Analytical Approximate Solution of Fractional Wave Equation by the Optimal Homotopy Analysis Method
Abstract
We study the fractional wave equation with spatial Riesz fractional derivative. The continuation of the solution of this fractional equation to the solution of the corresponding integer order equation is proved. The series solution is obtained based on properties of Riesz fractional derivative operator and utilizing the optimal homotopy analysis method (OHAM). Numerical simulations are presented to validate the method and to show the effect of changing the fractional derivative parameter on the solution behavior.Downloads
Published
2017-04-20
Issue
Section
Partial Differential Equations and Dynamical Systems
License
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.
How to Cite
Analytical Approximate Solution of Fractional Wave Equation by the Optimal Homotopy Analysis Method. (2017). European Journal of Pure and Applied Mathematics, 10(3), 586-601. https://www.ejpam.com/index.php/ejpam/article/view/2672