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Abstract. Itis studied codes over the ring R = Fy+uF,+VvF,, u*> = 0,v? = v,uv = vu = 0 which contains
the two ring F, + uF,,u? = 0 and F, + vF,,v?> = v. It is introduced (1 + u)-cyclic codes and cyclic codes
over F, +uF, +VvF,. It is characterized codes over F, + vF, which are the images of (1 + u)-cyclic codes
and cyclic codes over F, +uF, + vF,. It is obtained a representation of a linear code of length n over R
by means of C; and C, which are linear codes of length n over F, + uF,. It is also characterized codes
over F, which are the Gray images of (1 + u)-cyclic codes or cyclic codes over F, + uF, + vF,.
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1. Introduction

It was introduced linear (1 + u) constacyclic codes and cyclic codes over F, + uF, and
characterized codes over F, which are the Gray images of (1 + u) constacyclic codes or cyclic
codes over Fy+uF,, in [6]. In[1], they extended the result of [ 6] to codes over the commutative
ring Fp« + uF« where p is a prime, k € N and u?=0.

In [5], it was introduced (1—u?)-cyclic codes over F, +uF, +u?F, and characterized codes
over F, which are the Gray images of (1—u?)-cyclic codes or cyclic codes over F, + uF, +u?F,.

In [2], it was defined a distance preserving map from Fy +uF, +u?Fy+u3Fy+...+u™F, to
F, and characterized codes over F, which are the Gray images of (1—u™)-cyclic codes or cyclic
codes over Fy +uFy +u?F, +u3Fy +...+u™F,. In [8], Udomkavanich and Jitman generalized
these results to the ring Fpx +uF,x +...+u™Fp. The Gray images of (1—u™)-constacyclic and
cyclic codes over Fyx +uFpc +...+u™F }’; were studied in the mentioned paper.

In [4], (1 +v)-constacyclic codes over Ry = Fy +uFy +VFy +uvFy, u? =v2 = 0,uv—vu=0
were studied. (1 + v)-constacyclic codes over R, of odd length were characterized with help
of cyclic codes over R,.
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In [3], it is studied (1 + u)-cyclic codes over a finite commutative ring
Fy+uF,+VFy+uvF,,u?> = 0,v? = 0,uv—vu = 0. A set of generator of such constacyclic codes
for an arbitrary length was determined.

In [7], they studied linear codes over a new ring
S = Fy + uFy + vVFy + uvFy,u? = 0,v? = v,uv = vu. It is obtained MacWilliams identities for
Lee weight enumerator of linear codes over this ring using a Gray map from S™ to (Fy + uF,)".
Moreover, they studied self dual and cyclic codes over S.

Liu Xiusheng and Liu Hualu gave rise to a new ring
R = Fy +uFy + vFy,u? = 0,v2 = v,uv = vu = 0 in [9]. It is Frobenius ring. They defined
a Gray map. The MacWilliams identity over F, and the MacWilliams identities for the Lee
weight enumerators of linear codes over the ring F, + uF, 4+ vF, were given. Moreover, they
gave some examples.

In this paper, it is given some definitions in section 2. It is seen that the image of a (1 +u)-
cyclic code of length n over R under the map ¢, ; is a distance invariant cyclic code of length
2n over Fo + vF,. It is shown that if n is odd, then the image of a cyclic code of length n over
R under the map ¢, ; is a permutation equivalent to cyclic code of length 2n over F, + vF,. In
section 3, it is given a representation of a linear code of length n over R by means of C; and
C, which are linear codes of length n over F, +uF,. In section 4, it is characterized codes over
F, which are the Gray images of (1 + u)-cyclic codes or cyclic codes over F, + uF, + VF,. It is
proved that the Gray image of a linear (1 + u)-cyclic code over F, + uF, + vF, of length n is
a binary permutation equivalent to quasi-cyclic codes of index 3 and length 3n over F,. It is
also proved that if n is odd, then every code over F, which is the Gray image of a linear cyclic
code of length n over F, + uF, + vF, is permutation equivalent to a quasi-cyclic code of index
3.

2. Preliminaries

In [9], the commutative ring R = F5 + uFy + vFy,u? = 0,v? = v,uv = vu = 0 is given.
Then R is a finite, principal ideal and semilocal ring with two maximal ideals I, and I ,.
The quotient rings R/I,,, and R/I,,, are isomorphic to F,. A direct decomposition of R is
R=1I,®I,;,,. The set of units of R is R* = {1,1 + u}.

