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Abstract. Given a multivariate dataset composed of data from different known sources or processes,

how can we create a rule to separate the data, and classify any future data? Kernel discriminant analysis

is one of many supervised learning techniques that handle this problem. Recently, in this and other

knowledge discovery problems, kernel methods have gained popularity. This is somewhat ironic as

another common theme is variable reduction, and kernel methods actually inflate dimensionality. Due

to the substantial benefits of processing "kernelized" data, this is excusable - kernel methods frequently

outperform traditional classification techniques for real data when the classes are not easily separable.

In performing kernel discriminant analysis, there are two main issues that we address in this article.

The first is that, in the literature, the question of which kernel function to use is often subjectively

selected a prior, or determined by cross-validation with the sole objective of maximizing classification

performance. Secondly, after obtaining discriminant functions or support vectors to classify a dataset,

how do we know which of our variables are most responsible for, and important to, the classification?

In this research, we develop a new regularized algorithm that simultaneously selects the kernel function

and subset of original variables. Our algorithm, a hybrid of cross-validation and the genetic algorithm,

does this by optimizing a function that rewards correct classification while penalizing model complexity

and misclassification.

We report results on three real datasets, including data from a medical imaging study. For the latter,

we obtained an impressively low misclassification rate of 0.3%, while reducing the number of features

from p = 20 to p∗ = 6.
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1. Introduction

Logistic regression is a well-known form of nonlinear regression in which responses can

take on values of 0 or 1 (or any binary format). From a different perspective, we can see

the binary responses as class labels for data from two groups. This leads us to the concept

of discriminant analysis, which is closely related to logistic regression. In general, the goal of

discriminant analysis is to determine data groupings that minimize the variability within the

groups and maximize the variability between the groups. Differently put, given known class

labels for the data, the goal is to minimize the probability of misclassification - it is a method

of supervised learning. When we perform kernel discriminant analysis (KDA), this does not

change. To use kernel discriminant analysis, one merely has to apply a kernel function to

the data, then perform the usual analysis. This does, however, present two issues which we

address in this research.

• There are many possible kernel functions that can be applied to perform the nonlinear

map into higher-dimensional feature space. The choice of the kernel function can have

a substantial impact on the analytical results. For example, use of a linear kernel on

data that is inherently nonlinear will likely inflate the classification error. For univariate

or bivariate data, it may be easy to determine nonlinearity, but what of ten variables?

In most relevant research with kernel methods, the kernel function is either selected a

priori or using cross-validation to minimize the testing classification error. How do we

choose the "best" kernel function consistent with the principal of Occam’s Razor?

• For any classification method, there is often value in knowing which variables contribute

most to the separation of the classes. Of course, this is generically true about all statistical

data mining / machine learning techniques. However, with kernel methods, after we

apply the kernel function, it is impossible to perform any meaningful feature selection

analysis. Perhaps we are making ten hopefully predictive, and costly, measurements on

a process but we can get very low classification errors only using three of them? Why

take unnecessary measurements for a model that is overly complex when we can have a

model that is both accurate and parsimonious? How do we determine which variables

are contributing the most to our discriminant functions in the kernel space?

Here we propose a hybrid optimization algorithm to simultaneously perform kernel selection

and feature selection. Our algorithm uses a combination of cross-validation with the genetic

algorithm. The optimization objective is a special form of Bozdogan’s ICOM P [12] devel-

oped for sparse classification methods such as KDA. Following this introduction, we provide

background details of regularized KDA with support vector machines. Section 3 describes our

hybrid algorithm, and numerical results on real datasets are shown in Section 4. We finish

with some final thoughts in Section 5.
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2. Regularized Kernel Discriminant Analysis with Support Vectors

2.1. Kernels

Reproducing Kernel Hilbert Spaces were initially developed by the mathematician Aron-

szajn [2]. Assuming they meet Mercer’s conditions, kernel functions correspond to a nonlinear

map into a higher dimensional feature space F and then taking the dot product in this space.

As an example, consider the map φ : R2→ R3, defined as φ
��
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This last equality is called the quadratic kernel (with no intercept), which we may denote as

K
�

x i , x j

�

; by computing the quadratic kernel function, we avoid performing the map. This is

called the kernel trick. For a dataset x with n rows and p variables, the data is translated into a

square matrix of size n in the feature space, in which every possible pair of points is evaluated.

Note that this translation is neither one-to-one, nor onto - application of a kernel function is

an non-invertible process. Once the data has been classified in the feature space, we have no

way to go back to the original data space and judge the value of individual variables.

