EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 10, No. 2, 2017, 231-237 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global

An Extension of Kantorovich Inequality for Sesquilinear Maps

Hamid Reza Moradi^{1,*}, Mohsen Erfanian Omidvar², Mohammad Kazem Anwary³

¹ Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran

² Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran

³ Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract. By using sesquilinear map we generalize some operator Kantorovich inequalities. Our results are more extensive than many previous results due to Mond and Pečarić.

2010 Mathematics Subject Classifications: 47A63, 47A30

Key Words and Phrases: Kantorovich inequality, positive linear map, operator inequality

1. Introduction and Preliminaries

For every unit vector x and $MI \ge A \ge mI > 0$, the Kantorovich inequality [4] states

$$\langle x, Ax \rangle \langle x, A^{-1}x \rangle \le \frac{(M+m)^2}{4Mm}.$$
 (1)

In [3, Theorem 1.29], the authors obtained the following reverse of Hölder-McCarthy inequality by the Kantorovich inequality:

Theorem 1. Let A be a positive operator on \mathscr{H} satisfying $M1_{\mathscr{H}} \ge A \ge m1_{\mathscr{H}} > 0$ for some scalars m < M. Then

$$\langle A^2 x, x \rangle \le \frac{(M+m)^2}{4Mm} \langle Ax, x \rangle^2,$$
 (2)

for every unit vector $x \in \mathscr{H}$.

http://www.ejpam.com

231

© 2017 EJPAM All rights reserved.

^{*}Corresponding author.

Email addresses: hrmoradi@mshdiau.ac.ir (H.R. Moradi), erfanian@mshdiau.ac.ir (M.E. Omidvar), abdh1248@gmail.com (M.K. Anwary)

Many authors have investigated on extensions of the Kantorovich one, such as Liu et al. [5], Furuta [2] and Ky Fan [1]. Among others, we pay our attentions to the long research series of Mond-Pečarić method [3].

As customary, we reserve M, m for scalars and $1_{\mathscr{H}}$ for identity operator. Other capital letters denote general elements of the C^* -algebra $\mathcal{B}(\mathscr{H})$ (with unit) of all bounded linear operators acting on a Hilbert space $(\mathscr{H}, \langle \cdot, \cdot \rangle)$. Also, we identify a scalars with the unit multiplied by this scalar. We write $A \ge 0$ to mean that the operator A is positive and identify $A \ge B$ (the same as $B \le A$) with $A - B \ge 0$. A positive invertible operator A is naturally denoted by A > 0. For A, B > 0, the geometric mean A # B is defined by

$$A\#B = A^{\frac{1}{2}} \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \right)^{\frac{1}{2}} A^{\frac{1}{2}}.$$

It is well known that

$$A\#B \le \frac{A+B}{2}.$$

We use φ for sesquilinear map. A map $\varphi : \mathcal{B}(\mathcal{H}) \times \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ is a sesquilinear map, if satisfying the following conditions:

- (a) $\varphi(\alpha A_1 + \beta A_2, B) = \alpha \varphi(A_1, B) + \beta \varphi(A_2, B);$
- (b) $\varphi(A, \alpha B_1 + \beta B_2) = \overline{\alpha}\varphi(A, B_1) + \overline{\beta}\varphi(A, B_2);$
- (c) $\varphi(A, A) \ge 0;$
- (d) $\varphi(AX, Y) = \varphi(X, A^*Y);$

for all $\alpha, \beta \in \mathbb{C}$ and $A_1, A_2, B_1, B_2, X, Y \in \mathcal{B}(\mathscr{H})$.

Note that, if $A \ge 0$ then $\varphi(AC, C) \ge 0$ for all $C \in \mathcal{B}(\mathcal{H})$. In fact, if $A \ge 0$ then $A = B^*B$ for some $B \in \mathcal{B}(\mathcal{H})$. Therefore,

$$\varphi\left(AC,C\right) = \varphi\left(B^*BC,C\right) = \varphi\left(BC,BC\right) \ge 0$$

It turn implies that, if $A \ge B$ then, $\varphi(AC, C) \ge \varphi(BC, C)$. Since $A - B \ge 0$.

