EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 10, No. 2, 2017, 392-409
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

\mathbb{Z}_{2}-Triple cyclic codes and their duals

Srinivasulu B ${ }^{1}$, Maheshanand Bhaintwal ${ }^{2}$
1,2 Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee, India.

Abstract

A \mathbb{Z}_{2}-triple cyclic code of block length (r, s, t) is a binary code of length $r+s+t$ such that the code is partitioned into three parts of lengths r, s and t such that each part is invariant under the cyclic shifts of the coordinates. Such a code can be viewed as $\mathbb{Z}_{2}[x]$-submodules of $\frac{\mathbb{Z}_{2}[x]}{\left\langle x^{r}-1\right\rangle} \times \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{s}-1\right\rangle} \times \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{t}-1\right\rangle}$, in polynomial representation. In this paper, we determine the structure of these codes. We have obtained the form of the generators for such codes. Further, a minimal generating set for such codes is obtained. Also, we study the structure of the duals of these codes via the generators of the codes.

2010 Mathematics Subject Classifications: 94B05, 94B60
Key Words and Phrases: Triple cyclic codes, minimal spanning sets, dual codes

1. Introduction

Codes over rings were introduced in early 1970s. Among them, cyclic codes are an important class of linear codes because of their richness in algebraic structure and practical use. Cyclic codes over finite fields are well studied [15] and they have been extended to various finite rings [11]. The search for new codes with good parameters encourages researchers to introduce various families of linear codes.

In 1973, Delsarte and Levenshtein [10] defined additive codes in terms of association schemes as the subgroups of the underlying abelian group. Under binary Hamming scheme, the underlying group of order 2^{k} is isomorphic to $\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$, where α and β are non-negative integers. The subgroups of underlying group are called $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes. Borges et al. [5] have studied $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes by deriving their generator matrices and parity check matrices. In [1], $\mathbb{Z}_{2} \mathbb{Z}_{4}$-cyclic codes of block length (r, t) for odd t have been defined as \mathbb{Z}_{4} submodules of $\mathbb{Z}_{2}^{r} \times \mathbb{Z}_{4}^{t}$, and a minimal spanning set for these codes has been determined. Extending this work, Borges et al. [6] gave duals of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-cyclic codes of block length (r, t) for odd t. Recently Aydogdu et al. [3] have studied a new class of codes over the structure $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$, where $\mathbb{Z}_{2}[u]=\mathbb{Z}_{2}+u \mathbb{Z}_{2}, u^{2}=0$. They have defined $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-additive codes as $\mathbb{Z}_{2}[u]$-submodules of $\mathbb{Z}_{2}^{s} \times \mathbb{Z}_{2}[u]^{t}$, and obtained their generator and parity check matrices. They have also defined the type of these codes and have shown that some optimal binary codes are Gray images of $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-additive codes.

Email addresses: bslu1981@gmail.com (Srinivasulu B), mahesfma@iitr.ac.in (M. Bhaintwal)

Extending the concepts given in [6], recently Aydogdu and Siap have studied [2] the algebraic structure of $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$-additive codes. They have determined the generator and parity check matrices for these codes. Borges et al. [4] have derived the structure of \mathbb{Z}_{2}-double cyclic codes. They have determined generating polynomials for these codes and derived the relationship between the codes and their duals. Similarly structure of double cyclic codes over the rings \mathbb{Z}_{4} and $\mathbb{F}_{2}+u \mathbb{F}_{2}+u^{2} \mathbb{F}_{2}, u^{3}=0$ have been studied in [14][17]. In [14], Gao et al. have obtained some optimal or suboptimal non-linear binary codes. A double cyclic code is in fact a generalized quasi-cyclic (GQC) code of index two. Siap and Kulhan[16] introduced GQC codes over finite fields and the study has been extended to various finite rings by many authors $[7,8,9,12,13]$. Most of these studies focused on exploring 1-generator GQC codes where they have succeeded in finding their duals and obtained a good number of optimal codes.

In this paper, extending the concepts of [4] and [17] we introduce \mathbb{Z}_{2}-triple cyclic codes and study their algebraic structure. We give a minimal spanning set for these codes. Further we present the structure of duals of these codes via their generators. The paper is organized as follows. In Section 2, we introduce some basic notations and definitions of \mathbb{Z}_{2}-triple cyclic codes and derive the form of their generators. In this section, we also determine a minimal spanning set for \mathbb{Z}_{2}-triple cyclic codes. In Section 3, we study the duals of \mathbb{Z}_{2}-triple cyclic codes.

2. \mathbb{Z}_{2}-triple cyclic codes

Let r, s and t be three positive integers and $n=r+s+t$. Let C be a binary linear code of length n. The n coordinates of each codeword of C can be partitioned into three sets of size r, s and t. Therefore C is a \mathbb{Z}_{2}-submodule of $\mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2}^{s} \times \mathbb{Z}_{2}^{t}$.
Definition 1. For any three positive integers r, s and t, a \mathbb{Z}_{2}-triple cyclic code C of block length (r, s, t) is a binary linear code of length $n=r+s+t$ such that
$\sigma(c)=\left(c_{1, r-1}, c_{1,0}, \cdots, c_{1, r-2} \quad\left|\quad c_{2, s-1}, c_{2,0}, \cdots, c_{2, s-2} \quad\right| \quad c_{3, t-1}, c_{3,0}, \cdots, c_{3, t-2}\right) \in \mathrm{C}$, whenever $c=\left(c_{1,0}, c_{1,1}, \cdots, c_{1, r-1}\left|c_{2,0}, c_{2,1}, \cdots, c_{2, s-1}\right| c_{3,0}, c_{3,1}, \cdots, c_{3, t-1}\right) \in \mathrm{C}$.

Let C be a \mathbb{Z}_{2}-triple cyclic code of block length (r, s, t). Let C_{r} be the canonical projection of C on the first r coordinates, C_{s} be the projection of C on next s coordinates and C_{t} be the projection of C on the last t coordinates. It is easy to see that these projections $\mathrm{C}_{r}, \mathrm{C}_{s}$ and C_{t} are binary cyclic codes of lengths r, s and t, respectively. C is called separable if $\mathrm{C}=\mathrm{C}_{r} \times \mathrm{C}_{s} \times \mathrm{C}_{t}$.

The dual C^{\perp} of a \mathbb{Z}_{2}-triple cyclic code C of block length (r, s, t) is defined as

$$
\mathrm{C}^{\perp}=\left\{v^{\prime} \in \mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2}^{s} \times \mathbb{Z}_{2}^{t} \mid v \cdot v^{\prime}=0 \text { for all } v \in \mathrm{C}\right\}
$$

where $v \cdot v^{\prime}$ is the usual inner product over \mathbb{Z}_{2}.
Let $m=\operatorname{lcm}(r, s, t)$. The following result shows that the dual of a \mathbb{Z}_{2}-triple cyclic code of block length (r, s, t) is also a \mathbb{Z}_{2}-triple cyclic code of same block length.
Theorem 1. If C is a \mathbb{Z}_{2}-triple cyclic code of block length (r, s, t), then C^{\perp} is also \mathbb{Z}_{2}-triple cyclic code of block length (r, s, t).

Proof. Let $u \in \mathrm{C}^{\perp}$ and $v \in \mathrm{C}$. Since C is invariant under $\sigma, \sigma^{m-1}(v) \in \mathrm{C}$. Therefore

$$
\begin{aligned}
& 0=u \cdot \sigma^{m-1}(v)=\left(u_{1,0} v_{1,1}+\cdots+u_{1, r-2} v_{1, r-1}+u_{1, r-1} v_{1,0}\right)+\left(u_{2,0} v_{2,1}+\cdots+\right. \\
& \left.u_{2, s-1} v_{2,0}\right)+\left(u_{3,0} v_{3,1}+\cdots+u_{3, t-1} v_{3,0}\right) \\
& =\left(u_{1, r-1} v_{1,0}+u_{1,0} v_{1,1}+\cdots+u_{1, r-2} v_{1, r-1}\right)+\left(u_{2, s-1} v_{2,0}+\cdots+\right. \\
& \left.u_{2, s-2} v_{2, s-1}\right)+\left(u_{3, t-1} v_{3,0}+\cdots+u_{3, t-2} v_{3, t-1}\right) \\
& =\sigma(u) \cdot v .
\end{aligned}
$$

As u is an arbitrary element of C^{\perp}, the result follows.
Now we determine the generators for a \mathbb{Z}_{2}-triple cyclic code C of block length (r, s, t). For this, we first consider the algebraic structure of C in $\frac{\mathbb{Z}_{2}[x]}{\left\langle x^{x}-1\right\rangle} \times \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{s}-1\right\rangle} \times \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{t}-1\right\rangle}$.

Let $\mathrm{R}_{r, s, t}[x]=\frac{\mathbb{Z}_{2}[x]}{\left\langle x^{r}-1\right\rangle} \times \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{s}-1\right\rangle} \times \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{t}-1\right\rangle}, \mathbb{Z}_{2, r}[x]=\frac{\mathbb{Z}_{2}[x]}{\left\langle x^{r}-1\right\rangle}, \mathbb{Z}_{2, s}[x]=\frac{\mathbb{Z}_{2}[x]}{\left\langle x^{s}-1\right\rangle}$ and $\mathbb{Z}_{2, t}[x]=$ $\frac{\mathbb{Z}_{2}[x]}{x^{t}-1 \mid}$. By identifying each $c=\left(c_{1}\left|c_{2}\right| c_{3}\right) \in \mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2}^{s} \times \mathbb{Z}_{2}^{t}$ with a triplet of polynomials $\left(c_{1}(x)\left|c_{2}(x)\right| c_{3}(x)\right) \in \mathrm{R}_{r, s, t}[x]$, where $c_{1}(x)=\sum_{j=0}^{r-1} c_{1, j} x^{j}, c_{2}(x)=\sum_{j=0}^{s-1} c_{2, j} x^{j}$ and $c_{3}(x)=\sum_{k=0}^{t-1} c_{3, j} x^{j}$, we get a \mathbb{Z}_{2}-module isomorphism between $\mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2}^{s} \times \mathbb{Z}_{2}^{t}$ and $\mathrm{R}_{r, s, t}[x]$. Also for any $f(x) \in \mathbb{Z}_{2}[x]$ and $c=\left(c_{1}(x)\left|c_{2}(x)\right| c_{3}(x)\right) \in \mathrm{R}_{r, s, t}[x]$, we define the product $f(x) *\left(c_{1}(x)\left|c_{2}(x)\right| c_{3}(x)\right)=\left(f(x) c_{1}(x)\left|f(x) c_{2}(x)\right| f(x) c_{3}(x)\right) \in \mathrm{R}_{r, s, t}[x]$, where $f(x) c_{i}(x)$ is determined in the corresponding residue ring. Clearly this product is well defined. Therefore $\mathrm{R}_{r, s, t}[x]$ is a $\mathbb{Z}_{2}[x]$-module with respect to this product. We note that, in polynomial representation, $x\left(c_{1}(x)\left|c_{2}(x)\right| c_{3}(x)\right)=\left(x c_{1}(x)\left|x c_{2}(x)\right| x c_{3}(x)\right)$ represents $\sigma(c)$ for the corresponding element $c=\left(c_{1}\left|c_{2}\right| c_{3}\right) \in \mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2}^{s} \times \mathbb{Z}_{2}^{t}$. The codes in the present setting are in fact the extensions of both binary cyclic codes and \mathbb{Z}_{2}-double cyclic codes that defined in [4].

