EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 10, No. 2, 2017, 231-237
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

An Extension of Kantorovich Inequality for Sesquilinear Maps

Hamid Reza Moradi ${ }^{1, *}$, Mohsen Erfanian Omidvar ${ }^{2}$, Mohammad Kazem Anwary ${ }^{3}$
${ }^{1}$ Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran
${ }^{2}$ Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
${ }^{3}$ Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

By using sesquilinear map we generalize some operator Kantorovich inequalities. Our results are more extensive than many previous results due to Mond and Pečarić.

2010 Mathematics Subject Classifications: 47A63, 47A30
Key Words and Phrases: Kantorovich inequality, positive linear map, operator inequality

1. Introduction and Preliminaries

For every unit vector x and $M I \geq A \geq m I>0$, the Kantorovich inequality [4] states

$$
\begin{equation*}
\langle x, A x\rangle\left\langle x, A^{-1} x\right\rangle \leq \frac{(M+m)^{2}}{4 M m} . \tag{1}
\end{equation*}
$$

In [3, Theorem 1.29], the authors obtained the following reverse of Hölder-McCarthy inequality by the Kantorovich inequality:

Theorem 1. Let A be a positive operator on \mathscr{H} satisfying $M 1_{\mathscr{H}} \geq A \geq m 1_{\mathscr{H}}>0$ for some scalars $m<M$. Then

$$
\begin{equation*}
\left\langle A^{2} x, x\right\rangle \leq \frac{(M+m)^{2}}{4 M m}\langle A x, x\rangle^{2}, \tag{2}
\end{equation*}
$$

for every unit vector $x \in \mathscr{H}$.

[^0]Many authors have investigated on extensions of the Kantorovich one, such as Liu et al. [5], Furuta [2] and Ky Fan [1]. Among others, we pay our attentions to the long research series of Mond-Pečarić method [3].

As customary, we reserve M, m for scalars and $1_{\mathscr{H}}$ for identity operator. Other capital letters denote general elements of the C^{*}-algebra $\mathcal{B}(\mathscr{H})$ (with unit) of all bounded linear operators acting on a Hilbert space $(\mathscr{H},\langle\cdot, \cdot\rangle)$. Also, we identify a scalars with the unit multiplied by this scalar. We write $A \geq 0$ to mean that the operator A is positive and identify $A \geq B$ (the same as $B \leq A$) with $A-B \geq 0$. A positive invertible operator A is naturally denoted by $A>0$. For $A, B>0$, the geometric mean $A \# B$ is defined by

$$
A \# B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\frac{1}{2}} A^{\frac{1}{2}} .
$$

It is well known that

$$
A \# B \leq \frac{A+B}{2}
$$

We use φ for sesquilinear map. A map $\varphi: \mathcal{B}(\mathscr{H}) \times \mathcal{B}(\mathscr{H}) \rightarrow \mathcal{B}(\mathscr{H})$ is a sesquilinear map, if satisfying the following conditions:
(a) $\varphi\left(\alpha A_{1}+\beta A_{2}, B\right)=\alpha \varphi\left(A_{1}, B\right)+\beta \varphi\left(A_{2}, B\right)$;
(b) $\varphi\left(A, \alpha B_{1}+\beta B_{2}\right)=\bar{\alpha} \varphi\left(A, B_{1}\right)+\bar{\beta} \varphi\left(A, B_{2}\right)$;
(c) $\varphi(A, A) \geq 0$;
(d) $\varphi(A X, Y)=\varphi\left(X, A^{*} Y\right)$;
for all $\alpha, \beta \in \mathbb{C}$ and $A_{1}, A_{2}, B_{1}, B_{2}, X, Y \in \mathcal{B}(\mathscr{H})$.
Note that, if $A \geq 0$ then $\varphi(A C, C) \geq 0$ for all $C \in \mathcal{B}(\mathscr{H})$. In fact, if $A \geq 0$ then $A=B^{*} B$ for some $B \in \mathcal{B}(\mathscr{H})$. Therefore,

$$
\varphi(A C, C)=\varphi\left(B^{*} B C, C\right)=\varphi(B C, B C) \geq 0
$$

It turn implies that, if $A \geq B$ then, $\varphi(A C, C) \geq \varphi(B C, C)$. Since $A-B \geq 0$.
We remark that if we define $\varphi(A, B)=B^{*} A$, then above definition coincides with the ordinal definition of positive operator. In fact, in this case $\varphi(A C, C)=C^{*} A C$ and $\varphi(B C, C)=C^{*} B C$, hence $A \geq B$ if and only if $C^{*} A C \geq C^{*} B C$ for any $C \in \mathcal{B}(\mathscr{H})$. We call $U \in \mathcal{B}(\mathscr{H})$ is φ-unitary if $\varphi(U, U)=1_{\mathscr{C}}$.