We remark that if we define $\varphi(A, B) = B^*A$, then above definition coincides with the ordinal definition of positive operator. In fact, in this case $\varphi(AC, C) = C^*AC$ and $\varphi(BC, C) = C^*BC$, hence $A \ge B$ if and only if $C^*AC \ge C^*BC$ for any $C \in \mathcal{B}(\mathcal{H})$. We call $U \in \mathcal{B}(\mathcal{H})$ is φ -unitary if $\varphi(U, U) = 1_{\mathcal{H}}$.

The main results are given in the next section. In this paper, we will present some operator inequalities which are generalizations of (1) and (2).

2. Proofs of the inequalities

To prove our main results we need the following lemma.

Lemma 1. [3, Lemma 1.24] Let $A \in \mathcal{B}(\mathcal{H})$ be positive and satisfying $M1_{\mathcal{H}} \geq A \geq m1_{\mathcal{H}} > 0$ for some scalars m < M. Then

$$(M+m)\,1_{\mathscr{H}} \ge MmA^{-1} + A.$$

H.R. Moradi, M.E. Omidvar, M.K. Anwary / Eur. J. Pure Appl. Math, 10 (2) (2017), 231-237 233

The following result is our first main result. It presents a generalization of the Kantorovich inequality.

Theorem 2. Let $A, C \in \mathcal{B}(\mathcal{H})$ and A be a positive satisfying $M1_{\mathcal{H}} \ge A \ge m1_{\mathcal{H}} > 0$ for some scalars m < M. Then

$$\varphi(AC,C) \#\varphi(A^{-1}C,C) \le \frac{M+m}{2\sqrt{Mm}}\varphi(C,C).$$
(3)

Proof. By Lemma 1, we have

$$(M+m)\,1_{\mathscr{H}} \ge MmA^{-1} + A.$$

Since φ is sesquilinear map, we obtain

$$(M+m)\varphi(C,C) \ge Mm\varphi(A^{-1}C,C) + \varphi(AC,C)$$
$$\ge 2\sqrt{Mm}\varphi(A^{-1}C,C) \#\varphi(AC,C).$$

Which is exactly desired result (3).

Example 1. By taking $\varphi(A, B) = B^*A$ in Theorem 2 we infer that

$$C^*AC \# C^*A^{-1}C \le \frac{M+m}{2\sqrt{Mm}}C^*C.$$

In addition, if C is unitary then

$$C^*AC \# C^*A^{-1}C \le \frac{M+m}{2\sqrt{Mm}}.$$

Theorem 3. Let $A_i, C_i \in \mathcal{B}(\mathcal{H})$ and A_i be a positive satisfying $M1_{\mathcal{H}} \ge A_i \ge m1_{\mathcal{H}} > 0$ for some scalars m < M (i = 1, ..., n). Then

$$\left(\sum_{i=1}^{n}\varphi\left(A_{i}C_{i},C_{i}\right)\right) \#\left(\sum_{i=1}^{n}\varphi\left(A_{i}^{-1}C_{i},C_{i}\right)\right) \leq \frac{M+m}{2\sqrt{Mm}}\sum_{i=1}^{n}\varphi\left(C_{i},C_{i}\right).$$

Proof. Putting

$$\widetilde{A} = \begin{pmatrix} A_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & A_n \end{pmatrix}, \quad \widetilde{C} = \begin{pmatrix} C_1 \\ \vdots \\ C_n \end{pmatrix}$$

then we have $sp\left(\widetilde{A}\right)\subset [m,M]$. Next we define

$$\begin{cases} \widetilde{\varphi} : \oplus \mathcal{B}\left(\mathscr{H}\right) \times \oplus \mathcal{B}\left(\mathscr{H}\right) \to \oplus \mathcal{B}\left(\mathscr{H}\right) \\ \widetilde{\varphi}\left(\begin{pmatrix} A_{1} \\ \vdots \\ A_{n} \end{pmatrix}, \begin{pmatrix} A_{1} \\ \vdots \\ A_{n} \end{pmatrix}\right) = \sum_{i=1}^{n} \varphi\left(A_{i}, A_{i}\right) \end{cases}$$