We denote $f * g$ simply by $f g$. The following result follows immediately from the previous discussion.

Theorem 2. Let C be a binary linear code of length $r+s+t$. Then C is a \mathbb{Z}_{2}-triple cyclic code in $\mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2}^{s} \times \mathbb{Z}_{2}^{t}$ if and only if C is a $\mathbb{Z}_{2}[x]$-submodule of $\mathrm{R}_{r, s, t}[x]$.

Since both the modules $\mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2}^{s}$ and \mathbb{Z}_{2}^{t} can be obtained by projecting $\mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2}^{s} \times \mathbb{Z}_{2}^{t}$ on first $r+s$ coordinates and last t coordinates, respectively, we make use of the cyclic structures of both binary codes and \mathbb{Z}_{2}-double cyclic codes as given in [4] to find the generator polynomials for a \mathbb{Z}_{2}-triple cyclic code C of block length (r, s, t) in $\mathrm{R}_{r, s, t}[x]$. The following theorem gives the generators for a \mathbb{Z}_{2}-double cyclic code of block length (r, s), which is useful for the rest of our study.
Theorem 3. [4, Theorem 3.1] The $\mathbb{Z}_{2}[x]$-module $\mathrm{R}_{r, s}=\frac{\mathbb{Z}_{2}[x]}{\left\langle x^{r}-1\right\rangle} \times \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{s}-1\right\rangle}$ is a noetherian module, and every submodule C of $\mathrm{R}_{r, s}$ can be written as

$$
\mathrm{C}=\langle(b(x) \mid 0),(l(x)|a(x)\rangle,
$$

where $b(x), l(x) \in \mathbb{Z}_{2}[x] /\left\langle x^{r}-1\right\rangle$ with $b(x) \mid\left(x^{r}-1\right)$ and $a(x) \in \mathbb{Z}_{2}[x] /\left\langle x^{s}-1\right\rangle$ with $a(x) \mid\left(x^{s}-1\right)$.

Theorem 4. [4, Proposition 3.2.] Let C be a \mathbb{Z}_{2}-double cyclic code of block length (r, s), such that $\mathrm{C}=\langle(b(x) \mid 0),(l(x) \mid a(x))\rangle$, where $b(x)\left|x^{r}-1, a(x)\right| x^{s}-1$ over \mathbb{Z}_{2}. If $\operatorname{deg}(b(x))=t_{1}$ and $\operatorname{deg}(a(x))=t_{2}$, then a minimal spanning set for C is $S^{\prime}=S_{1}^{\prime} \cup S_{2}^{\prime}$, where

$$
S_{1}^{\prime}=\bigcup_{i=0}^{r-t_{1}-1} x^{i} *(b(x) \mid 0) \quad S_{2}^{\prime}=\bigcup_{i=0}^{s-t_{2}-1} x^{i} *(l(x) \mid a(x)) .
$$

In the following theorem, we determine the generator polynomials for \mathbb{Z}_{2}-triple cyclic codes of block length (r, s, t).

Theorem 5. Let C be a \mathbb{Z}_{2}-triple cyclic code of block length (r, s, t). Then $\mathrm{C}=\langle(b(x) \mid$ $\left.0 \mid 0),(l(x)|a(x)| 0),\left(g_{1}(x)\left|g_{2}(x)\right| g_{3}(x)\right)\right\rangle$, where $b(x), l(x), g_{1}(x) \in \mathbb{Z}_{2, r}[x]$ with $b(x) \mid x^{r}-1$ and $a(x), g_{2}(x) \in \mathbb{Z}_{2, s}[x]$ with $a(x) \mid x^{s}-1$ and $g_{3}(x) \in \mathbb{Z}_{2, t}[x]$ with $g_{3}(x) \mid x^{t}-1$.

Proof. Consider the canonical projection $\pi_{t}: \mathrm{C} \rightarrow \mathbb{Z}_{2, t}[x]$ such that $\left(c_{1}\left|c_{2}\right| c_{3}\right) \mapsto c_{3}$. It is easy to see that π_{t} is a $\mathbb{Z}_{2}[x]$-module homomorphism with kernel $\operatorname{ker}_{\mathrm{C}}\left(\pi_{t}\right)=\left\{\left(c_{1} \mid\right.\right.$ $\left.\left.c_{2} \mid 0\right) \in \mathrm{C}\right\}$, and therefore the set $K=\left\{\left(c_{1} \mid c_{2}\right) \in \mathrm{C}:\left(c_{1}\left|c_{2}\right| 0\right) \in \mathrm{C}\right\}$ is a \mathbb{Z}_{2}-double cyclic code of block length (r, s) in $\mathrm{R}_{r, s}[x]$. From Theorem 3, there exist $b, l \in \mathbb{Z}_{2, r}[x]$ and $a \in \mathbb{Z}_{2, s}[x]$ such that $K=\langle(b \mid 0),(l \mid a)\rangle$, with $b \mid x^{r}-1$ and $a \mid x^{s}-1$. This implies that $\operatorname{ker}_{\mathrm{C}}\left(\pi_{t}\right)=\langle(b|0| 0),(l|a| 0)\rangle$. On the other hand the image of C under π_{t} is an ideal of $\mathbb{Z}_{2, t}[x]$ and as $\mathbb{Z}_{2, t}[x]$ is a PID, there exists $g_{3} \in \mathbb{Z}_{2, t}[x]$ such that $\pi_{t}(\mathrm{C})=\left\langle g_{3}\right\rangle$. Therefore we have $\frac{\mathrm{C}}{\operatorname{Ker}_{\mathrm{C}}\left(\pi_{t}\right)} \cong \pi_{t}(\mathrm{C})$, and hence $\mathrm{C}=\left\langle(b|0| 0),(l|a| 0),\left(g_{1}\left|g_{2}\right| g_{3}\right)\right\rangle$ for some $g_{1} \in \mathbb{Z}_{2, r}[x]$ and $g_{2} \in \mathbb{Z}_{2, s}[x]$. Hence the theorem.

Let $\left(c_{1}|0| 0\right) \in \mathrm{C}$. Then $\left(c_{1} \mid 0\right) \in K=\left\{\left(c_{1} \mid c_{2}\right) \in \mathrm{C}:\left(c_{1}\left|c_{2}\right| 0\right) \in \mathrm{C}\right\}$. Also, from Theorem 5, we have $K=\langle(b \mid 0),(l \mid a)\rangle$. Therefore $c_{1} \in\langle b\rangle$. Hence $\left(c_{1}|0| 0\right) \in \mathrm{C}$ implies that $c_{1} \in\langle b\rangle$. The following results are useful to understand the structure of \mathbb{Z}_{2}-triple cyclic code and to determine their minimal spanning sets. The minimal spanning set of a \mathbb{Z}_{2}-triple cyclic code can be used to determine its cardinality and the generator matrix. In the rest of the paper we consider the \mathbb{Z}_{2}-triple cyclic code as defined in Theorem 5.

Lemma 1. Let $\mathrm{C}=\left\langle(b|0| 0),(l|a| 0),\left(g_{1}\left|g_{2}\right| g_{3}\right)\right\rangle$ be $a \mathbb{Z}_{2}$-triple cyclic code of block length (r, s, t). Then $\operatorname{deg}(l)<\operatorname{deg}(b)$ and $\operatorname{deg}\left(g_{1}\right)<\operatorname{deg}(b)$.

Proof. Assume $\operatorname{deg}(l) \geq \operatorname{deg}(b)$. By applying division algorithm, there exist polynomials q and r in $\mathbb{Z}_{2}[x]$ such that $l=b q+r$, where $r=0$ or $\operatorname{deg}(r)<\operatorname{deg}(b)$.
Then

$$
\begin{aligned}
\langle(b|0| 0),(l|a| 0)\rangle & =\langle(b|0| 0),(b q+r|a| 0)\rangle \\
& =\langle(b|0| 0),(r|a| 0)\rangle .
\end{aligned}
$$

Hence, we may assume that $\operatorname{deg}(l)<\operatorname{deg}(b)$. Similarly, we can show $\operatorname{deg}\left(g_{1}\right)<\operatorname{deg}(b)$.
Lemma 2. Let $\mathrm{C}=\left\langle(b|0| 0),(l|a| 0),\left(g_{1}\left|g_{2}\right| g_{3}\right)\right\rangle$ be a \mathbb{Z}_{2}-triple cyclic code of block length (r, s, t). Then
(i) $b \left\lvert\, \frac{x^{s}-1}{a} l\right.$;
(ii) $a \left\lvert\, \frac{x^{t}-1}{g_{3}} g_{2}\right.$ and if $g_{2}=0$, then $b \left\lvert\, \frac{x^{t}-1}{g_{3}} g_{1}\right.$;
(iii) b divides $\frac{x^{t}-1}{g_{3} a} l g_{2}+\frac{x^{t}-1}{g_{3}} g_{1}$.

Proof. We have $\frac{x^{s}-1}{a}(l|a| 0)=\left(\frac{x^{s}-1}{a} l|0| 0\right) \in \mathrm{C}$. This implies that $\frac{x^{s}-1}{a} l \in$ $\langle b\rangle$ and hence $b \left\lvert\, \frac{x^{s}-1}{a} l\right.$. Similarly, we can prove the second result. For result (3), as $a \frac{x^{t}-1}{g_{3}} g_{2}$, we have $\frac{x^{t}-1}{g_{3}} g_{2}=k a$ for some $k \in \mathbb{Z}_{2}[x]$. Also as $(k l|k a| 0),\left(\frac{x^{t}-1}{g_{3}} g_{1}\left|\frac{x^{t}-1}{g_{3}} g_{2}\right| 0\right) \in \mathrm{C}$, implies that $(k l|k a| 0)+\left(\frac{x^{t}-1}{g_{3}} g_{1}\left|\frac{x^{t}-1}{g_{3}} g_{2}\right| 0\right)=\left(k l+\frac{x^{t}-1}{g_{3}} g_{1}|0| 0\right) \in \mathrm{C}$. The result follows as $k l+\frac{x^{t}-1}{g_{3}} g_{1} \in\langle b\rangle$.

In the following theorem we determine a minimal spanning set for a \mathbb{Z}_{2}-triple cyclic code.