Let the C be a code of length n over R and P(C) be its polynomial representation, i.e,
P(C)= {Z::Ol r;x'|(rg,...,74_1) € C} Let o and v be maps from R" to R" given by

O'(ro,. . .,rn_]_) = (rn_l, ros-- .,rn_z)

and
V(oo Tne1) = (L +Wrp_q1,705 -+« > Tns)
Then C is said to be cyclic if (C) = C and (1 + u)— cyclic if »(C)=C.
A code C of length n over R is cyclic if and only if P(C) is an ideal of R[x]/(x"—1). A code
C of length n over R is (1 + u)— cyclic if and only if P(C) is an ideal of R[x]/{x" — (1 + u)).
Leta € FS” with a = (ag, ay, ...,a3,-1) = (@@aM]a?®), a® e F} foralli =0,1,2. Let
o®® be the map from F2" to F3" given by 0®3(a) = (6(a‘®)|6(a™)|6(a'?)) where & is the
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usual cyclic shift
(coy-vvrCp1) > (Ch1,C05--+>Cns)
on F}. A code C of length 3n over F, is said to be quasi-cyclic of index 3 if 0®3(C) = C.
The Hamming weight w;(x) of a codeword x is the number of nonzero components in x.

The Hamming distance d(x,y) between two codewords x and y is the Hamming weight of
the codewords x — y. The minimum Hamming distance dy; of C is defined as

min{dy(x,y)lx,y €C,x # y}.

Let x = (xq,...,x,)and y = (yq,...,Y,) be two vectors of R". The Euclidean inner product
of x and y is defined
n
Xy = Z XiYi-
i=1

The dual code C' of C is defined as C+ = {x € R"|xc = 0 for all ¢ € C}. C is said to be self
orthogonal if C € C! and C is said to be self dual if C = C*.

Recall that the Gray map ¢, on F, + uF,,u? = 0 is defined as ¢,(z) = (r,r + q) where
z = q+ur with r,q € F, and the Gray map ¢, on Fo+VvF,, v2 = v is defined as ¢,(s) = (m, m+t)
where s = m + vt with m,t € F,. The maps ¢; and ¢, can be extended to (F, + uF,)" and
(Fy +vF,)", respectively as follows,

¢)1 :(FZ + qu)n — F22n

(205 +-+>2n—1) = (g5 - s "1, T0 D Qo5+ > Tne1 D Q1)
¢ :(Fy +VF,)" — F3"
(50, .. .,Sn_]_) — (mo, cee,My_1, Mg & to, cee,My_q 2 tn_]_)

where z; = r; +uq;,s; = m;+vt; and q;, r;,m;, t; € F, for 0 <i < n—1 and & is componentwise
addition in F,.

Each element ¢ € R = F, + uF, + vF, can be expressed ¢ = a + ub where a,b € F, + VF,.
The map ¢, ; is defined as

¢1,1 R" = (Fp+VF,)™"
(Co, .. .,Cn_]_) — (bo, ey bn_]_, bo + ag, .-, bn—l + an_l)
where ¢; = a; + ub; with a;,b; € F5 +vFy for0<i<n-—1.
Each element ¢ € R = F, + uF, + vF, can be also expressed ¢ = a’ + vb’ where
a’,b’ € Fy +uF,. The map ¢, ; is defined as
¢o1 R" = (Fy +uF,)*"
(cos---»Cn1) = (ag, ..., a,_1,by+ag,..., b, +a,_;)
where ¢; = a; +vb] with a/, b] € Fy + uF, for 0 <i <n—1.

A Gray map ¢ from R to FJ' which is the composition of ¢, ; and ¢, or ¢, and ¢; can
be obtained.
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The Lee weights of 0,1,u,1 +u € F, + uF, are 0,1,2,1 respectively. The Lee weights
of 0,1,v,14+v € F, + vF, are 0,2,1,1 respectively. These Lee weights can be extended to
(Fy + uF,)" and (F, + vF,)". It is known that ¢, and ¢, are distance-preserving map from
(Fy 4+ uF,)" (Lee distance) to F22” (Hamming distance) and (F5 + vF,)" (Lee distance) to F22”
(Hamming distance), respectively. For any element a+vb € R with a, b € F5+uF,, it is defined
Lee weight, denoted by w; as w;(a +vb) = w;(b,b + a). The Lee distance of a linear code
over R, denoted by d; (C) is defined as minimum Lee weight of nonzero codewords of C.

