrak{M}}=I_{\mathfrak{M}} D_{\mathfrak{M}} \subseteq N_{\mathfrak{M}}$. Suppose that $I_{\mathfrak{M}} D_{\mathfrak{M}}=0_{\mathfrak{M}}$. Then $\frac{r}{1} \frac{m}{1}=\frac{r m}{1}=0$ for every $r \in I$ and every $m \in D$. So there exists a $q \in R \backslash \mathfrak{M}$ such that $q r m=0$. If $r m \neq 0$, then $q \in P(0)$. Thus $q \in \mathfrak{M}$, which is a contradiction. So $r m=0$, hence $I D=0$, that is a contradiction. Then $0_{\mathfrak{M}} \neq I_{\mathfrak{M}} D_{\mathfrak{M}} \subseteq N_{\mathfrak{M}}$. Since N is a $P(N)$-locally weakly primary submodule of M, then $N_{\mathfrak{M}}$ is a weakly primary submodule of $M_{\mathfrak{M}}$. By [1, Theorem 3.6], either $I_{\mathfrak{M}} \subseteq \operatorname{rad}\left(N_{\mathfrak{M}}: M_{\mathfrak{M}}\right)$ or $D_{\mathfrak{M}} \subseteq N_{\mathfrak{M}}$. Since $P(N) \subseteq \mathfrak{M}$, then $I \subseteq \operatorname{rad}(N: M)$ or $D \subseteq N$.

Let \mathfrak{M} be a maximal ideal of R with $P(N) \subseteq \mathfrak{M}$. Since N is a proper ideal of R, then there is an $a \in M \backslash N$, but $\frac{a}{1} \in M_{\mathfrak{M}}$. If $\frac{a}{1} \in N_{\mathfrak{M}}$, then $q a \in N$ such that $q \in R \backslash \mathfrak{M}$. As $a \in M \backslash N$, then $q \in P(N)$, that is, $q \in \mathfrak{M}$, which is a contradiction. So $\frac{a}{1} \in M_{\mathfrak{M}} / N_{\mathfrak{M}}$. Hence $N_{\mathfrak{M}}$ is a proper ideal of $R_{\mathfrak{M}}$. Let \bar{I} be an ideal of $R_{\mathfrak{M}}$ and \bar{D} be a submodule of $M_{\mathfrak{M}}$ with $0_{\mathfrak{M}} \neq \overline{I D} \subseteq N_{\mathfrak{M}}$. By [2, Proposition 2.16], $\bar{I}=I_{\mathfrak{M}}$, for some ideal I of R and $\bar{D}=D_{\mathfrak{M}}$, for some submodule D of M. So $0_{\mathfrak{M}} \neq I_{\mathfrak{M}} D_{\mathfrak{M}} \subseteq N_{\mathfrak{M}}$, that is, $0_{\mathfrak{M}} \neq(I D)_{\mathfrak{M}} \subseteq N_{\mathfrak{M}}$. Since $P(N) \subseteq \mathfrak{M}$, then $I D \subseteq N$. Also $0 \neq I D$. On the contrary, $(I D)_{\mathfrak{M}}=0_{\mathfrak{M}}$. By the hypothesis, we have either $I \subseteq \operatorname{rad}(N: M)$ or $D \subseteq N$. If $I \subseteq \operatorname{rad}(N: M)$, then $\bar{I}=I_{\mathfrak{M}} \subseteq \operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)$. If $D \subseteq N$, then $\bar{D}=D_{\mathfrak{M}} \subseteq N_{\mathfrak{M}}$. From [1, Theorem 3.6], $N_{\mathfrak{M}}$ is a weakly primary submodule of $M_{\mathfrak{M}}$. Therefore, N is a $P(N)$-locally weakly primary submodule of M.

Corollary 5. Let N be an \mathfrak{M}-primal submodule of an R-module M with $P(0) \subseteq P(N)$. Then N is a $P(N)$-locally weakly primary submodule of M if and only if N is a weakly primary submodule of M.

Proof. It is clear from Theorem 2 and [1, Theorem 3.6].