Theorem 6. Let $\mathrm{C}=\left\langle(b|0| 0),(l|a| 0),\left(g_{1}\left|g_{2}\right| g_{3}\right)\right\rangle$ be a \mathbb{Z}_{2}-triple cyclic code of block length (r, s, t) such that $b, l, g_{1} \in \mathbb{Z}_{2, r}[x]$, a, $g_{2} \in \mathbb{Z}_{2, s}[x], g_{3} \in \mathbb{Z}_{2, t}[x]$ with $b \mid x^{r}-1$, a| $x^{s}-1$ and $g_{3} \mid x^{t}-1$. Let $h_{1}=\frac{x^{r}-1}{b}, h_{2}=\frac{x^{s}-1}{a}$ and $h_{3}=\frac{x^{t}-1}{g_{3}}$. If $\operatorname{deg}(b)=t_{1}, \operatorname{deg}(a)=t_{2}$ and $\operatorname{deg}\left(g_{3}\right)=t_{3}$, then a minimal spanning set for C is $S \stackrel{S_{1} \cup S_{2} \cup S_{3} \text {, where }}{ }$

$$
S_{1}=\bigcup_{i=0}^{r-t_{1}-1} x^{i} *(b|0| 0) \quad S_{2}=\bigcup_{i=0}^{s-t_{2}-1} x^{i} *(l|a| 0) \quad S_{3}=\bigcup_{i=0}^{t-t_{3}-1} x^{i} *\left(g_{1}\left|g_{2}\right| g_{3}\right) .
$$

Moreover, $|\mathrm{C}|=2^{r+s+t-\operatorname{deg}(b)-\operatorname{deg}(a)-\operatorname{deg}\left(g_{3}\right)}$.
Proof. Let c be a codeword in C. Then there exist $d_{1}, d_{2}, d_{3} \in \mathbb{Z}_{2}[x]$ such that

$$
\begin{align*}
c & =d_{1} *(b|0| 0)+d_{2} *(l|a| 0)+d_{3} *\left(g_{1}\left|g_{2}\right| g_{3}\right) \tag{1}\\
& =\left(d_{1} b|0| 0\right)+\left(d_{2} l\left|d_{2} a\right| 0\right)+\left(d_{3} g_{1}\left|d_{3} g_{2}\right| d_{3} g_{3}\right)
\end{align*}
$$

We first show that $d_{1} *(b|0| 0) \in \operatorname{span}\left(S_{1}\right)$. If $\operatorname{deg}\left(d_{1}\right)<r-t_{1}$, then obviously $d_{1} *(b|0| 0) \in \operatorname{span}\left(S_{1}\right)$. Let $\operatorname{deg}\left(d_{1}\right) \geq r-t_{1}$. By division algorithm, there exist $Q_{1}, R_{1} \in \mathbb{Z}_{2}[x]$ such that $d_{1}=Q_{1} \frac{x^{r}-1}{b}+R_{1}$ with $R_{1}=0$ or $\operatorname{deg}\left(R_{1}\right)<r-t_{1}$. Then

$$
\begin{aligned}
\left(d_{1} b|0| 0\right) & =\left(\left(Q_{1} \frac{x^{r}-1}{b}+R_{1}\right) b|0| 0\right) \\
& =\left(Q_{1}\left(x^{r}-1\right)+R_{1} b|0| 0\right) \\
& =Q_{1}\left(x^{r}-1|0| 0\right)+R_{1}(b|0| 0) \\
& =R_{1}(b|0| 0) \in \operatorname{span}\left(S_{1}\right) .
\end{aligned}
$$

Next we show that $d_{2} *(l|a| 0) \in \operatorname{span}\left(S_{1} \cup S_{2}\right)$. We have by division algorithm $d_{2}=Q_{2} h_{2}+R_{2}$ with $R_{2}=0$ or $\operatorname{deg}\left(R_{2}\right)<s-t_{2}, Q_{2}, R_{2} \in \mathbb{Z}_{2}[x]$. Therefore

$$
d_{2} *(l|a| 0)=\left(Q_{2} h_{2}+R_{2}\right)(l|a| 0)
$$

$$
\begin{equation*}
=Q_{2}\left(l h_{2}|0| 0\right)+R_{2}(l|a| 0) . \tag{2}
\end{equation*}
$$

Since $0 \leq \operatorname{deg}\left(R_{2}\right) \leq s-t_{2}-1$, we have $R_{2}(l|a| 0) \in \operatorname{span}\left(S_{2}\right)$. Also from Lemma 2, we have $b \mid h_{2} l$, which implies that $Q_{2}\left(l h_{2}|0| 0\right) \in \operatorname{span}\left(S_{1}\right)$. Therefore from (2) we get $d_{2} *(l|a| 0) \in \operatorname{span}\left(S_{1} \cup S_{2}\right)$.

Finally we show that $d_{3} *\left(g_{1}\left|g_{2}\right| g_{3}\right)$ belongs to $\operatorname{span}\left(S_{1} \cup S_{2} \cup S_{3}\right)$. Again by the division algorithm, we have $d_{3}=Q_{3} h_{3}+R_{3}$ with $R_{3}=0$ or $\operatorname{deg}\left(R_{3}\right)<t-t_{3}$, where Q_{3} and $R_{3} \in \mathbb{Z}_{2}[x]$. Then

$$
\begin{align*}
d_{3} *\left(g_{1}\left|g_{2}\right| g_{3}\right) & =\left(Q_{3} h_{3}+R_{3}\right)\left(g_{1}\left|g_{2}\right| g_{3}\right) \\
& =Q_{3} h_{3}\left(g_{1}\left|g_{2}\right| 0\right)+R_{3}\left(g_{1}\left|g_{2}\right| g_{3}\right) . \tag{3}
\end{align*}
$$

It easy to see that $Q_{3} h_{3}\left(g_{1}\left|g_{2}\right| 0\right) \in \mathrm{C}$ and hence $Q_{3} h_{3}\left(g_{1} \mid g_{2}\right) \in K=\left\{\left(c_{1} \mid c_{2}\right)\right.$: $\left.\left(c_{1}\left|c_{2}\right| 0\right) \in \operatorname{ker}_{\mathrm{C}}\left(\pi_{t}\right)\right\}$. From Theorem 4, we have $Q_{3} h_{3}\left(g_{1} \mid g_{2}\right) \in \operatorname{span}\left(S_{1}^{\prime} \cup S_{2}^{\prime}\right)$. This implies that, $Q_{3} h_{3}\left(g_{1}\left|g_{2}\right| 0\right) \in \operatorname{span}\left(S_{1} \cup S_{2}\right)$. Also, $R_{3}\left(g_{1}\left|g_{2}\right| g_{3}\right) \in \operatorname{span}\left(S_{3}\right)$, as $\operatorname{deg}\left(R_{3}\right)<t-t_{3}$. Therefore, from (3), $d_{3} *\left(g_{1}\left|g_{2}\right| g_{3}\right) \in \operatorname{span}\left(S_{1} \cup S_{2} \cup S_{3}\right)$. Hence $\mathrm{C} \in \operatorname{span}\left(S_{1} \cup S_{2} \cup S_{3}\right)$. The second result follows as S is linearly independent.

The following example illustrates this.
Example 1. Let $r=s=t=7$. We have $x^{7}-1=(x+1)\left(x^{3}+x+1\right)\left(x^{3}+x^{2}+1\right)$ over \mathbb{Z}_{2}. Let $\mathrm{C}=\left\langle(b|0| 0),(l|a| 0),\left(g_{1}\left|g_{2}\right| g_{3}\right)\right\rangle$, where $b=(x+1)\left(x^{3}+x^{2}+1\right)$, $l=(x+1)^{2}, a=(x+1)\left(x^{3}+x+1\right), g_{1}=x+1, g_{2}=x^{2}+x$ and $g_{3}=(x+1)\left(x^{3}+x^{2}+1\right)$. Then, C satisfies all the conditions of Lemma 1 and Lemma 2. Therefore, C is a \mathbb{Z}_{2}-triple cyclic code of block length (7,7,7). Also, $S=S_{1} \cup S_{2} \cup S_{3}$ forms a generating set for C, where $S_{1}=\cup_{i=0}^{2} x^{i}\left(x^{4}+x^{2}+x+1|0| 0\right), S_{2}=\cup_{i=0}^{2} x^{i}\left(x^{2}+1\left|x^{4}+x^{3}+x^{2}+1\right| 0\right)$ and $S_{3}=\cup_{i=0}^{2} x^{i}\left(x+1\left|x+x^{2}\right| x^{4}+x^{2}+x+1\right)$. The cardinality of C is 2^{9}. Also, C is generated by the generator matrix G, where

$$
G=\left(\begin{array}{lllllllllllllllllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Further, the minimum Hamming distance of C is 4 and therefore, C is a $[21,9,4]$ binary linear code with the Hamming weight distribution given by $[\langle 0,1\rangle,\langle 4,7\rangle,\langle 6,21\rangle$ $,\langle 8,98\rangle,\langle 10,154\rangle,\langle 12,175\rangle,\langle 14,49\rangle,\langle 16,7\rangle$].

3. Duals of \mathbb{Z}_{2}-triple cyclic codes

In this section, we determine the duals of \mathbb{Z}_{2}-triple cyclic codes of block length (r, s, t). In Theorem 1, it is shown that the dual C^{\perp} of a \mathbb{Z}_{2}-triple cyclic code C is also a \mathbb{Z}_{2}-triple
cyclic code. Therefore, we may let $\mathrm{C}^{\perp}=\left\langle(\hat{b}|0| 0),(\hat{l}|\hat{a}| 0),\left(\hat{g}_{1}\left|\hat{g}_{2}\right| \hat{g}_{3}\right)\right\rangle$ with $\hat{b}\left|x^{r}-1, \hat{a}\right| x^{s}-1$ and $\hat{g}_{3} \mid x^{t}-1$ over \mathbb{Z}_{2}. Further, let $m=l c m(r, s, t)$ and denote the polynomial $\sum_{i=0}^{m-1} x^{i}$ by $\theta_{m}(x)$. Then by [4, Preposition 4.2], we have the following result.
Proposition 1. Let $r, s, t \in \mathbb{N}$ and $m=l c m(r, s, t)$. Then, $x^{m}-1=\theta_{\frac{m}{r}}\left(x^{r}\right)\left(x^{r}-1\right)=$ $\theta_{\frac{m}{s}}\left(x^{s}\right)\left(x^{s}-1\right)=\theta_{\frac{m}{t}}\left(x^{t}\right)\left(x^{t}-1\right)$.

For any polynomials $f, g \in \mathbb{Z}_{2}[x]$, we denote the g.c.d. of f and g by (f, g), and we extend this notation for three or more polynomials. For any polynomial f of degree n the reciprocal of f is defined as $f^{*}=x^{n} f\left(\frac{1}{x}\right)$. The following result is usefull for our study.

Theorem 7. Let f and g be two binary polynomials, such that $\operatorname{deg}(f) \geq \operatorname{deg}(g)$. Then
(i) $\operatorname{deg}(f) \geq \operatorname{deg}\left(f^{*}\right)$, and equality holds if $x \nmid f$;
(ii) $(f g)^{*}=f^{*} g^{*}$;
(iii) $(f+g)^{*}=f^{*}+x^{\operatorname{deg}(f)-\operatorname{deg}(g)} g^{*}$;
(iv) $g\left|f \Rightarrow g^{*}\right| f^{*}$ and
(v) $\left(f^{*}, g^{*}\right)=(f, g)^{*}$.

Proof. The proofs of 1,2 and 3 are straight forward. For 4 , let $g \mid f$, so that $f=k g$ for some $k \in \mathbb{Z}_{2}[x]$. Then $f^{*}=k^{*} g^{*}$. Therefore $g^{*} \mid f^{*}$. From the definition of g.c.d., there exist $m_{1}, m_{2} \in \mathbb{Z}_{2}[x]$ such that $(f, g)=m_{1} f+m_{2} g$. Assuming $\operatorname{deg}\left(m_{1} f\right) \geq \operatorname{deg}\left(m_{2} g\right)$, we get

$$
(f, g)^{*}=m_{1}^{*} f^{*}+x^{\operatorname{deg}\left(m_{1} f\right)-\operatorname{deg}\left(m_{2} g\right)} m_{2}^{*} g^{*} .
$$

Again as $\left(f^{*}, g^{*}\right) \mid f^{*}$ and $\left(f^{*}, g^{*}\right) \mid g^{*}$, so $\left(f^{*}, g^{*}\right) \mid(f, g)^{*}$. On the other hand, $(f, g) \mid f$ implies that $(f, g)^{*} \mid f^{*}$. Similarly $(f, g)^{*} \mid g^{*}$. Hence

$$
(f, g)^{*} \mid\left(f^{*}, g^{*}\right)
$$

The result follows.
Remark 1. If $x \nmid f$ or $x \nmid g$, then it is easy to prove that $\operatorname{deg}\left(f^{*}, g^{*}\right)=\operatorname{deg}(f, g)^{*}=$ $\operatorname{deg}(f, g)$.