¢ :(Fy +uF,)" (Lee distance) — F22” (Hamming distance)
¢y :(Fy + vFy)" (Lee distance) — F22” (Hamming distance)
¢11 :R" (Lee distance) — (F, + VF,)?" (Lee distance)
¢21 :R" (Lee distance) — (F, + uF,)?" (Lee distance)

Now, it will be characterized codes over F, + vF, which are the images of (1 + u)-cyclic and
cyclic codes over R.

Proposition 1. Let ¢ ; be defined as above. Let v be (1 + u)-cyclic shift on R" and o the cyclic
shift on (Fy + vF5)*". Then P11V=00¢11.

Proof. Let z =(2g,...,%,_1) € R" where ¢; = q; +ur; and q;,r; € F+VvF, for0<i<n-—1.
From definition, we get,

$1,1(2)=(ros-- s Tne1,T0 + 405+ - -5 "1 + Q1)
and
0(911(2)) = (rp—1 +qn—1:T05+ > Tn—1>T0 + 405+ + - Tn—2 + Gn—2)
On the other hand,

v(2) =((1+w)z,—1,205- -+ »Zn—2) = (qn—1 + u(qn_1 +7n—1),q0 + Ulg, - ., Qo +UI_3)

and
$11("(2)) = (qn1 + Th—15705 -+ +» qn—z + Tn—2)-
O

Theorem 1. A linear code C of length n over Ris a (1 +u)-cyclic code iff ¢, 1(C) is a cyclic code
of length 2n over Fy + VF,.

Proof. If C is (1 + u)-cyclic code, from Proposition 1 we get ¢, ;(v(C)) = o(¢;,1(C)). So
¢11(C) is a cyclic code of length 2n over F, + vF,. Conversely, if ¢, ,(C) is a cyclic code of
length 2n over F, + vF,, from Proposition 1, we get ¢, 1(v(C)) = o(¢;1(C)) = ¢,1(C). By
using ¢, ; is injection, hence »(C) = C. O

Corollary 1. The image of a (1+u)-cyclic code of length n over R under the map ¢ ; is a distance
invariant cyclic code of length 2n over Fy + VF,.
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Note that (1+u)" =1+uifnisodd, (1+u)" =1 if n is even. In here, it is studied the
properties of (1 + u) cyclic codes of odd length in this section.

Let u be the map of R[x]/{x™—1) into R[x]/{x"—(1+u)) defined by u(c(x)) = c((1+u)x).
If n is odd, then u is a ring isomorphism. Hence I is an ideal of R[x]/(x™ — 1) if and only if
u(I) is an ideal of R[x]/{x" — (1 + w)). If i is the map

@ :R"—R"
z = (Z(), (1 + u)zlz (1 + u)ZZZJ LR} (]- + u)n_lzn—l)
where z; =q; +ur; and r;,q; € F, + vF, for 0 <i < n—1, then it also follows that:

Proposition 2. The set C C R" is a linear cyclic code if and only if 3’(C) is a linear (1 + u)-cyclic
code.

Let 7’ be the following permutation of {0,1,2,...,2n—1} withnodd: v/ =(1,n+1)(3,n+
3)...(n—2,2n—2). The Nechaev permutation n’ of (F, + vF,)?" is defined by

n/(ro, 15000, rzn_l) = (rf/(o), r,t/(l), e, rT/(Zn_l)).
Proposition 3. Assume n odd, let i’ be the permutation of R" such that
(205> 201) = (20, (1 +1)zq,..., (1 +u)"Lz,_;).

Then ¢ 10" = 7'y 1.

Corollary 2. If C is the Gray image of a linear cyclic code of length n over R, then € is permutation
equivalent to a cyclic code and length 2n over Fy + vF,.

Proof. From Proposition 2, a code C of length n over R is linear cyclic code if and only
if 4'(C) is linear (1 + u)-cyclic. From Theorem 1, this is also so if and only if ¢ ,(f'(C)) is
permutation equivalent to a linear cyclic code over F, + vF,. From Proposition 3, ¢4 1(C) is
permutation equivalent to linear cyclic over F, + vF,. O

3. A Representation of a Code over R

In this section, it will be obtained a representation of a linear code of length n over R by
means of C; and C, which are linear codes of length n over F, + uF,.

Theorem 2. The map ¢, 1:R" — (F, + uF,)*" is a linear isometry.
Proof. For any m,k € R" and s, t € F, + uF,, it is verified that
¢o1(sm+thk) =s¢y1(m) + ty1(k),

SO ¢ is linear. For isometry, we get

dL(¢2,1(m); ¢2,1(k)) = WL(¢2,1(m —k)) =w;(m—k)=d,(m,k).
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Theorem 3. If C is a linear code of length n over R, then ¢, 1(C) is a linear code of length 2n
over Fy +uF,.