H.R. Moradi, M.E. Omidvar, M.K. Anwary / Eur. J. Pure Appl. Math, **10** (2) (2017), 231-237 234 In particular, we have

$$\widetilde{\varphi}\left(\widetilde{A}\widetilde{C},\widetilde{C}\right) = \widetilde{\varphi}\left(\begin{pmatrix}A_1 & \dots & 0\\ \vdots & \ddots & \vdots\\ 0 & \dots & A_n\end{pmatrix}\begin{pmatrix}C_1\\ \vdots\\ C_n\end{pmatrix}, \begin{pmatrix}C_1\\ \vdots\\ C_n\end{pmatrix}\end{pmatrix}\right)$$
$$= \widetilde{\varphi}\left(\begin{pmatrix}A_1C_1\\ \vdots\\ A_nC_n\end{pmatrix}, \begin{pmatrix}C_1\\ \vdots\\ C_n\end{pmatrix}\right)$$
$$= \sum_{i=1}^n \varphi\left(A_iC_i, C_i\right).$$

It can be deduced from Theorem 2 that

$$\widetilde{\varphi}\left(\widetilde{A}\widetilde{C},\widetilde{C}\right) \#\widetilde{\varphi}\left(\widetilde{A}^{-1}\widetilde{C},\widetilde{C}\right) \leq \frac{M+m}{2\sqrt{Mm}}\widetilde{\varphi}\left(\widetilde{C},\widetilde{C}\right).$$

This completes the proof.

The following corollary follows immediately.

Corollary 1. If in Theorem 3,
$$\widetilde{C} = \begin{pmatrix} C_1 \\ \vdots \\ C_n \end{pmatrix}$$
 is a $\widetilde{\varphi}$ -unitary, then
$$\left(\sum_{i=1}^n \varphi\left(A_i C_i, C_i\right)\right) \# \left(\sum_{i=1}^n \varphi\left(A_i^{-1} C_i, C_i\right)\right) \leq \frac{M+m}{2\sqrt{Mm}}.$$

Theorem 4. Let A be a positive operator on \mathscr{H} satisfying $M1_{\mathscr{H}} \ge A \ge m1_{\mathscr{H}} > 0$ for some scalars m < M. Then

$$\varphi\left(A^{-1}C,C\right) - \varphi(AC,C)^{-1} \le \frac{\left(\sqrt{M} - \sqrt{m}\right)^2}{Mm}\varphi\left(C,C\right),$$

for every $C \in \mathcal{B}(\mathcal{H})$.

Proof. According to Lemma 1, we have

$$(M+m)\,1_{\mathscr{H}} \ge MmA^{-1} + A$$

and hence

$$\varphi\left(A^{-1}C,C\right) \leq \frac{M+m}{Mm}\varphi\left(C,C\right) - \frac{1}{Mm}\varphi\left(AC,C\right),$$

$$\begin{split} \varphi \left(A^{-1}C,C \right) &- \varphi (AC,C)^{-1} \\ &\leq \left(\frac{1}{m} + \frac{1}{M} \right) \varphi \left(C,C \right) - \frac{1}{Mm} \varphi \left(AC,C \right) - \varphi (AC,C)^{-1} \\ &= \left(\frac{1}{\sqrt{m}} - \frac{1}{\sqrt{M}} \right)^2 \varphi \left(C,C \right) - \left(\frac{1}{\sqrt{Mm}} \varphi (AC,C)^{\frac{1}{2}} - \varphi (AC,C)^{-\frac{1}{2}} \right)^2 \\ &\leq \left(\frac{1}{\sqrt{m}} - \frac{1}{\sqrt{M}} \right)^2 \varphi \left(C,C \right). \end{split}$$

Based on the discussion above, we conclude that

$$\varphi\left(A^{-1}C,C\right) - \varphi(AC,C)^{-1} \le \frac{\left(\sqrt{M} - \sqrt{m}\right)^2}{Mm}\varphi\left(C,C\right).$$

We have completed the proof of Theorem 4.