Now we define a mapping $\psi: \mathrm{R}_{r, s, t}[x] \times \mathrm{R}_{r, s, t}[x] \rightarrow \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{m}-1\right\rangle}$ such that

$$
\begin{equation*}
\psi(u, v)=u_{1} \theta_{\frac{m}{r}}\left(x^{r}\right) x^{m-\operatorname{deg}\left(v_{1}\right)-1} v_{1}^{*}+u_{2} \theta_{\frac{m}{s}}\left(x^{s}\right) x^{m-\operatorname{deg}\left(v_{2}\right)-1} v_{2}^{*}+u_{3} \theta \frac{m}{r}\left(x^{r}\right) x^{m-\operatorname{deg}\left(v_{3}\right)-1} v_{3}^{*}, \tag{4}
\end{equation*}
$$

where $u=\left(u_{1}\left|u_{2}\right| u_{3}\right)$, $v=\left(v_{1}\left|v_{2}\right| v_{3}\right) \in \mathrm{R}_{r, s, t}[x]$. The map ψ is a bilinear map between the two $\mathbb{Z}_{2}[x]$-modules. ψ is a generalization of a similar map defined in [4] for \mathbb{Z}_{2}-double cyclic codes.

Lemma 3. Let $u=\left(u_{1}\left|u_{2}\right| u_{3}\right)$, $v=\left(v_{1}\left|v_{2}\right| v_{3}\right)$ be elements in $\mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2}^{s} \times \mathbb{Z}_{2}^{t}$ with associated polynomials $u(x)=\left(u_{1}(x)\left|u_{2}(x)\right| u_{3}(x)\right)$ and $v(x)=\left(v_{1}(x)\left|v_{2}(x)\right| v_{3}(x)\right)$ in $\mathrm{R}_{r, s, t}[x]$. Then u is orthogonal to v and all its cyclic shifts if and only if $\psi(u, v)=0$.

Proof. Let $u=\left(u_{1,0}, u_{1,1}, \cdots, u_{1, r-1}\left|u_{2,0}, u_{2,1}, \cdots, u_{2, s-1}\right| u_{3,0}, u_{3,1}, \cdots, u_{3, t-1}\right)$ and $v=\left(v_{1,0}, v_{1,1}, \cdots, v_{1, r-1}\left|v_{2,0}, v_{2,1}, \cdots, v_{2, s-1}\right| v_{3,0}, v_{3,1}, \cdots, v_{3, t-1}\right)$ be two elements in $\mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2}^{s} \times \mathbb{Z}_{2}^{t}$. Let $\sigma^{(i)}(v)$ be the i-th shift of v. Then $\sigma^{(i)}(v)=\left(v_{1,0+i}, v_{1,1+i}, \cdots, v_{1, i-1} \mid\right.$ $\left.v_{2,0+i}, v_{2,1+i}, \cdots, v_{2, i-1} \mid v_{3,0+i}, v_{3,1+i}, \cdots, v_{3, i-1}\right)$ for $1 \leq i \leq m-1$. Under polynomial representation we have

$$
\begin{gathered}
\psi\left(u, \sigma^{(i)}(v)\right)=\sum_{p=0}^{r-1}\left(\theta_{\frac{m}{r}}\left(x^{r}\right) \sum_{j=0}^{r-1} u_{1, j} v_{1, p+j} x^{m-1-p}\right)+\sum_{q=0}^{s-1}\left(\theta_{\frac{m}{s}}\left(x^{s}\right) \sum_{k=0}^{s-1} u_{2, k} v_{2, q+k} x^{m-1-q}\right)+ \\
\sum_{l=0}^{t-1}\left(\theta_{\frac{m}{t}}\left(x^{t}\right) \sum_{w=0}^{t-1} u_{3, w} v_{3, l+w} x^{m-1-l}\right) .
\end{gathered}
$$

Rearranging the terms in the summation we get

$$
\psi\left(u, \sigma^{(i)}(v)\right)=\sum_{i=0}^{m-1} S_{i} x^{m-1-i} \bmod \left(x^{m}-1\right),
$$

where $S_{i}=\sum_{j=0}^{r-1} u_{1, j} v_{1, i+j}+\sum_{k=0}^{s-1} u_{2, k} v_{2, i+k}+\sum_{l=0}^{t-1} u_{1, l} v_{2, i+l}$. On the other hand, we have $u \cdot \sigma^{(i)}(v)=\sum_{j=0}^{r-1} u_{1, j} v_{1, i+j}+\sum_{k=0}^{s-1} u_{2, k} v_{2, i+k}+\sum_{l=0}^{t-1} u_{1, l} v_{2, i+l}=S_{i}$. Thus, $\psi\left(u, \sigma^{(i)}(v)\right)=0$ if and only if $S_{i}=0$ for all $1 \leq i \leq m-1$. Hence the result.

Lemma 4. Let $u=\left(u_{1}\left|u_{2}\right| u_{3}\right)$ and $v=\left(v_{1}\left|v_{2}\right| v_{3}\right)$ in $\mathrm{R}_{r, s, t}[x]$ such that $\psi(u, v)=0$. Then
(i) If $u_{2}=0$ or $v_{2}=0$ and $u_{3}=0$ or $v_{3}=0$, then $u_{1} v_{1}^{*}=0\left(\bmod x^{r}-1\right)$.
(ii) If $u_{1}=0$ or $v_{1}=0$ and $u_{3}=0$ or $v_{3}=0$, then $u_{2} v_{2}^{*}=0\left(\bmod x^{s}-1\right)$.
(iii) If $u_{1}=0$ or $v_{1}=0$ and $u_{2}=0$ or $v_{2}=0$, then $u_{3} v_{3}^{*}=0\left(\bmod x^{t}-1\right)$.

Proof. Let $u_{2}=0$ or $v_{2}=0$ and $u_{3}=0$ or $v_{3}=0$. Then from the definition of ψ, we have $\psi(u, v)=u_{1} \theta_{\frac{m}{r}}\left(x^{r}\right) x^{m-\operatorname{deg}\left(v_{1}\right)-1} v_{1}^{*}=0\left(\bmod x^{m}-1\right)$. This implies that $u_{1} \theta_{\frac{m}{r}}\left(x^{r}\right) x^{m-\operatorname{deg}\left(v_{1}\right)-1} v_{1}^{*}=\left(x^{m}-1\right) g$ for some $g \in \mathbb{Z}_{2}[x]$. Taking $f=x^{\operatorname{deg}\left(v_{1}\right)+1} g$, we get $u_{1} \theta_{\frac{m}{r}}^{r}\left(x^{r}\right) x^{m} v_{1}^{*}=f\left(x^{m}-1\right)$ and therefore $u_{1}\left(x^{m}-1\right) x^{m} v_{1}^{*}=\left(x^{m}-1\right)\left(x^{r}-1\right) f$. Since x and $x^{r}-1$ are relatively prime, we have $u_{1} v_{1}^{*}=0\left(\bmod x^{r}-1\right)$. Other results can be proved similarly.

Now we determine the form of generator matrix of a \mathbb{Z}_{2}-triple cyclic code. The generator matrix of a \mathbb{Z}_{2}-triple cyclic code C determines the cardinalities of the projections C_{r}, C_{s} and C_{t} and their duals, and these are further be used to obtain the duals of a \mathbb{Z}_{2}-triple cyclic codes.

Let $\mathrm{C}=\left\langle(b|0| 0),(l|a| 0),\left(g_{1}\left|g_{2}\right| g_{3}\right)\right\rangle$ be a \mathbb{Z}_{2}-triple cyclic code of block length (r, s, t) and C^{\perp} be its dual. Then from Theorem $6, \mathrm{C}$ is spanned by $S=S_{1} \cup S_{2} \cup S_{3}$ and therefore C is generated by the matrix whose rows are the elements of the set S. Let C_{1}, C_{2} and C_{3} be the subcodes of C generated by S_{1}, S_{2} and S_{3}, respectively, and let $\mathbf{G}_{1}, \mathbf{G}_{2}$ and \mathbf{G}_{3} be their generator matrices, where $\mathbf{G}_{1}=\left(I_{r-\operatorname{deg}(b)} A|0| 0\right), \mathbf{G}_{2}=(B \mid$
 generator matrix for C .

We obtain an equivalent form of the matrix \mathbf{G} by adjusting its rows, so that we can make use of this equivalent form to find the cardinalities of the respective projections $\mathrm{C}_{r}, \mathrm{C}_{s}$ and C_{t}. It is easy to see that C_{r} is generated by $\left(b, l, g_{1}\right)$, and this implies that the dimension of C_{r} is $r-\operatorname{deg}\left(b, l, g_{1}\right)$, which is greater than or equal to $r-\operatorname{deg}(b)$. Therefore, the matrices B and D must have submatrices, say $B_{\epsilon_{1}}$ and $D_{\epsilon_{2}}$ of full ranks ϵ_{1} and ϵ_{2}, respectively, such that $\epsilon_{1}+\epsilon_{2}=\operatorname{deg}(b)-\operatorname{deg}\left(b, l, g_{1}\right)$. Add the corresponding rows of \mathbf{G}_{2} and \mathbf{G}_{3} that contain $B_{\epsilon_{1}}$ and $D_{\epsilon_{2}}$, to \mathbf{G}_{1}. As a result, \mathbf{G}_{2} and \mathbf{G}_{3} are now reduced to the matrices of the form $\mathbf{G}_{2}^{\prime}=\left(0\left|C_{1} I_{r-\operatorname{deg}(a)-\epsilon_{1}}\right| 0\right)$ and $\mathbf{G}_{3}^{\prime}=\left(0\left|E_{1}\right| F_{1} \quad I_{t-\operatorname{deg}\left(g_{3}\right)-\epsilon_{2}}\right)$. Similarly the dimension of C_{s} is $s-\operatorname{deg}\left(a, g_{2}\right)$, as C_{s} is generated by $\left(a, g_{2}\right)$. Therefore, the matrix E_{1} must have a submatrix, say $E_{k_{1}}$, of full rank $k_{1}=\operatorname{deg}(a)-\epsilon_{2}-\operatorname{deg}\left(a, g_{2}\right)$. Again, adding the rows that contain the matrix $E_{k_{1}}$, to \mathbf{G}_{2}^{\prime}, we get the remaining part of the generating matrix \mathbf{G} of C as $\left(0|0| F_{1}^{\prime} I_{t-\operatorname{deg}\left(g_{3}\right)-\epsilon_{2}-k_{1}}\right)$. Let $k_{2}=\operatorname{deg}\left(g_{3}\right)+\epsilon_{2}+k_{1}=\operatorname{deg}(a)+\operatorname{deg}\left(g_{3}\right)-\operatorname{deg}\left(a, g_{2}\right)$. Therefore, the generator matrix \mathbf{G} of \mathbf{C} is permutation equivalent to the matrix \mathbf{G}^{\prime}, where
$\mathbf{G}^{\prime}=\left(\begin{array}{cccc|ccccc|cccc}I_{r-\operatorname{deg}(b)} & A_{1} & A_{2} & A_{3} & & & & & & & & & \\ & B_{\epsilon_{1}} & B_{1} & B_{2} & C_{11} & I_{\epsilon_{1}} & & & & & & & \\ & & 0 & 0 & C_{21} & R_{1} & I_{s-\operatorname{deg}(a)-\epsilon_{1}} & 0 & 0 & & & & \\ & & D_{\epsilon_{2}} & D_{11} & E_{11} & E_{12} & & E_{\epsilon_{2}} & E_{14} & F_{11} & I_{\epsilon_{2}} & & \\ & & & & E_{21} & E_{22} & & E_{k_{1}} & E_{24} & F_{21} & R_{2} & I_{k_{1}} & \\ & & & & & & & & & F_{31} & F_{32} & R_{3} & I_{t-k_{2}}\end{array}\right)$.
The cardinalities of $\mathrm{C}_{r}, \mathrm{C}_{s}$ and C_{t} and their duals follow from \mathbf{G}^{\prime}. The cardinalities of $\left(\mathrm{C}^{\perp}\right)_{r},\left(\mathrm{C}^{\perp}\right)_{s}$ and $\left(\mathrm{C}^{\perp}\right)_{t}$ can be obtained by projecting the parity check matrix of C on first r coordinates, next s coordinates and remaining last t coordinates, respectively. The results are summarized in the following theorem.
Theorem 8. Let $\mathrm{C}=\left\langle(b|0| 0),(l|a| 0),\left(g_{1}\left|g_{2}\right| g_{3}\right)\right\rangle$ be a \mathbb{Z}_{2}-triple cyclic code of block length (r, s, t). Then,