Proof. It is seen from linearity of ¢ ;. O

Let A and B be two codes. The direct product and sum of A and B are defined by, respec-
tively

A®B ={(a,b)la € A,b € B}
A®B={a+bla<€AbeB}.

Theorem 4. If C be a linear code of length n over R, then C = (1+v)C;®vCy, ¢51(C) =C;®C,
and |C| = |Cy||Cy| where C; = {m € (Fy + uF,)"|\m + vt € C for some t € (Fy + uF,)"} and
Cy={m+t e (Fy+uF,))"iIm+vt € C for some m € (Fy +uF,)"}.

Proof. Let c = m+ vt € C for some m,t € (Fy +uF,)". Som € C;,m+t € C,. Hence
c=0+vIm+v(m+t)e(1+v)C; ®vCy. We have C C (1+v)C; ® vC,. On the other hand,
1+v)m+v(im+t) e (1+v)C, ®vC, where m € C; and t € C,, there exist a,b € C and
r,q € (Fy +uF,)" such thata=m+vrand b=m+t + (1 +v)q. As C is linear over R, from
c=(1+v)a+vbeC wehave (1+v)C;®vC, CC. O

Theorem 5. A linear code C = (1+v)C; ®vC, cyclic over R if and only if C; and C, are all cyclic
codes over Fo + uF,.

Proof. Let (rg,...,rp—1) € C; and (sg,...,5,—1) € Cy. Suppose that ¢; = (1 + v)r; + vs; for
i=0,...,n—1. Letc =(cg,...,c,—1) € C. As C is cyclic, it follows that (¢c,_;,¢cg,-..,Cp—5) € C.
Note that (¢,_1,€0,--+>Cn2) = (L +V)(Tp1570s - -+ Tn2) + V(Sp—1,505 - - - »Sn_2)- SO
(rp—1,70s-++>Tn—) € C1, (54—1,50 - - - »Sp—2) € Co, that is C;, C, are cyclic codes over F, + uF,.

Conversely, let C;, C, be cyclic codes over F, + uF,. Let (¢,_1,¢q,---,Cp_2) € C Wwhere
¢;=QQ+v)ri+vs;fori =0,...,n—1. Then (ry,...,r,—1) € C; and (sg,...,5,_1) € C,. Note
that (¢,—1,C05 -+ > Cn—o) = (1 +V)(rp_1,70s - - » Fn—2) +V($4—1,50, - - - »Sp—2) € (1+v)C; ®VvCy = C.
So C is a cyclic code. O

Theorem 6. Let C be a linear code of length n over R. Then ¢2’1(CL) = (¢271(C))L.

Proof By using ¢ 1(C) € (¢21(C))*F and [¢y1(CH)| = [(¢2,1(C))*], we have expected
result. O

Theorem 7. If C is a linear code of length n over R such that C = (1 +v)C; ® vC,, then
ct=01+ v)C1L ® vCZL. Moreover C is self dual if and only if Cy, Cy are self dual over Fy 4+ uF,.

Theorem 8. Let C = (1 +v)C; ® vC, be a linear code of length n over R. Then
dpnin(C) = min{d,, d,} where d,,;,,,d; and d, are minimum Lee distance of C,C; and C,, respec-
tively.
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4. The Gray Images of (1 + u)— Cyclic Codes and Cyclic over F, + uF, + vF,

In this section, by using the Gray map which is defined by Liu Xiusheng, Liu Hualu, we will
characterize codes over F, which are the Gray images of (1 + u)-cyclic and cyclic codes over R.
In [9], it was defined the Gray map ¢ on R" as follows

¢ R— F;’
a+ub+vc—(c,b+c,a+b+c).
This map can be extended to R" in a natural way. For z = (2¢,...,2,—1) €R",
¢ :R"— Fg"
2=1(20,-+,2n—1) > (505 +>S1—1>50 © q0> - + - »Sn—1 ® Qn—1>T0 P Q0 D S5+ + > "1 D qp—1 ® Sp—1)

where z; =r; + uq; + vs;, for 0 <i <n—1 and & is componentwise addition in F,.
In [9], they extended the definition of the Lee weight from F,+VF, to the ring Fo+uFy+VF,.
The Lee weight w; (x) of a codeword x = (x,...,Xx,) was defined as Z?:l wy (x;) where

ifxi:O
ifx;=1,1+u,u+v

0

1
wi(x) =
1(x) 2 ifx;=u,14+v,14+u+v
3

ifx; =v

The Lee distance d; (x, y) between two codewords x and y is the Lee weight of x —y. The
Gray map ¢ is an isometry from (R",d;,,) to F;’" under the Hamming distance.