Theorem 3. Let M be an R-module and N be an \mathfrak{M}-primal submodule of M with $P(0) \subseteq$ $P(N)$. Then the following statements are equivalent:
i) N is a $P(N)$-locally weakly primary submodule of M.
ii) For any $m \in M \backslash N, \operatorname{rad}(N: R m)=\operatorname{rad}(N: M) \cup(0: R m)$.
iii) For any $m \in M \backslash N, \operatorname{rad}(N: R m)=\operatorname{rad}(N: M)$ or $\operatorname{rad}(N: R m)=(0: R m)$.

Proof. $(i \Longrightarrow i i)$: Let N be a $P(N)$-locally weakly primary submodule of M and let $m \in M \backslash N$. Since N is \mathfrak{M}-primal, then $P(N)$ is an ideal of R. As $i \notin P(N)$, then $P(N)$ is a proper ideal. So we have $P(N) \subseteq \mathfrak{M}$ for some maximal ideal \mathfrak{M} of R. Hence $N_{\mathfrak{M}}$ is a weakly primary submodule of $M_{\mathfrak{M}}$. As $m \in M$, then $\frac{m}{1} \in M_{\mathfrak{M}}$, but $\frac{m}{1} \in M_{\mathfrak{M}} \backslash N_{\mathfrak{M}}$. If $\frac{m}{1} \in N_{\mathfrak{M}}$, then $p m \in N$ for some $p \in R \backslash \mathfrak{M}$. Since $p \notin P(N)$, then $m \in N$, this is a contradiction. By [3, Theorem 2.15] $\operatorname{rad}\left(N_{\mathfrak{M}}: R_{\mathfrak{M}} \frac{m}{1}\right)=\operatorname{rad}\left(N_{\mathfrak{M}}: M_{\mathfrak{M}}\right) \cup\left(0_{\mathfrak{M}}: R_{\mathfrak{M}} \frac{m}{1}\right)$ and from $\left[2\right.$, Corollary 2.9], $\operatorname{rad}\left(N_{\mathfrak{M}}:(R m)_{\mathfrak{M}}\right)=\operatorname{rad}\left(N_{\mathfrak{M}}: M_{\mathfrak{M}}\right) \cup\left(0_{\mathfrak{M}}:(R m)_{\mathfrak{M}}\right)$. Then by Proposition 3, Proposition 4 and Corollary 4, $\operatorname{rad}\left((N: R m)_{\mathfrak{M}}\right)=\operatorname{rad}\left((N: M)_{\mathfrak{M}}\right) \cup(0$: $R m)_{\mathfrak{M}}$. Let $r \in \operatorname{rad}(N: R m)$. Then $\frac{r}{1} \in \operatorname{rad}\left((N: R m)_{\mathfrak{M}}\right)$ and so $\frac{r}{1} \in \operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)$ or $\frac{r}{1} \in(0: R m)_{\mathfrak{M}}$. If $\frac{r}{1} \in \operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)$, then $\frac{r^{n}}{1} \in(N: M)_{\mathfrak{M}}$ for some positive integer n and thus $q r^{n} \in(N: M)$ for some $q \in R \backslash \mathfrak{M}$, that is, $q r^{n} M \subseteq N$. Assume that $r^{n} M \nsubseteq N$. Then $r^{n} m \notin N$ for some $m \in M$, however $q r^{n} m \in N$. Hence $q \in P(N)$. Then $q \in \mathfrak{M}$, which is a contradiction. So $r^{n} M \subseteq N$ for some positive integer n, that is, $r \in \operatorname{rad}(N: M)$. If $\frac{r}{1} \in(0: R m)_{\mathfrak{M}}$, then $p r \in(0: R m)$ for some $p \in R \backslash \mathfrak{M}$. Thus $p r R m=0$. Assume that $r R m \neq 0$. Then $r s m \neq 0$ for some $s \in R$, but prsm $=0$. Therefore $p \in P(0)$. As $P(0) \subseteq \mathfrak{M}$, then $p \in \mathfrak{M}$, which is a contradiction. So $r R m=0$. Then $r \in(0: R m)$. Hence $r \in \operatorname{rad}(N: M) \cup(0: R m)$. Conversely, let $r \in \operatorname{rad}(N: M) \cup(0: R m)$. If $r \in \operatorname{rad}(N: M)$, then $r^{n} M \subseteq N$ for some positive integer n and so we get $r^{n} R m \subseteq r^{n} M \subseteq N$. Thus $r \in \operatorname{rad}(N: R m)$. If $r \in(0: R m)$, then $r R m=0 \subseteq N$. Thus $r \in(N: R m) \subseteq$ $\operatorname{rad}(N: R m)$.
($i i \Rightarrow i i i)$: Clear.
$(i i i \Rightarrow i)$: Let \mathfrak{M} be a maximal ideal of R with $P(N) \subseteq \mathfrak{M}$. Let $\frac{m}{p} \in M_{\mathfrak{M}} \backslash N_{\mathfrak{M}}$ where $m \in M, p \in R \backslash \mathfrak{M}$. Then $m \in M \backslash N$. By the condition of the theorem, $\operatorname{rad}(N: R m)=\operatorname{rad}(N: M)$ or $\operatorname{rad}(N: R m)=(0: R m)$ for some $m \in M \backslash N$. If $\operatorname{rad}(N: R m)=\operatorname{rad}(N: M)$, then $\operatorname{rad}\left((N: R m)_{\mathfrak{M}}\right)=\operatorname{rad}\left((N: M)_{\mathfrak{M}}\right)$ and from Proposition 3 and Proposition $4 \operatorname{rad}\left(N_{\mathfrak{M}}:(R m)_{\mathfrak{M}}\right)=\operatorname{rad}\left(N_{\mathfrak{M}}: M_{\mathfrak{M}}\right)$. By [2, Proposition 2.8], $\operatorname{rad}\left(N_{\mathfrak{M}}: R_{\mathfrak{M}} \frac{m}{p}\right)=\operatorname{rad}\left(N_{\mathfrak{M}}: M_{\mathfrak{M}}\right)$. If $\operatorname{rad}(N: R m)=(0: R m)$, then $\operatorname{rad}\left((N: R m)_{\mathfrak{M}}\right)=$ $(0: R m)_{\mathfrak{M}}$ and by Proposition 4 and Corollary $4, \operatorname{rad}\left(N_{\mathfrak{M}}:(R m)_{\mathfrak{M}}\right)=\left(0_{\mathfrak{M}}:(R m)_{\mathfrak{M}}\right)$. By [2, Proposition 2.8], $\operatorname{rad}\left(N_{\mathfrak{M}}: R_{\mathfrak{M}} \frac{m}{p}\right)=\left(0_{\mathfrak{M}}: R_{\mathfrak{M}} \frac{m}{p}\right)$. By [3, Theorem 2.15], $N_{\mathfrak{M}}$ is a weakly primary submodule of $M_{\mathfrak{M}}$. Thus N is a $P(N)$-locally weakly primary submodule of M.