$$
\begin{array}{lll}
\left|\mathrm{C}_{r}\right|=2^{r-\operatorname{deg}(b)+\epsilon} & \left|\left(\mathrm{C}_{r}\right)^{\perp}\right|=2^{\operatorname{deg}\left(b, l, g_{1}\right)} & \left|\left(\mathrm{C}^{\perp}\right)_{r}\right|=2^{\operatorname{deg}(b)}, \\
\left|\mathrm{C}_{s}\right|=2^{r-\operatorname{deg}\left(a, g_{2}\right)} & \left|\left(\mathrm{C}_{s}\right)^{\perp}\right|=2^{\operatorname{deg}\left(a, g_{2}\right)} & \left|\left(\mathrm{C}^{\perp}\right)_{s}\right|=2^{\operatorname{deg}(a)+\epsilon_{1}} \text { and } \\
\left|\mathrm{C}_{t}\right|=2^{r-\operatorname{deg}\left(g_{3}\right)} & \left|\left(\mathrm{C}_{t}\right)^{\perp}\right|=2^{\operatorname{deg}\left(g_{3}\right)} & \left|\left(\mathrm{C}^{\perp}\right)_{t}\right|=2^{k_{2}},
\end{array}
$$

where $\epsilon=\operatorname{deg}(b)-\operatorname{deg}\left(b, l, g_{1}\right)$ and $k_{2}=\operatorname{deg}(a)+\operatorname{deg}\left(g_{3}\right)-\operatorname{deg}\left(a, g_{2}\right)$.

Theorem 9. Let $\mathrm{C}=\left\langle(b|0| 0),(l|a| 0),\left(g_{1}\left|g_{2}\right| g_{3}\right)\right\rangle$ be a \mathbb{Z}_{2}-triple cyclic code of block length (r, s, t) and $\mathrm{C}^{\perp}=\left\langle(\hat{b}|0| 0),(\hat{l}|\hat{a}| 0),\left(\hat{g}_{1}\left|\hat{g}_{2}\right| \hat{g}_{3}\right)\right\rangle$ be the dual of C . Then

$$
\hat{b}=\frac{x^{r}-1}{\left(b, l, g_{1}\right)^{*}} .
$$

Proof. First we determine the degree of \hat{b}. From the definition of C^{\perp}, it is easy to show that $\left(\mathrm{C}_{r}\right)^{\perp}=\langle\hat{b}\rangle$. This implies that $\left|\left(\mathrm{C}_{r}\right)^{\perp}\right|=2^{r-\operatorname{deg}(\hat{b})}$. From Theorem 8, we have $\left|\left(\mathrm{C}_{r}\right)^{\perp}\right|=2^{\operatorname{deg}\left(b, l, g_{1}\right)}$. Therefore

$$
\begin{equation*}
\operatorname{deg}(\hat{b})=r-\operatorname{deg}\left(b, l, g_{1}\right) \tag{5}
\end{equation*}
$$

Now, as $(\hat{b}|0| 0) \in \mathrm{C}^{\perp}$, from the definition of ψ, we have

$$
\psi((\hat{b}|0| 0),(b|0| 0))=\psi((\hat{b}|0| 0),(l|a| 0))=\psi\left((\hat{b}|0| 0),\left(g_{1}\left|g_{2}\right| g_{3}\right)\right)=0
$$

all modulo $\left(x^{m}-1\right)$. This implies that $\hat{b} b^{*}=\hat{b} l^{*}=\hat{b} g_{1}^{*}=0\left(\bmod x^{r}-1\right)$. Therefore, $\hat{b} \operatorname{gcd}\left(b^{*}, l^{*}, g_{1}^{*}\right)=0\left(\bmod x^{r}-1\right)$. Since $\left(b^{*}, l^{*}, g_{1}^{*}\right)=\left(b, l, g_{1}\right)^{*}$, we have $\hat{b} \operatorname{gcd}\left(b, l, g_{1}\right)^{*}=$ $0\left(\bmod x^{r}-1\right)$. Then there exists $\lambda \in \mathbb{Z}_{2}[x]$ such that,

$$
\begin{equation*}
\hat{b}\left(b, l, g_{1}\right)^{*}=\lambda\left(x^{r}-1\right) \tag{6}
\end{equation*}
$$

From equations (5) and (6), we get $\lambda=1$ and hence $\hat{b}\left(b, l, g_{1}\right)^{*}=\left(x^{r}-1\right)$.
Lemma 5. Let $\mathrm{C}=\left\langle(b|0| 0),(l|a| 0),\left(g_{1}\left|g_{2}\right| g_{3}\right)\right\rangle$ be a \mathbb{Z}_{2}-triple cyclic code of block length (r, s, t). Then $\left(0|0| \frac{a b g_{3}}{\left(a, g_{2}\right)}\right) \in \mathrm{C}$.

Proof. Since $(b|0| 0),(l|a| 0) \in \mathrm{C}$, so $l(b|0| 0)+b(l|a| 0)=(0|a b| 0) \in$ C. Similarly $(b|0| 0),\left(g_{1}\left|g_{2}\right| g_{3}\right) \in \mathrm{C}$ implies that $\left(0\left|b g_{2}\right| b g_{3}\right) \in \mathrm{C}$. Therefore, as $(0|a b| 0),\left(0\left|b g_{2}\right| b g_{3}\right) \in \mathrm{C}$, we have $\frac{g_{2}}{\left(a, g_{2}\right)}(0|a b| 0)+\frac{a}{\left(a, g_{2}\right)}\left(0\left|b g_{2}\right| b g_{3}\right)=$ $\left(0|0| \frac{a b g_{3}}{\left(a, g_{2}\right)}\right) \in \mathrm{C}$.

Theorem 10. Let $\mathrm{C}=\left\langle(b|0| 0),(l|a| 0),\left(g_{1}\left|g_{2}\right| g_{3}\right)\right\rangle$ be a \mathbb{Z}_{2}-triple cyclic code of block length (r, s, t) and $\mathrm{C}^{\perp}=\left\langle(\hat{b}|0| 0),(\hat{l}|\hat{a}| 0),\left(\hat{g}_{1}\left|\hat{g}_{2}\right| \hat{g}_{3}\right)\right\rangle$ be the dual of C . Then

$$
\hat{g}_{3}=\frac{\left(x^{t}-1\right)\left(a, g_{2}\right)^{*}}{a^{*} g_{3}^{*}}
$$

Proof. Again, first we determine the degree of \hat{g}_{3}. From the definition of C^{\perp}, it is easy to show that $\left(\mathrm{C}^{\perp}\right)_{s}=\left\langle\hat{g}_{3}\right\rangle$ and this implies that $\left|\left(\mathrm{C}^{\perp}\right)_{s}\right|=2^{t-\operatorname{deg}\left(\hat{g}_{3}\right)}$. Also from Theorem 8, we have $\left|\left(\mathrm{C}^{\perp}\right)_{s}\right|=2^{k_{2}}$. Therefore

$$
\begin{equation*}
\operatorname{deg}\left(\hat{g}_{3}\right)=t-\operatorname{deg}\left(g_{3}\right)-\operatorname{deg}(a)+\operatorname{deg}\left(a, g_{2}\right) \tag{7}
\end{equation*}
$$

Now from Lemma 5, we have $\left(0|0| \frac{a b g_{3}}{\left(a, g_{2}\right)}\right) \in \mathrm{C}$ and also, as $\left(\hat{g}_{1}\left|\hat{g}_{2}\right| \hat{g}_{3}\right) \in \mathrm{C}^{\perp}$, we have $\psi\left(\left(0|0| \frac{a b g_{3}}{\left(a, g_{2}\right)}\right),\left(\hat{g}_{1}\left|\hat{g}_{2}\right| \hat{g}_{3}\right)\right)=0\left(\bmod x^{m}-1\right)$. This implies that $\hat{g}_{3} \frac{a^{*} b^{*} g_{3}^{*}}{\left(a, g_{2}\right)^{*}}=$ $0\left(\bmod x^{t}-1\right)$, and therefore $\hat{g}_{3} \frac{a^{*} g_{3}^{*}}{\left(a, g_{2}\right)^{*}}=0\left(\bmod x^{t}-1\right)$. Hence $\hat{g}_{3} \frac{a^{*} g_{3}^{*}}{\left(a, g_{2}\right)^{*}}=\lambda^{\prime}\left(x^{t}-1\right)$ for some $\lambda^{\prime} \in \mathbb{Z}_{2}[x]$. From the degree consideration of \hat{g}_{3} i.e. from (7), we get $\lambda^{\prime}=1$. The result follows.

Theorem 11. Let $\mathrm{C}=\left\langle(b|0| 0),(l|a| 0),\left(g_{1}\left|g_{2}\right| g_{3}\right)\right\rangle$ be a \mathbb{Z}_{2}-triple cyclic code of block length (r, s, t) and $\mathrm{C}^{\perp}=\left\langle(\hat{b}|0| 0),(\hat{l}|\hat{a}| 0),\left(\hat{g}_{1}\left|\hat{g}_{2}\right| \hat{g}_{3}\right)\right\rangle$ be the dual of C . Then, for some $\lambda_{1}, \lambda_{2} \in \mathbb{Z}_{2}[x]$, we have

$$
\hat{g}_{1} b^{*}=\lambda_{1}\left(x^{r}-1\right) \quad \text { and } \quad \hat{g}_{2} a^{*} b^{*}=\lambda_{2}\left(x^{s}-1\right)\left(b, l, g_{1}\right)^{*} .
$$

Proof. From the definitions of C and C^{\perp}, we have $\psi\left(\left(\hat{g}_{1}\left|\hat{g}_{2}\right| \hat{g}_{3}\right),(b|0| 0)\right)=0$ $\left(\bmod x^{m}-1\right)$. This implies that $\hat{g}_{1} b^{*}=\lambda_{1}\left(x^{r}-1\right)$ for some $\lambda_{1} \in \mathbb{Z}_{2}[x]$.