Proposition 1. Let A be a positive operator on \mathscr{H} satisfying $M1_{\mathscr{H}} \ge A \ge m1_{\mathscr{H}} > 0$ for some scalars m < M. Then

$$\varphi\left(A^{2}C,C\right) \#\varphi\left(C,C\right) \leq \frac{M+m}{2\sqrt{Mm}}\varphi\left(AC,C\right),$$

for every $C \in \mathcal{B}(\mathcal{H})$.

Proof. Replacing C with $A^{\frac{1}{2}}C$ in the (3), we have

$$\varphi\left(AA^{\frac{1}{2}}C, A^{\frac{1}{2}}C\right) \#\varphi\left(A^{-1}A^{\frac{1}{2}}C, A^{\frac{1}{2}}C\right) \le \frac{M+m}{2\sqrt{Mm}}\varphi\left(A^{\frac{1}{2}}C, A^{\frac{1}{2}}C\right)$$

therefore

$$\varphi\left(A^{2}C,C\right)\#\varphi\left(C,C\right) \leq \frac{M+m}{2\sqrt{Mm}}\varphi\left(AC,C\right)$$

Which completes the proof.

To prove the Theorem 5, we need the following basic lemma.

Lemma 2. Let A be a self-adjoint operator on \mathscr{H} satisfying $M1_{\mathscr{H}} \ge A \ge m1_{\mathscr{H}}$ for some scalars m < M, then

$$(M1_{\mathscr{H}} - A)(A - m1_{\mathscr{H}}) \le \left(\frac{M - m}{2}\right)^2.$$

Proof. A simple computation yields

$$\begin{split} & (M1_{\mathscr{H}} - A) \left(A - m1_{\mathscr{H}} \right) \\ & = \left(M + m \right) A - Mm1_{\mathscr{H}} - A^2 \\ & = \frac{\left(M - m \right)^2}{4} 1_{\mathscr{H}} - \left(A - \frac{M + m}{2} 1_{\mathscr{H}} \right)^2 \\ & \leq \left(\frac{M - m}{2} \right)^2 1_{\mathscr{H}}, \end{split}$$

as desired.

Theorem 5. Let A be a self-adjoint operator on \mathscr{H} satisfying $M1_{\mathscr{H}} \ge A \ge m1_{\mathscr{H}}$ for some scalars m < M and $\varphi(C, C) = 1_{\mathscr{H}}$. Then

$$\varphi\left(A^2C,C\right) - \varphi(AC,C)^2 \le \frac{(M-m)^2}{4}.$$

Proof. By Lemma 2 we have

$$\begin{split} \varphi \left(A^2 C, C \right) &- \varphi (AC, C)^2 \\ &= \left(M 1_{\mathscr{H}} - \varphi \left(AC, C \right) \right) \left(\varphi \left(AC, C \right) - m 1_{\mathscr{H}} \right) - \varphi \left(\left(M 1_{\mathscr{H}} - A \right) \left(A - m 1_{\mathscr{H}} \right) C, C \right) \\ &\leq \left(M 1_{\mathscr{H}} - \varphi \left(AC, C \right) \right) \left(\varphi \left(AC, C \right) - m 1_{\mathscr{H}} \right) \\ &\leq \frac{\left(M - m \right)^2}{4} 1_{\mathscr{H}}, \end{split}$$

which is exactly what we needed to prove.

Acknowledgements

The authors would like to express their thanks to the referees for their valuable comments and suggestions, which helped to improve the paper.

References

- K. Fan. Some matrix inequalities. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. Springer Berlin/Heidelberg, 29(3), 185-196. 1966.
- [2] T. Furuta. Extensions of Hölder-McCarthy and Kantorovich inequalities and their applications. Proc. Japan Acad. Ser. A Math. Sci, 73(3), 38-41. 1997.
- [3] T. Furuta, J. Mićić, J.E. Pečarić, and Y. Seo. Mond-Pečarić method in operator inequalities. Element, Zegreb, 2005.
- [4] L.V. Kantorovich. Functional analysis and applied mathematics. Uspekhi Mat. Nauk, 3(6), 89-185. 1948.

 [6] A.W. Marshall and I. Olkin. Matrix versions of the Cauchy and Kantorovich inequalities. Aequationes Math, 40(1), 89-93. 1990.