Theorem 4. Let M be an R-module and N be an \mathfrak{M}-primal submodule of M with $P(0) \subseteq$ $P(N)$. Then the following statements are equivalent:
i) N is a $P(N)$-locally weakly primary submodule of M.
ii) $0 \neq I D \subseteq N$ for any ideal I of R and any submodule D of M implies either $I \subseteq \operatorname{rad}(N: M)$ or $D \subseteq N$.
iii) $\operatorname{rad}(N: R m)=\operatorname{rad}(N: M) \cup(0: R m)$ for any $m \in M \backslash N$.
iv) $\operatorname{rad}(N: R m)=\operatorname{rad}(N: M)$ or $\operatorname{rad}(N: R m)=(0: R m)$ for any $m \in M \backslash N$.

Proof. It is clear from Theorem 2 and Theorem 3.

References

[1] A.E.Ashour, On Weakly Primary Submodules, Journal of Al Azhar UniversityGaza(Natural Sciences). 13. pps 31-40. 2011.
[2] A.K.Jabbar, A Generalization of Prime and Weakly Prime Submodules, Pure Mathematical Sciences. 2. pps 1-11. 2013.
[3] S.E.Atani and F.Farzalipour, On Weakly Primary Ideals, Georgian Mathematical Journal. 12. pps 423-429. 2005.
[4] S.E.Atani and F.Farzalipour, On Weakly Prime Submodules, Tamkang Journal of Mathematics 38. pps 247-252. 2007.
[5] R.Y. Sharp, Steps in Commutative Algebra, Cambridge University Press, Cambridge. 1990.
[6] U. Tekir, A Note on Multiplication Modules, International Journal of Pure and Applied Mathematics. 27. pps 103-107. 2006
[7] U.Tekir, On Primary Submodules, International Journal of Pure and Applied Mathematics 27. pps 283-289. 2006.

[^0]: *Corresponding author.