On the other hand, it is easy to show that $\left(0\left|\frac{a b}{\left(b, l, g_{1}\right)}\right| 0\right) \in$ C. Therefore, $\psi\left(\left(0\left|\frac{a b}{\left(b, l, g_{1}\right)}\right|\right.\right.$ $\left.0),\left(\hat{g}_{1}\left|\hat{g}_{2}\right| \hat{g}_{3}\right)\right)=0\left(\bmod x^{m}-1\right)$. This implies that $\hat{g}_{2} a^{*} b^{*}=\lambda_{2}\left(x^{s}-1\right)\left(b, l, g_{1}\right)^{*}$ for some $\lambda_{2} \in \mathbb{Z}_{2}[x]$.

In the following theorem, we obtain the explicit forms for λ_{1} and λ_{2} that are given in Theorem 11.

Theorem 12. Let $\mathrm{C}=\left\langle(b|0| 0),(l|a| 0),\left(g_{1}\left|g_{2}\right| g_{3}\right)\right\rangle$ be a \mathbb{Z}_{2}-triple cyclic code of block length (r, s, t) and $\mathrm{C}^{\perp}=\left\langle(\hat{b}|0| 0),(\hat{l}|\hat{a}| 0),\left(\hat{g}_{1}\left|\hat{g}_{2}\right| \hat{g}_{3}\right)\right\rangle$ be the dual code of C . Let $\rho_{1}=\frac{l^{*}}{\left(b, l, g_{1}\right)^{*}}$ and $\rho_{2}=\frac{g_{2}^{*}}{\left(a, g_{2}\right)^{*}}$. Then $\hat{g}_{1} b^{*}=\lambda_{1}\left(x^{r}-1\right)$ and $\hat{g}_{2} a^{*} b^{*}=\lambda_{2}\left(x^{s}-1\right)\left(b, l, g_{1}\right)^{*}$, where
$\lambda_{1}=\left(\rho_{1}\right)^{-1}\left(\rho_{2}\right)^{-1} \frac{b^{*}}{\left(b, l, g_{1}\right)^{*}} x^{2 m+\operatorname{deg}(l)-\operatorname{deg}(a)+\operatorname{deg}\left(g_{2}\right)-\operatorname{deg}\left(g_{3}\right)}\left(\bmod \quad\left(\frac{\left(b, g_{1}\right)^{*}}{\left(b, l, g_{1}\right)^{*}}, \frac{a^{*}}{\left(a, g_{2}\right)^{*}}\right)\right)$
and
$\lambda_{2}=\left(\frac{g_{2}^{*}}{\left(a, g_{2}\right)^{*}}\right)^{-1} \frac{b^{*}}{\left(b, l, g_{1}\right)^{*}} x^{2 m+\operatorname{deg}\left(g_{2}\right)-\operatorname{deg}\left(g_{3}\right)} \quad\left(\bmod \frac{a^{*}}{\left(a, g_{2}\right)^{*}}\right)$.
Proof. Since $(l|a| 0),\left(g_{1}\left|g_{2}\right| g_{3}\right) \in \mathrm{C}$ and $\left(\hat{g}_{1}\left|\hat{g}_{2}\right| \hat{g}_{3}\right) \in \mathrm{C}^{\perp}$, we have $\psi\left(\left(\hat{g}_{1}\left|\hat{g}_{2}\right|\right.\right.$ $\left.\left.\left.\hat{g}_{3}\right),(l|a| 0)\right)=\psi\left(\hat{g}_{1}\left|\hat{g}_{2}\right| \hat{g}_{3}\right),\left(g_{1}\left|g_{2}\right| g_{3}\right)\right)=0\left(\bmod x^{m}-1\right)$. This implies that

$$
\begin{equation*}
\hat{g}_{1} \theta_{\frac{m}{r}}\left(x^{r}\right) x^{m-1-\operatorname{deg}(l)} l^{*}+\hat{g}_{2} \theta_{\frac{m}{s}}\left(x^{s}\right) x^{m-1-\operatorname{deg}(a)} a^{*}=0\left(\bmod x^{m}-1\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{align*}
& \hat{g}_{1} \theta_{\frac{m}{r}}\left(x^{r}\right) x^{m-1-\operatorname{deg}\left(g_{1}\right)} g_{1}^{*}+\hat{g}_{2} \theta_{\frac{m}{s}}\left(x^{s}\right) x^{m-1-\operatorname{deg}\left(g_{2}\right)} g_{2}^{*} \\
&+\hat{g}_{3} \theta_{\frac{m}{t}}\left(x^{t}\right) x^{m-1-\operatorname{deg}\left(g_{3}\right)} g_{3}^{*}=0\left(\bmod x^{m}-1\right) \tag{9}
\end{align*}
$$

Substituting \hat{g}_{1} and \hat{g}_{2} from Theorem 11, in (8) and (9), and rearranging the terms, we get

$$
\begin{equation*}
\left(x^{m}-1\right) \frac{l^{*}}{b^{*}} x^{m-1-\operatorname{deg}(l)} \lambda_{1}+\left(x^{m}-1\right) \frac{\left(b, l, g_{1}\right)^{*}}{b^{*}} x^{m-1-\operatorname{deg}(a)} \lambda_{2}=0\left(\bmod x^{m}-1\right) \tag{10}
\end{equation*}
$$

and

$$
\begin{align*}
\left(x^{m}-1\right) \frac{g_{1}^{*}}{b^{*}} x^{m-1-\operatorname{deg}\left(g_{1}\right)} \lambda_{1}+ & \left(x^{m}-1\right) \frac{\left(b, l, g_{1}\right)^{*} g_{2}^{*}}{a^{*} b^{*}} x^{m-1-\operatorname{deg}\left(g_{2}\right)} \lambda_{2} \\
& +\left(x^{m}-1\right) \frac{\left(a, g_{2}\right)^{*}}{a^{*}} x^{m-1-\operatorname{deg}\left(g_{3}\right)}=0\left(\bmod x^{m}-1\right) \tag{11}
\end{align*}
$$

From (10) and (11), we get

$$
\begin{gather*}
\left(x^{m}-1\right) \frac{\left(b, l, g_{1}\right)^{*} g_{1}^{*}}{b^{*}} x^{2 m-2-\operatorname{deg}(a)-\operatorname{deg}\left(g_{1}\right)} \lambda_{2}+\left(x^{m}-1\right) \frac{\left(b, l, g_{1}\right)^{*}}{a^{*} b^{*}} g_{2}^{*} l^{*} x^{2 m-2-\operatorname{deg}(l)-\operatorname{deg}\left(g_{2}\right)} \lambda_{2} \\
+\left(x^{m}-1\right) \frac{\left(a, g_{2}\right)^{*}}{a^{*}} l^{*} x^{2 m-2-\operatorname{deg}(l)-\operatorname{deg}\left(g_{3}\right)}=0\left(\bmod x^{m}-1\right) \tag{12}
\end{gather*}
$$

Equation (12) can be rewritten as

$$
\begin{array}{r}
\left(x^{m}-1\right) \frac{\left(b, l, g_{1}\right)^{*}}{b^{*}} \frac{\left(a, g_{2}\right)^{*}}{a^{*}}\left[\frac{g_{1}^{*} a^{*}}{\left(a, g_{2}\right)^{*}} x^{2 m-2-\operatorname{deg}(a)-\operatorname{deg}\left(g_{1}\right)} \lambda_{2}+\frac{g_{2}^{*}}{\left(a, g_{2}\right)^{*}} l^{*} x^{2 m-2-\operatorname{deg}(l)-\operatorname{deg}\left(g_{2}\right)} \lambda_{2}\right. \\
\left.+\frac{b^{*}}{\left(b, l, g_{1}\right)^{*}} l^{*} x^{2 m-2-\operatorname{deg}(l)-\operatorname{deg}\left(g_{3}\right)}\right]=0\left(\bmod x^{m}-1\right) \tag{13}
\end{array}
$$

This implies that

$$
\begin{aligned}
{\left[\frac{g_{1}^{*} a^{*}}{\left(a, g_{2}\right)^{*}} x^{2 m-2-\operatorname{deg}(a)-\operatorname{deg}\left(g_{1}\right)} \lambda_{2}+\frac{g_{2}^{*}}{\left(a, g_{2}\right)^{*}} l^{*}\right.} & x^{2 m-2-\operatorname{deg}(l)-\operatorname{deg}\left(g_{2}\right)} \lambda_{2}+\frac{b^{*}}{\left(b, l, g_{1}\right)^{*}} l^{*} \\
\left.x^{2 m-2-\operatorname{deg}(l)-\operatorname{deg}\left(g_{3}\right)}\right] & =0\left(\bmod x^{m}-1\right)
\end{aligned}
$$

Since $\frac{a^{*}}{\left(a, g_{2}\right)^{*}}$ divides $x^{m}-1$, we get

$$
\begin{equation*}
\frac{g_{2}^{*}}{\left(a, g_{2}\right)^{*}} x^{2 m-2-\operatorname{deg}(l)-\operatorname{deg}\left(g_{2}\right)} \lambda_{2}+\frac{b^{*}}{\left(b, l, g_{1}\right)^{*}} x^{2 m-2-\operatorname{deg}(l)-\operatorname{deg}\left(g_{3}\right)}=0 \bmod \left(\frac{a^{*}}{\left(a, g_{2}\right)^{*}}\right) \tag{14}
\end{equation*}
$$

Since $\frac{a^{*}}{\left(a, g_{2}\right)^{*}}$ and $\frac{g_{2}^{*}}{\left(a, g_{2}\right)^{*}}$ are relatively prime, we get from (14)

$$
\lambda_{2}=\left(\frac{g_{2}^{*}}{\left(a, g_{2}\right)^{*}}\right)^{-1} \frac{b^{*}}{\left(b, l, g_{1}\right)^{*}} x^{2 m+\operatorname{deg}\left(g_{2}\right)-\operatorname{deg}\left(g_{3}\right)}\left(\bmod \frac{a^{*}}{\left(a, g_{2}\right)^{*}}\right)
$$

Using the similar arguments that are given in finding λ_{1}, we therefore get
$\lambda_{1}=\left(\rho_{1}\right)^{-1}\left(\rho_{2}\right)^{-1} \frac{b^{*}}{\left(b, l, g_{1}\right)^{*}} x^{2 m-\operatorname{deg}\left(g_{3}\right)-\operatorname{deg}(a)+\operatorname{deg}\left(g_{2}\right)+\operatorname{deg}(l)}\left(\bmod \left(\frac{\left(b, g_{1}\right)^{*}}{\left(b, l, g_{1}\right)^{*}}, \frac{a^{*}}{\left(a, g_{2}\right)^{*}}\right)\right)$,
where $\rho_{1}=\frac{l^{*}}{\left(b, l, g_{1}\right)^{*}}$ and $\rho_{2}=\frac{g_{2}^{*}}{\left(a, g_{2}\right)^{*}}$. Hence the result.