The main results are given in the next section. In this paper, we will present some operator inequalities which are generalizations of (1) and (2).

2. Proofs of the inequalities

To prove our main results we need the following lemma.
Lemma 1. [3, Lemma 1.24] Let $A \in \mathcal{B}(\mathscr{H})$ be positive and satisfying $M 1_{\mathscr{H}} \geq A \geq$ $m 1_{\mathscr{H}}>0$ for some scalars $m<M$. Then

$$
(M+m) 1_{\mathscr{H}} \geq M m A^{-1}+A .
$$

The following result is our first main result. It presents a generalization of the Kantorovich inequality.

Theorem 2. Let $A, C \in \mathcal{B}(\mathscr{H})$ and A be a positive satisfying $M 1_{\mathscr{H}} \geq A \geq m 1_{\mathscr{H}}>0$ for some scalars $m<M$. Then

$$
\begin{equation*}
\varphi(A C, C) \# \varphi\left(A^{-1} C, C\right) \leq \frac{M+m}{2 \sqrt{M m}} \varphi(C, C) . \tag{3}
\end{equation*}
$$

Proof. By Lemma 1, we have

$$
(M+m) 1_{\mathscr{H}} \geq M m A^{-1}+A .
$$

Since φ is sesquilinear map, we obtain

$$
\begin{aligned}
(M+m) \varphi(C, C) & \geq M m \varphi\left(A^{-1} C, C\right)+\varphi(A C, C) \\
& \geq 2 \sqrt{M m} \varphi\left(A^{-1} C, C\right) \# \varphi(A C, C) .
\end{aligned}
$$

Which is exactly desired result (3).
Example 1. By taking $\varphi(A, B)=B^{*} A$ in Theorem 2 we infer that

$$
C^{*} A C \# C^{*} A^{-1} C \leq \frac{M+m}{2 \sqrt{M m}} C^{*} C .
$$

In addition, if C is unitary then

$$
C^{*} A C \# C^{*} A^{-1} C \leq \frac{M+m}{2 \sqrt{M m}} .
$$

Theorem 3. Let $A_{i}, C_{i} \in \mathcal{B}(\mathscr{H})$ and A_{i} be a positive satisfying $M 1_{\mathscr{H}} \geq A_{i} \geq m 1_{\mathscr{H}}>0$ for some scalars $m<M(i=1, \ldots, n)$. Then

$$
\left(\sum_{i=1}^{n} \varphi\left(A_{i} C_{i}, C_{i}\right)\right) \#\left(\sum_{i=1}^{n} \varphi\left(A_{i}^{-1} C_{i}, C_{i}\right)\right) \leq \frac{M+m}{2 \sqrt{M m}} \sum_{i=1}^{n} \varphi\left(C_{i}, C_{i}\right) .
$$

Proof. Putting

$$
\widetilde{A}=\left(\begin{array}{ccc}
A_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & A_{n}
\end{array}\right), \quad \widetilde{C}=\left(\begin{array}{c}
C_{1} \\
\vdots \\
C_{n}
\end{array}\right)
$$

then we have $s p(\widetilde{A}) \subset[m, M]$. Next we define

$$
\left\{\begin{aligned}
& \widetilde{\varphi}: \oplus \mathcal{B}(\mathscr{H}) \times \oplus \mathcal{B}(\mathscr{H}) \rightarrow \oplus \mathcal{B}(\mathscr{H}) \\
& \widetilde{\varphi}\left(\left(\begin{array}{c}
A_{1} \\
\vdots \\
A_{n}
\end{array}\right),\left(\begin{array}{c}
A_{1} \\
\vdots \\
A_{n}
\end{array}\right)\right)=\sum_{i=1}^{n} \varphi\left(A_{i}, A_{i}\right)
\end{aligned}\right.
$$