Proposition 4. ¢pv = po®3¢p where p is a permutation of {0,...,3n — 1} which is defined
p=m+1,2n+1).

Proof. Let 2 = (29,21,..-,%,—1) € R". Let r;,q;,s; € F, such that z; = r; + uq; + vs;, for
0<i<n-—1. We have

$(2) = (505 55n-1550 @ 0>+ -+ >Sn—1 ® qn—1,T0 D G0 D S0+ - -5 Tn—1 D Q1 D Sp—1)-
Then
3 _
0% (P(2)) =(51—15505 -+ 572,571 © qn—1,50 D G0» - - - »Sn—2 D G
i1 qn1®8p_1,T0® Qo D505+ -5 Tn2 ® nn ®Sp_3).
On the other hand, v(z) = ((1 + u)2z,_1,20,- - -,2,_2) Where
(1+u)zpq =1y +u(r,—1 +qp—1) +vs,—;. We have
¢(V(Z)) :(sn—l;SO) e Sp—2,Tp—1 © g1 OS5y, do ® S0>+++>qn—2 ®S5p-2,Tn—1®qp1
s T0® o @505+, T ® Gnp D Sp_).
Hence ¢pv=po®3¢. O

So we have the following theorem.
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Theorem 9. A code C of length n over R is (1 + u)—cyclic if and only if ¢(C) is permutation
equivalent to quasi-cyclic of index 3 and length 3n over F,.

Proof Suppose C is (1 + u)—cyclic. As p(c®3(¢(C))) = ¢(v(C)), ¢(C) is permutation
equivalent to a quasi-cyclic of index 3. Conversely, if ¢(C) is permutation equivalent to quasi-
cyclic of index 3, then ¢(v(C)) = p(0®3(¢(C))) = ¢(C). Since ¢ is isometry, so »(C) = C,
that is C is (1 + u)— cyclic code. O

Note that (1+u)" =1+uifnis odd, (14 u)" =1 if n is even. In here, it is studied the
properties of (1 + u) cyclic codes of odd length in this section.

Let u be the map of R[x]/{x™—1) into R[x]/{x"—(1+u)) defined by u(c(x)) = c((1+u)x).
If n is odd, then u is a ring isomorphism. Hence I is an ideal of R[x]/(x™ — 1) if and only if
u(I) is an ideal of R[x]/{x™ — (1 + u)). If & is the map

o :R"—>R"
2 (20, (1 + w2y, (1 +u)?2y,...,(1+u)" 2, 1)
where z; =s; +ut; +vy; and s;, t;, y; € F5 for 0 <i < n—1, then it also follows that:

Proposition 5. The set C C R" is a linear cyclic code if and only if fi(C) is a linear (1 + u)-cyclic
code.

Let 7 be the following permutation of {0,1,2,...,3n— 1} with n odd:
T=(n+1,2n+1)(n+3,2n+3)(n+5,2n+5)...(2n—2,3n—2)

The permutation 7 of F23“ is defined by

(1o, 15> T3p—1) = (Ie(0)s Tx(1)> - - - T2 (3n-1))

Proposition 6. Assume n odd, let i be the permutation of R" such that

(205 - +»2n—1) = (20, (1 +w)zq,...,(1+ u)”_lzn_l).
Then ¢ = 1.

Corollary 3. If C is the Gray image of a linear cyclic code of length n over R, then € is permutation
equivalent to a quasi-cyclic code of index 3 and length 3n over F,.

Proof. From Proposition 5, a code C of length n over R is linear cyclic code if and only
if (C) is linear (1 + u)-cyclic. From Theorem 9, this is also so if and only if ¢ (@(C)) is
permutation equivalent to a linear quasi-cyclic code of index 3 over F,. From Proposition 6,
¢(C) is permutation equivalent to linear quasi cyclic of index 3 over F,. O
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5. Conclusion

It is introduced (1 +u)-cyclic codes and cyclic codes over R. Firstly, it is characterized codes
over F, + vF, which are the Gray images of (1 + u)-cyclic codes and cyclic codes over R. It is
obtained a representation of a linear code of length n over R by means of C; and C, which are
linear codes of length n over F, + uF,. It is characterized codes over F, which are the Gray
images of (1 + u)cyclic codes or cyclic codes over R.
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