Theorem 13. Let $\mathrm{C}=\left\langle(b|0| 0),(l|a| 0),\left(g_{1}\left|g_{2}\right| g_{3}\right)\right\rangle$ be a \mathbb{Z}_{2}-triple cyclic code of block length (r, s, t) and $\mathrm{C}^{\perp}=\left\langle(\hat{b}|0| 0),(\hat{l}|\hat{a}| 0),\left(\hat{g}_{1}\left|\hat{g}_{2}\right| \hat{g}_{3}\right)\right\rangle$ be the dual code of C . Then

$$
\hat{a} b^{*}\left(a, g_{2}\right)^{*}=\left(x^{s}-1\right)\left(b, l, g_{1}\right)^{*}
$$

Proof. First we determine the degree of \hat{a}. We note that $\operatorname{dim}\left(\mathrm{C}^{\perp}\right)=(r+s+t)-$ $\left(\operatorname{deg}(\hat{b})+\operatorname{deg}(\hat{a})+\operatorname{deg}\left(\hat{g_{3}}\right)\right)$. Also, since $\operatorname{dim}(\mathrm{C})=(r+s+t)-\left(\operatorname{deg}(b)+\operatorname{deg}(a)+\operatorname{deg}\left(g_{3}\right)\right)$ implies that $\operatorname{dim}\left(\mathrm{C}^{\perp}\right)=\operatorname{deg}(b)+\operatorname{deg}(a)+\operatorname{deg}\left(g_{3}\right)$. Therefore from Theorem 9 and Theorem 10, we get

$$
\begin{equation*}
\operatorname{deg}(\hat{a})=s-b-\left(a, g_{2}\right)+\left(b, l, g_{1}\right) \tag{15}
\end{equation*}
$$

Now since $\left(0\left|\frac{a b}{\left(b, l, g_{1}\right)}\right| 0\right)$ and $\left(0\left|\frac{b g_{2}}{\left(b, l, g_{1}\right)}\right| \frac{b g_{3}}{\left(b, l, g_{1}\right)}\right)$ are in C , and $(\hat{l}|\hat{a}| 0) \in \mathrm{C}^{\perp}$, we have $\psi\left((\hat{l}|\hat{a}| 0),\left(0\left|\frac{a b}{\left(b, l, g_{1}\right)}\right| 0\right)\right)=\psi\left((\hat{l}|\hat{a}| 0),\left(0\left|\frac{b g_{2}}{\left(b, l, g_{1}\right)}\right| \frac{b g_{3}}{\left(b, l, g_{1}\right)}\right)\right)=0 . \quad$ This implies that $\hat{a} \frac{a^{*} b^{*}}{\left(b, l, g_{1}\right)^{*}}=\hat{a} \frac{g_{2}^{*} b^{*}}{\left(b, l, g_{1}\right)^{*}}=0\left(\bmod \left(x^{s}-1\right)\right)$ and hence $\hat{a} \frac{\left(a, g_{2}\right)^{*} b^{*}}{\left(b, l, g_{1}\right)^{*}}=0\left(\bmod \quad\left(x^{s}-1\right)\right)$. Therefore, for some $\gamma \in \mathbb{Z}_{2}[x]$, we have

$$
\begin{equation*}
\hat{a} \frac{\left(a, g_{2}\right)^{*} b^{*}}{\left(b, l, g_{1}\right)^{*}}=\gamma\left(x^{s}-1\right) \tag{16}
\end{equation*}
$$

From equation (15) and equation (16), we get $\gamma=1$ and hence $\hat{a} b^{*}\left(a, g_{2}\right)^{*}=\left(x^{s}-\right.$ 1) $\left(b, l, g_{1}\right)^{*}$.

Theorem 14. Let $\mathrm{C}=\left\langle(b|0| 0),(l|a| 0),\left(g_{1}\left|g_{2}\right| g_{3}\right)\right\rangle$ be a \mathbb{Z}_{2}-triple cyclic code of block length (r, s, t) and $\mathrm{C}^{\perp}=\left\langle(\hat{b}|0| 0),(\hat{l}|\hat{a}| 0),\left(\hat{g}_{1}\left|\hat{g}_{2}\right| \hat{g}_{3}\right)\right\rangle$ be the dual code of C . Then

$$
\hat{l} b^{*}=\beta\left(x^{r}-1\right)
$$

where $\beta=\left(\frac{l^{*}}{\left(b, l, g_{1}\right)^{*}}\right)^{-1} \frac{a^{*}}{\left(a, g_{2}\right)^{*}} x^{m+\operatorname{deg}(l)-\operatorname{deg}(a)}\left(\bmod \frac{\left(b, g_{1}\right)^{*}}{\left(b, l, g_{1}\right)^{*}}\right)$.
Proof. Since $(b|0| 0) \in \mathrm{C}$ and $(\hat{l}|\hat{a}| 0) \in \mathrm{C}^{\perp}$, we have $\hat{l} b^{*}=0\left(\bmod x^{r}-1\right)$. Therefore $\hat{l} b^{*}=\beta\left(x^{r}-1\right)$ for some $\beta \in \mathbb{Z}_{2}[x]$.

Again, as $(\hat{l}|\hat{a}| 0) \in \mathrm{C}^{\perp}$ and $(l|a| 0) \in \mathrm{C}$, so $\psi((\hat{l}|\hat{a}| 0),(l|a| 0))=0\left(\bmod x^{m}-\right.$ 1). This implies that

$$
\begin{equation*}
\hat{l} \theta_{\frac{m}{r}}\left(x^{r}\right) x^{m-1-\operatorname{deg}(l)} l^{*}+\hat{a} \theta_{\frac{m}{s}}\left(x^{s}\right) x^{m-1-\operatorname{deg}(a)} a^{*}=0\left(\bmod x^{m}-1\right) \tag{17}
\end{equation*}
$$

Substituting \hat{l} and \hat{a} in equation (17), we get

$$
\begin{equation*}
\left(x^{m}-1\right) \frac{l^{*}}{b^{*}} x^{m-1-\operatorname{deg}(l)} \beta+\left(x^{m}-1\right) \frac{\left(b, l, g_{1}\right)^{*}}{b^{*}\left(a, g_{2}\right)^{*}} a^{*} x^{m-1-\operatorname{deg}(a)}=0\left(\bmod x^{m}-1\right) \tag{18}
\end{equation*}
$$

Rearranging the terms in equation (18), we get

$$
\begin{equation*}
\left(x^{m}-1\right) \frac{\left(b, l, g_{1}\right)^{*}}{b^{*}}\left[\frac{l^{*}}{\left(b, l, g_{1}\right)^{*}} x^{m-1-\operatorname{deg}(l)} \beta+\frac{a^{*}}{\left(a, g_{2}\right)^{*}} x^{m-1-\operatorname{deg}(a)}\right]=0\left(\bmod x^{m}-1\right) \tag{19}
\end{equation*}
$$

With similar arguments as in Theorem 12, we get

$$
\begin{equation*}
\beta=\left(\frac{l^{*}}{\left(b, l, g_{1}\right)^{*}}\right)^{-1} \frac{a^{*}}{\left(a, g_{2}\right)^{*}} x^{m+\operatorname{deg}(l)-\operatorname{deg}(a)}\left(\bmod \frac{\left(b, g_{1}\right)^{*}}{\left(b, l, g_{1}\right)^{*}}\right) \tag{20}
\end{equation*}
$$

Hence the result.
Summarising the previous results we have the following theorem.
Theorem 15. Let $\mathrm{C}=\left\langle(b|0| 0),(l|a| 0),\left(g_{1}\left|g_{2}\right| g_{3}\right)\right\rangle$ be a \mathbb{Z}_{2}-triple cyclic code of block length (r, s, t) and $\mathrm{C}^{\perp}=\left\langle(\hat{b}|0| 0),(\hat{l}|\hat{a}| 0),\left(\hat{g}_{1}\left|\hat{g}_{2}\right| \hat{g}_{3}\right)\right\rangle$ be the dual code of C . Let $\rho_{1}=\frac{l^{*}}{\left(b, l, g_{1}\right)^{*}}$ and $\rho_{2}=\frac{g_{2}^{*}}{\left(a, g_{2}\right)^{*}}$. Then
(i) $\hat{b}=\frac{x^{r}-1}{\left(b, l, g_{1}\right)^{*}}$;
(ii) $\hat{g}_{3}=\frac{\left(x^{t}-1\right)\left(a, g_{2}\right)^{*}}{a^{*} g_{3}^{*}}$;
(iii) $\hat{a}=\frac{\left(x^{s}-1\right)\left(b, l, g_{1}\right)^{*}}{\left(a, g_{2}\right)^{*} b^{*}}$;
(iv) $\hat{g}_{1}=\lambda_{1} \frac{\left(x^{r}-1\right)}{b^{*}}, \hat{g}_{2}=\lambda_{2} \frac{\left(x^{s}-1\right)\left(b, l, g_{1}\right)^{*}}{a^{*} b^{*}}$, where

$$
\lambda_{1}=\left(\rho_{1}\right)^{-1}\left(\rho_{2}\right)^{-1} \frac{b^{*}}{\left(b, l, g_{1}\right)^{*}} x^{2 m+\operatorname{deg}(l)-\operatorname{deg}(a)+\operatorname{deg}\left(g_{2}\right)-\operatorname{deg}\left(g_{3}\right)}\left(\bmod \left(\frac{\left(b, g_{1}^{*}\right)}{\left(b, l, g_{1}\right)^{*}}, \frac{a^{*}}{\left(a, g_{2}\right)^{*}}\right)\right)
$$

and

$$
\lambda_{2}=\left(\frac{g_{2}^{*}}{\left(a, g_{2}\right)^{*}}\right)^{-1} \frac{b^{*}}{\left(b, l, g_{1}\right)^{*}} x^{2 m+\operatorname{deg}\left(g_{2}\right)-\operatorname{deg}\left(g_{3}\right)} \quad\left(\bmod \frac{a^{*}}{\left(a, g_{2}\right)^{*}}\right)
$$

(v) $\hat{l} b^{*}=\beta\left(x^{r}-1\right)$, where $\beta=\left(\frac{l^{*}}{\left(b, l, g_{1}\right)^{*}}\right)^{-1} \frac{a^{*}}{\left(a, g_{2}\right)^{*}} x^{m+\operatorname{deg}(l)-\operatorname{deg}(a)}\left(\bmod \frac{\left(b, g_{1}\right)^{*}}{\left(b, l, g_{1}\right)^{*}}\right)$.

