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Generalization of Dunkl Dini Lipschitz Functions
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Abstract. Using a generalized spherical mean operator, we obtain a generalization of Younis’s
Theorem 5.2 in [12] for the Dunkl transform for functions satisfying the d-Dunkl Dini Lipschitz
condition in the space LP(R%, w;(z)dz), 1 < p < 2, where w; is a weight function invariant under
the action of an associated reflection group.
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1. Introduction and Preliminaries

Younis’s Theorem 5.2 [12] characterized the set of functions in L?*(R) satisfying the
Dini Lipschitz condition by means of an asymptotic estimate growth of the norm of their
Fourier transforms, namely we have

Theorem 1. [12] Let f € L*(R). Then the following are equivalents
(i) f@+n) = f@)le=0 (), e h—>0,0<n<1,620

log %)5
s72n

(ii) . IF(N)[2dA =0 <W> . as s — 00,

~

where f stands for the Fourier transform of f.

In this paper, we obtain a generalization of Theorem 1.1 for the Dunkl transform on R?
in the space LP(R?, w;(x)dzr), 1 < p < 2. For this purpose, we use a generalized spherical
mean operator.

We consider the Dunkl operators D;,1 < j < d, on R? which are the differential- dif-
ference operators introduced by Dunkl in [3]. These operators are very important in pure
mathematics and in physics. The theory of Dunkl operators provides generalizations of
various multivariable analytic structures, among others we cite the exponential function,
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the Fourier transform and the translation operator. For more details about these opera-
tors see [6, 5]. The Dunkl Kernel E; has been introduced by Dunkl in [4]. This Kernel is
used to define the Dunkl transform.

Let R be a root system in RY, W the corresponding reflection group, R, a positive sub-
system of R ( see [6, 5, 1, 8, 9]) and [ a non-negative and W-invariant function defined on
R. The Dunkl operator is defined for f € C*(R?) by

D;f(x) = g(x) + ) l(a)ajf(xl_aff:i(x)),m eRY(1<j<d).
J a€R ’

Here <, > is the usual Euclidean scalar product on R? with the associated norm |.| and
04 the reflection with respect to the hyperplane H, orthogonal to a, and a; =< a,¢e; >,
(e1, €2, ...,eq) being the canonical basis of R?.

We consider the weight function

wi@)= [ I<¢z> " 2er,
CER}

where w; is W-invariant and homogeneous of degree 2y where

y=9(R) =Y 1) =>0

CERy

The Dunkl kernel E; on R? x R? has been introduced by C. F. Dunkl in [4]. For y € R,
the function x + Ej(z,y) is the unique solution on R of the following initial problem

Dju(z,y) = yju(z,y) sil<j<d
u(0,y) =0 for all y € R?

FEj is called the Dunkl kernel.

Lemma 1. [6] Let z,w € C% and X\ € C
1. El('z?O) =1, EZ(Z,UJ) = El(w7z)7 El()‘sz) = EI(Z,)\U])
2. For allv = (v1,...,vg) € N4z € R? 2 € C?, we have

102 Ey(x; 2)| < || exp(|||Rez],

where v
a 14
81/

: T onL o

In particular |0V Ey(iz; 2)| < |z| for all x,z € RY.

V| =11+ .. + vg.

We denote by LY (R?) = LP(R%, w(z)dx), 1 < p < 2, the space of measurable functions
on R? with the norm

|mm=<éﬁﬂwmmwm);<m.
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The Dunkl transform is defined for f € L} (R?) = L*(RY, w;(z)dz) by

~

FOEQ=FO =" [ @Bz
where the constant ¢; is given by

l=?
& :/ e 2 w(z)dz.
Rd

The Dunkl transform shares several properties with its counterpart in the classical case,
we mention here in particular that Plancherel’s Theorem holds in L?(R¢), when both f

and [ are in L}(R%), we have the inversion formula

f@) = [ FOB.u(d.a e R

By Plancherel’s Theorem and the Marcinkiewicz interpolation theorem (see [10]), we get
for f € LP(R?) with 1 < p < 2 and ¢ such that %—F%:l,

IF(llqr < KNl fllpas (1)

where K is a positive constant.
The generalized spherical mean value of f € Lf (RY) is defined by

Mif(e) = 3 [ fw)diy).a € B0 >0
| Jgd—1

where 7, Dunkl translation operator (see [9, 11]), u be the normalized surface measure on

the unit sphere S¥~! in R? and set du;(y) = w;(y)du(y), w is a W-invariant measure on

S41 and d; = ul(Sd_l).