In particular, we have

$$
\begin{aligned}
\widetilde{\varphi}(\widetilde{A} \widetilde{C}, \widetilde{C}) & =\widetilde{\varphi}\left(\left(\begin{array}{ccc}
A_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & A_{n}
\end{array}\right)\left(\begin{array}{c}
C_{1} \\
\vdots \\
C_{n}
\end{array}\right),\left(\begin{array}{c}
C_{1} \\
\vdots \\
C_{n}
\end{array}\right)\right) \\
& =\widetilde{\varphi}\left(\left(\begin{array}{c}
A_{1} C_{1} \\
\vdots \\
A_{n} C_{n}
\end{array}\right),\left(\begin{array}{c}
C_{1} \\
\vdots \\
C_{n}
\end{array}\right)\right) \\
& =\sum_{i=1}^{n} \varphi\left(A_{i} C_{i}, C_{i}\right) .
\end{aligned}
$$

It can be deduced from Theorem 2 that

$$
\widetilde{\varphi}(\widetilde{A} \widetilde{C}, \widetilde{C}) \# \widetilde{\varphi}\left(\widetilde{A}^{-1} \widetilde{C}, \widetilde{C}\right) \leq \frac{M+m}{2 \sqrt{M m}} \widetilde{\varphi}(\widetilde{C}, \widetilde{C})
$$

This completes the proof.
The following corollary follows immediately.
Corollary 1. If in Theorem 3, $\widetilde{C}=\left(\begin{array}{c}C_{1} \\ \vdots \\ C_{n}\end{array}\right)$ is a $\widetilde{\varphi}$-unitary, then

$$
\left(\sum_{i=1}^{n} \varphi\left(A_{i} C_{i}, C_{i}\right)\right) \#\left(\sum_{i=1}^{n} \varphi\left(A_{i}^{-1} C_{i}, C_{i}\right)\right) \leq \frac{M+m}{2 \sqrt{M m}}
$$

Theorem 4. Let A be a positive operator on \mathscr{H} satisfying $M 1_{\mathscr{H}} \geq A \geq m 1_{\mathscr{H}}>0$ for some scalars $m<M$. Then

$$
\varphi\left(A^{-1} C, C\right)-\varphi(A C, C)^{-1} \leq \frac{(\sqrt{M}-\sqrt{m})^{2}}{M m} \varphi(C, C)
$$

for every $C \in \mathcal{B}(\mathscr{H})$.
Proof. According to Lemma 1, we have

$$
(M+m) 1_{\mathscr{H}} \geq M m A^{-1}+A
$$

and hence

$$
\varphi\left(A^{-1} C, C\right) \leq \frac{M+m}{M m} \varphi(C, C)-\frac{1}{M m} \varphi(A C, C)
$$ for every $C \in \mathcal{B}(\mathscr{H})$. Then it follows that

$$
\begin{aligned}
\varphi & \left(A^{-1} C, C\right)-\varphi(A C, C)^{-1} \\
& \leq\left(\frac{1}{m}+\frac{1}{M}\right) \varphi(C, C)-\frac{1}{M m} \varphi(A C, C)-\varphi(A C, C)^{-1} \\
& =\left(\frac{1}{\sqrt{m}}-\frac{1}{\sqrt{M}}\right)^{2} \varphi(C, C)-\left(\frac{1}{\sqrt{M m}} \varphi(A C, C)^{\frac{1}{2}}-\varphi(A C, C)^{-\frac{1}{2}}\right)^{2} \\
& \leq\left(\frac{1}{\sqrt{m}}-\frac{1}{\sqrt{M}}\right)^{2} \varphi(C, C) .
\end{aligned}
$$

Based on the discussion above, we conclude that

$$
\varphi\left(A^{-1} C, C\right)-\varphi(A C, C)^{-1} \leq \frac{(\sqrt{M}-\sqrt{m})^{2}}{M m} \varphi(C, C)
$$