Example 2. Let $r=10, s=12$ and $t=15$. Let $\mathrm{C}=\left\langle(b|0| 0),(l|a| 0),\left(g_{1}\left|g_{2}\right| g_{3}\right)\right\rangle$, where $b=x^{6}+x^{5}+x+1, l=x^{5}+1, a=x^{6}+1, g_{1}=x^{5}+1, g_{2}=x^{5}+x^{4}+x^{2}+x$ and $g_{3}=x^{12}+x^{9}+x^{6}+x^{5}+x^{4}+x^{2}+x+1$. C satisfies all the conditions given in Lemma 1 and Lemma 2. Therefore, C is a \mathbb{Z}_{2}-triple cyclic code of block length $(10,12,15)$. Also, $S=S_{1} \cup S_{2} \cup S_{3}$ forms a generating set for C , where $S_{1}=\cup_{i=0}^{3} x^{i}\left(x^{6}+x^{5}+x+1|0| 0\right)$, $S_{2}=\cup_{i=0}^{5} x^{i}\left(x^{5}+1\left|x^{6}+1\right| 0\right)$ and $S_{3}=\cup_{i=0}^{2} x^{i}\left(x^{5}+1\left|x^{5}+x^{4}+x^{2}+x\right| x^{12}+x^{9}+\right.$ $\left.x^{6}+x^{5}+x^{4}+x^{2}+x+1\right)$. The cardinality of C is 2^{13}. A generator matrix of C is

$$
G=\left(\begin{array}{llll}
1100011000 & 000000000000 & 000000000000000 \\
0110001100 & 000000000000 & 000000000000000 \\
0011000110 & 000000000000 & 000000000000000 \\
0001100011 & 000000000000 & 000000000000000 \\
1000010000 & 100000100000 & 000000000000000 \\
0100001000 & 010000010000 & 000000000000000 \\
0010000100 & 001000001000 & 000000000000000 \\
0001000010 & 000100000100 & 000000000000000 \\
0000100001 & 000010000010 & 000000000000000 \\
1000010000 & 000001000001 & 000000000000000 \\
1000010000 & 011011000000 & 111011100100100 \\
0100001000 & 001101100000 & 011101110010010 \\
0010000100 & 000110110000 & 001110111001001
\end{array}\right)
$$

Further, the minimum Hamming distance of C is 4 and therefore, C is a $[37,13,4]$ binary linear Code. From Theorem 15, we have the dual code of C as $\mathrm{C}^{\perp}=\langle(\hat{b}|0| 0),(\hat{l}|\hat{a}|$ $\left.0),\left(\hat{g}_{1}\left|\hat{g}_{2}\right| \hat{g}_{3}\right)\right\rangle$, where $\hat{b}=(x+1)\left(x^{4}+x^{3}+x^{2}+x+1\right), \hat{a}=(x+1)\left(x^{2}+x+1\right)^{3}$, $\hat{g}_{3}=x+1, \hat{g}_{1}=\hat{l}=0$ and $\hat{g}_{2}=(x+1)\left(x^{2}+x+1\right)^{2}$.

Let $t=0$. Then by taking $g_{1}=g_{2}=g_{3}=0$, we have $\left(b, l, g_{1}\right)=(b, l)$ and $\left(b, g_{1}\right)=b$ and hence from Theorem (15), we see that \mathbb{Z}_{2}-double cyclic codes are special case of the family of codes that we are considering when $t=0$. Thus we have the following result.

Corollary 1. Let $\mathrm{C}=\langle(b|0| 0),(l|a| 0)\rangle$ be a \mathbb{Z}_{2}-double cyclic code of block length (r, s) and $\mathrm{C}^{\perp}=\langle(\hat{b}|0| 0),(\hat{l}|\hat{a}| 0)\rangle$ be the dual code of C . Then
(i) $\hat{b}=\frac{x^{r}-1}{(b, l)^{*}}$;
(ii) $\hat{a} a^{*} b^{*}=\left(x^{s}-1\right)(b, l)^{*}$;
(iii) $\hat{l} b^{*}=\beta\left(x^{r}-1\right)$, where $\beta=\left(\frac{l^{*}}{(b, l)^{*}}\right)^{-1} x^{m-\operatorname{deg}(a)+\operatorname{deg}(l)} \quad\left(\bmod \quad\left(\frac{b^{*}}{(b, l)^{*}}\right)\right)$.

Let $\mathrm{C}=\left\langle(b|0| 0),(l|a| 0),\left(g_{1}\left|g_{2}\right| g_{3}\right)\right\rangle$ be a \mathbb{Z}_{2}-triple cyclic code of block length (r, s, t) as in Theorem (3). If $b|l, b| g_{1}$ and $a \mid g_{2}$, then $\mathrm{C}=\left\langle(b|0| 0),(0|a| 0),\left(0|0| g_{3}\right)\right\rangle$. We note that $\mathrm{C}_{r}=\langle b\rangle, \mathrm{C}_{s}=\langle a\rangle$ and $\mathrm{C}_{t}=\left\langle g_{3}\right\rangle$ and $\mathrm{C}=\mathrm{C}_{r} \times \mathrm{C}_{s} \times \mathrm{C}_{t}$. Hence C is
separable. A generator matrix of C is permutation equivalent to the matrix

$$
\mathbf{G}=\left(\begin{array}{cc|cc|cc}
I_{r-\operatorname{deg}(b)} & A & 0 & 0 & 0 & 0 \\
0 & 0 & I_{s-\operatorname{deg}(a)} & B & 0 & 0 \\
0 & 0 & 0 & 0 & C & I_{t-\operatorname{deg}\left(g_{3}\right)}
\end{array}\right)
$$

The following theorem shows that the dual of a separable \mathbb{Z}_{2}-triple cyclic code is also separable.

Theorem 16. Let $\mathrm{C}=\left\langle(b|0| 0),(0|a| 0),\left(0|0| g_{3}\right)\right\rangle$ be a separable \mathbb{Z}_{2}-triple cyclic code of block length (r, s, t). Then
(i) C^{\perp} is also a separable \mathbb{Z}_{2}-triple cyclic code of block length (r, s, t),
(ii) $\mathrm{C}^{\perp}=\left\langle\left(\frac{x^{r}-1}{b}|0| 0\right),\left(0\left|\frac{x^{s}-1}{a}\right| 0\right),\left(0|0| \frac{x^{t}-1}{g_{3}}\right)\right\rangle$, and
(iii) $d_{\text {min }}(\mathrm{C})=\min \left\{d_{\min }\left(\mathrm{C}_{r}\right), d_{\min }\left(\mathrm{C}_{s}\right), d_{\min }\left(\mathrm{C}_{t}\right)\right\}$.

Proof. As $l=g_{1}=g_{2}=0$, the proof follows from Theorem 15.

Remark 2. If C is a non-separable \mathbb{Z}_{2}-triple cyclic code of block length (r, s, t), then $d_{\text {min }}(\mathrm{C}) \geq \min \left\{d_{\text {min }}\left(\mathrm{C}_{r}\right), d_{\text {min }}\left(\mathrm{C}_{s}\right), d_{\text {min }}\left(\mathrm{C}_{t}\right)\right\}$.

Example 3. Let $r=6, s=4$ and $t=5$. Let $\mathrm{C}=\left\langle(b|0| 0),(0|a| 0),\left(0|0| g_{3}\right)\right\rangle$, where $b=(x+1)\left(x^{2}+x+1\right)^{2}, a=(x+1)^{3}$ and $g_{3}=x^{4}+x^{3}+x^{2}+x+1$. Then C is $a \mathbb{Z}_{2}$-triple cyclic code of block length $(6,4,5)$. The set $S=\left\{\left(x^{5}+x^{4}+x^{3}+x^{2}+x+1 \mid\right.\right.$ $\left.0 \mid 0),\left(0\left|x^{3}+x^{2}+x+1\right| 0\right),\left(0|0| x^{4}+x^{3}+x^{2}+x+1\right)\right\}$ forms a generating set for C . The cardinality of C is 2^{3}. Further, the minimum Hamming distance of C is 4 and therefore C is a $[15,3,4]$ binary linear code with the Hamming weight distribution $[<0,1>,<4,1>,<5,1>,<6,1>,<9,1>,<10,1>,<11,1>,<15,1>]$. The dual of C is also a separable \mathbb{Z}_{2}-triple cyclic code of block length $(6,4,5)$ such that $\mathrm{C}^{\perp}=\langle(x+1|0| 0),(0|x+1| 0),(0|0| x+1)\rangle$ with minimum Hamming distance 2 and therefore it is a $[15,12,2]$ binary code.

4. Conclusion

In this paper we have considered \mathbb{Z}_{2}-triple cyclic codes of block length (r, s, t). We have studied the structure these codes and determined the form of their generators of these codes. We have determined the size of \mathbb{Z}_{2}-triple cyclic codes by giving a minimal spanning set. We also studied the relationship between the generators of \mathbb{Z}_{2}-triple cyclic codes and their duals and determined the generators for dual of a \mathbb{Z}_{2}-triple cyclic code.

References

[1] T. Abualrub, I. Siap and N. Aydin. $\mathbb{Z}_{2} \mathbb{Z}_{4}$-Additive cyclic codes. IEEE Trans. Inform. Theory, 60(3) : 1508-1514, 2014.
[2] I. Aydogdu and I. Siap. $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s-}}$ additive codes. Linear Multilinear Algebra, 63(10) : $2089-2102,2014$.
[3] I. Aydogdu, T. Abualrub and I. Siap. On $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-additive codes. Int. J. of Comput. Math., 92(9) : 1806-1814, 2013.
[4] J. Borges, C. Fernàndez-Còrdoba and R. Ten-Valls. \mathbb{Z}_{2}-double cyclic codes, arXiv : $1410.5604 v 1$.
[5] J. Borges, C. Fernàndez-Còrdoba, J. Pujol, J. Rifà and M. Villanueva. $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes: generator matrices and duality, Des. Codes Crypt., 54(2) : 167 - 179, 2009.
[6] J. Borges, C. Fernàndez-Còrdoba and R. Ten-Valls. $\mathbb{Z}_{2} \mathbb{Z}_{4}$-Additive cyclic codes, generator polynomials and dual codes. IEEE Trans. Inform. Theory, 62(11) : 6348 6354, 2016.
[7] M. Bhaintwal and S. Wasan. On quasi-cyclic codes over \mathbb{Z}_{q}. Appl. Algebra Engrg. Comm. Comput., 20(5) : 459-480, 2009.
[8] Y. Cao. Structural properties and enumeration of 1-generator generalized quasi-cyclic codes. Des. Codes Cryptogr., 60(1) : 67-79, 2011.
[9] Y. Cao. Generalized quasi-cyclic codes over Galois rings: structural properties and enumeration. Appl. Algebra Eng. Commun. Comput., 22(3) : 219 - 233, 2011.
[10] P. Delsarte and V. I. Levenshtein. Association schemes and coding theory. IEEE Trans. Inform. Theory, 44(6) : $2477-2504,1998$.
[11] H. Q. Dinh and S. R. Loṕez-Permouth. Cyclic and negacyclic codes over finite chain rings. IEEE Trans. Inform. Theory., 50(8) : 1728-1743, 2004.
[12] M. Esmaeili and S. Yari. Generalized quasi-cyclic codes: structural properties and code construction. Appl. Algebra Eng. Commun. Comput., 20(2) : 159 - 173, 2009.
[13] J. Gao, F-W. Fu, L. Shen and W. Ren. Some results on generalized quasi-cyclic codes over $\mathbb{F}_{q}+u \mathbb{F}_{q}$. IEICE Trans. Fund., 97(4) : 1005-1011, 2014.
[14] J. Gao, M. Shi, T. Wu and F-W. Fu. On double cyclic codes over \mathbb{Z}_{4}. Finite Fields Appl., 39 : 233-250 2016.
[15] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error Correcting Codes. North Holland, Amsterdam, 1977.
[16] I. Siap and N. Kulhan. The structure of generalized quasi-cyclic codes. Appl. Math. E-Notes, 5: $24-30,2005$.
[17] T. Yao, M. Shi and P. Solé. Double cyclic codes over $\mathbb{F}_{q}+u \mathbb{F}_{q}+u^{2} \mathbb{F}_{q}$. Int. J. Inf. Coding Theory, 3(2) : 145-157, 2015.