We see that My, f € LY (R?) whenever f € LV(R?) and

M fllpy < IS

Dyl

for all h > 0.
For g > %1, we introduce the Bessel normalized function of the first kind jg defined by

& —1)(% 2n
js(2) =T(B+1) M,

n=0

z e C. (2)

Lemma 2. (Analog of lemma 2.9 in [2]) The following inequality is true

1= js(a)] = ¢,

with |x| > 1, where ¢ > 0 is a certain constant which depend only on (.
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Moreover, from (1) we see that

. j»erifl(z) -1
z—0 z

# 0. (3)
Lemma 3. [7] Let f € LV(RY). Then

My f (&) = j,ay (RIEDT(E).
The first and higher order finite differences of f (x) are defined as follows
Znf(x) = (Mp — 1) f(x),
where I is the identity operator LV (R?).
k
Zyf(@) = Zn(Zy (@) = (M = DF () = Y (-1 ()M f (@),
i=0

where MY f(z) = f(z), M} f(x) = Mp(M} " f(x)), i =1,2,..and k = 1,2, ...
From Lemma 3, we obtain

ZEF(E) = Gy (BIED) — 1 FE).

By (1), we have

L =Gy eg DM (€ < KOIZE S, (1)
where % + % =1.

2. Dunkl Dini Lipschitz Condition
Definition 1. Let f € L'(RY), and define

h"

1 SC—5=, 62>
P (log 3)?

125 f ()]

1.e.,

k _ h'
1ZE (@) ps = O (UOg i)é) ,

for all x in R and for all sufficiently small h,C being a positive constant. Then we say
that f satisfies a d-Dunkl Dini Lipschitz of order n, or f belongs to Lip(n,d).
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Definition 2. If however

12 f ().
h
(log +)°

—0, as h—0,

i.€.,
zy _o(- " h—0,6>0
12 f (@) llpa = (log 197 ) as h—0,020,
then f is said to be belong to the little d-Dunkl Dini Lipschitz class lip(n,9).

Remark. It follows immediately from these definitions that
lip(n,0) C Lip(n,?).
Theorem 2. Letn > 1. If f € Lip(n,d), then f € lip(1,9).
Proof. For x € R? | h small and f € Lip(n,d) we have

X
1ZEf(2)||pg < Cr——.
? (log £)°
Then
1 1 k n
(log E) 125 f (2)[|ps < Ch.
Therefore ( . )6
log + —
P28 @)l < CRT
which tends to zero with h — 0. Thus
(log £)°
N2 @) lpy 0, h 0.

Then f € lip(1,9).

Theorem 3. Ifn < v, then Lip(n,0) D Lip(v,0) and lip(n,0) D lip(v,0).

Proof. We have 0 < h <1 and n < v, then h¥ < A",
Then the proof of the theorem is immediate.
3. New Results on Dunkl Dini Lipschitz Class
Theorem 4. Let n > 2k. If f belong to the d-Dunkl Dini Lipschitz class, i.e.,
f € Lip(n,d), n>2ké>0.

Then f is equal to the null function in R?.
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Proof. Assume that f € Lip(n,d). Then

h"

zF <C—-——.
” hf(x)HP’l — (log %)5

From (4), we have

) R qn
L= g (DI (€ < KOt
Then
1= 5 g (DI (e —
R4 2 < K104
h2ak - (log %)q‘s ’

Since n > 2k we have
han—2qk
h—0 (log E)q‘s

Thus

h—0 JRrd ‘§‘2h2

11—, 0 (RIENI\Z N
lim ( Lai ) €179 £ (&) |9y (§)dé = 0.

and also from the formula (3) and Fatou’s theorem, we obtain

Agfwﬂﬂaﬂw@M§:a

Hence |§|2kf(£) =0 for all £ € RY, then f(x) is the null function.

Analog of the Theorem 4, we obtain this theorem.

Theorem 5. Let f € LV(R?). If f belong to lip(2,0), i.e.,
1ZF f(2)]lps = O(h?), as h—0.

Then f is equal to null function in R?.

Now, we give another the main result of this paper analog of Theorem 1.

Theorem 6. Let f € LV(R?). If f(x) belong to Lip(n,d), then

@ﬁmmwﬁm=0Qsm),s%w

log 5)4°

1 1 _
where;—l—a—l.

549
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Proof. Suppose that f € Lip(n,d). Then

h1

h

From (4), we have
L =g GleDI RO ) < KZE S @I,
If [¢] € [+, #] then h[¢| > 1 and Lemma 2 implies that

1 . L
1 1= g (REDI™.

n 1 . T
/mg FOFw)ds < Z AS£|35|1—17+3_1<hrs|>\q (&) wn(€)dg

quk L= g DI F e de
Lzt

han
Y (am)

IN

IN

So we obtain

~ —an
Ty (€)dE < C'———
L, T < o
where C’ is a positive constant. Now, we have
=N 21+1
GG Z / ) (€)de
€1>s 2is
qan (28) qn (43)7617]
< !/ S e
= ¢ <<1ogs>q6 " (log25)® " (logds)® | >
< ;s (1 4+ 279 4 (2792 (273 .. )
= " llogs)®
s~
< -

where K, = C’(1 —2797)~! since 2797 < 1.

Consequently
~ g—an
/|£>S | f(©)] wi(§)dE = O <(logs)q5> ;  as s — 0.
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