We have completed the proof of Theorem 4.
Proposition 1. Let A be a positive operator on \mathscr{H} satisfying $M 1_{\mathscr{H}} \geq A \geq m 1_{\mathscr{H}}>0$ for some scalars $m<M$. Then

$$
\varphi\left(A^{2} C, C\right) \# \varphi(C, C) \leq \frac{M+m}{2 \sqrt{M m}} \varphi(A C, C)
$$

for every $C \in \mathcal{B}(\mathscr{H})$.
Proof. Replacing C with $A^{\frac{1}{2}} C$ in the (3), we have

$$
\varphi\left(A A^{\frac{1}{2}} C, A^{\frac{1}{2}} C\right) \# \varphi\left(A^{-1} A^{\frac{1}{2}} C, A^{\frac{1}{2}} C\right) \leq \frac{M+m}{2 \sqrt{M m}} \varphi\left(A^{\frac{1}{2}} C, A^{\frac{1}{2}} C\right)
$$

therefore

$$
\varphi\left(A^{2} C, C\right) \# \varphi(C, C) \leq \frac{M+m}{2 \sqrt{M m}} \varphi(A C, C)
$$

Which completes the proof.
To prove the Theorem 5, we need the following basic lemma.
Lemma 2. Let A be a self-adjoint operator on \mathscr{H} satisfying $M 1_{\mathscr{H}} \geq A \geq m 1_{\mathscr{H}}$ for some scalars $m<M$, then

$$
\left(M 1_{\mathscr{H}}-A\right)\left(A-m 1_{\mathscr{H}}\right) \leq\left(\frac{M-m}{2}\right)^{2} .
$$

Proof. A simple computation yields

$$
\begin{aligned}
& \left(M 1_{\mathscr{H}}-A\right)\left(A-m 1_{\mathscr{H}}\right) \\
& =(M+m) A-M m 1_{\mathscr{H}}-A^{2} \\
& =\frac{(M-m)^{2}}{4} 1_{\mathscr{H}}-\left(A-\frac{M+m}{2} 1_{\mathscr{H}}\right)^{2} \\
& \leq\left(\frac{M-m}{2}\right)^{2} 1_{\mathscr{H}},
\end{aligned}
$$

as desired.
Theorem 5. Let A be a self-adjoint operator on \mathscr{H} satisfying $M 1_{\mathscr{H}} \geq A \geq m 1_{\mathscr{H}}$ for some scalars $m<M$ and $\varphi(C, C)=1 \mathscr{H}$. Then

$$
\varphi\left(A^{2} C, C\right)-\varphi(A C, C)^{2} \leq \frac{(M-m)^{2}}{4}
$$

Proof. By Lemma 2 we have

$$
\begin{aligned}
\varphi & \left(A^{2} C, C\right)-\varphi(A C, C)^{2} \\
& =\left(M 1_{\mathscr{H}}-\varphi(A C, C)\right)\left(\varphi(A C, C)-m 1_{\mathscr{H}}\right)-\varphi\left(\left(M 1_{\mathscr{H}}-A\right)\left(A-m 1_{\mathscr{H}}\right) C, C\right) \\
& \leq\left(M 1_{\mathscr{H}}-\varphi(A C, C)\right)\left(\varphi(A C, C)-m 1_{\mathscr{H}}\right) \\
& \leq \frac{(M-m)^{2}}{4} 1_{\mathscr{H}},
\end{aligned}
$$

which is exactly what we needed to prove.

Acknowledgements

The authors would like to express their thanks to the referees for their valuable comments and suggestions, which helped to improve the paper.

References

[1] K. Fan. Some matrix inequalities. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. Springer Berlin/Heidelberg, 29(3), 185-196. 1966.
[2] T. Furuta. Extensions of Hölder-McCarthy and Kantorovich inequalities and their applications. Proc. Japan Acad. Ser. A Math. Sci, 73(3), 38-41. 1997.
[3] T. Furuta, J. Mićić, J.E. Pečarić, and Y. Seo. Mond-Pečarić method in operator inequalities. Element, Zegreb, 2005.
[4] L.V. Kantorovich. Functional analysis and applied mathematics. Uspekhi Mat. Nauk, 3(6), 89-185. 1948.
[5] Z. Liu, K.Wang, and C. Xu. A note on Kantorovich inequality for Hermite matrices. J. Inequal Appl, Artical ID 245767, 1-6. 2011.
[6] A.W. Marshall and I. Olkin. Matrix versions of the Cauchy and Kantorovich inequalities. Aequationes Math, 40(1), 89-93. 1990.

[^0]: *Corresponding author.

 Email addresses: hrmoradi@mshdiau.ac.ir (H.R. Moradi), erfanian@mshdiau.ac.ir (M.E. Omidvar), abdh1248@gmail.com (M.K. Anwary)