While kernel functions execute a non-intuitive process of dimensional inflation, the fre-

quent superior performance of analysis with kernels is well documented in a variety of meth-

ods (KDA, KPCA, KLR, . . . ). At least part of this success is due to the way functions of distances

between all pairs of observations end up as observations in the feature space. This has the ef-

fect of extracting much more information from the data. Related data tends to become more

closely compacted, and unrelated data tends to become more separated. Visualization of this

fact can be seen in Figure 1. In the right pane, note how the confounding between the Versi-

color and Virginica observations is lessened, and how the Setosa group has pulled away from

the others.
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Figure 1: Demonstrating Separation in Kernel Space; x is Setosa, o is Versicolor, and ∗ is

Virginica.

The set of kernel functions which we use in this research is composed of the nine most com-

mon, as listed in Table 1. For each kernel, we indicate the parameters we used. It is generally

Table 1: Kernel Functions Available.

Function Form Parameters Binary

Linear Polynomial
�

X X ′ + b
�a

a = 1, b = 0 0001

Quadratic Polynomial
�

X X ′ + b
�a

a = 2, b = 1 0010

Cubic Polynomial
�

X X ′ + b
�a

a = 3, b = 1 0011

Exponential exp
�

− 1
2a2

Æ

‖X − X‖2
�

a = 1 0100

Gaussian exp
�

− � 1
ab ‖X − X‖2�c
�

a = 2, b = c = 1 0101

Homogenous Poly. (homo)
�

1
a2 X X ′
�b

a = 1, b = 2 0110

Laplace exp
�

−
q

1
a2 ‖X − X‖2
�

a = 1 0111

Cauchy
�

1+ 1
a ‖X − X‖2�−1

a = 1 1000

Inverse Multi-Quadric
�‖X − X‖2 + a2
�− 1

2 a = 1 1001

difficult to know a priori which kernel is best. Yet, this is one decision that can have a large

impact on the performance of KDA. Some researchers simply select a kernel function a priori.

The more usual approach is to simply apply KDA with a variety of kernel functions and select

whichever gives best results on the sample data. Cross-validation sampling is used to limit

the risk of fitting to random noise in specific subsets. However, this approach only considers

classification performance, and ignores model complexity. Optimal selection of the parameters

is another important consideration in KDA. Liberati et al. [12] proposed a data-based tech-

nique to simultaneously optimize selection and parametrization of the kernel function. In this

research, we have opted not to attempt to optimize the parameters.
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2.2. Binary Discriminant Analysis

Our data x is composed of n realizations of p continuous measurements. Accompanying

X is a vector of class assignments y ∈ [1,2]. Having yi = 1 indicates that x i is an element of

the first group. After mapping the data into the feature space F, the goal is to find a direction

ψ=

n∑

i=1

αiφ
�

x i

�

=



α, x i

�

(1)

with weight vector α that maximizes the Fisher criterion

JF (α) =
α′Σ̂Bα

α′Σ̂Wα
. (2)

Σ̂B indicates the between-group covariance matrix, and Σ̂W is the within-group covariance ma-

trix, shown in (3) and (4), respectively.

Σ̂B =
�
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�′ �
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1
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�′ �
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�

(4)

xk is the mean of observations belonging to class k, and I y=k is an indicator function which

takes on the value 1 when the specific datapoint is in group k (0 otherwise). The binary kernel

discriminant function and classifier are:

f
�

x i

�

=



α, K
�

x i , x
��

+ b, and (5)

q
�

x i

�

=

¨

1 f
�
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2 f
�

x i

�

< 0
. (6)

where the vector α is obtained by solving (2), and b is the intercept of the separating hyper-

plane, which passes through the midpoint of the class centroids.

2.3. Binary Support Vectors

Generalizing this further, we can rewrite (5) as

f
�

x i

�

=



α∗, ks

�

x i

��

+ b∗,

where ks

�

x i

�

=
�

K
�

x i , s1

�

, K
�

x i , s2

�

, . . . , K
�

x i , sm

��

is the vector of the ith datapoint evaluated

at the m support vectors, which form a subset of the data. This is the support vector machine

(SVM). Thus, optimization of the weights and intercept becomes the quadratic programming

problem shown here.

(α∗, b∗) =min
α,b

�

1

2
‖α‖2 + C

n∑

i=1

ξd
i

�

, subject to
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α, x i

�

+ b ≥ 1− ξi , i ∈ I1,



α, x i

�

+ b ≤ −1+ ξi , i ∈ I2,

C > 0,ξi ≥ 0, i ∈ I1

⋃

I2

When d = 1, we say the SVM is L1 soft margin trained, otherwise, it’s L2 soft margin trained.

C is a regularization constant, and I1 and I2 are slack variables used to relax the inequalities

for non-separable data.

2.4. Multi-class SVM

For data composed of K > 2 classes indexed by k, we consider a set of discriminant func-

tions

fk

�

x i

�

=



αk, ks

�

x i

��

+ bk.

There are several ways to decompose the multi-class SVM, including One-Against All (OAA)

and One-Against-One (OAO) - see [11].

The OAA decomposition works by trading the single multi-class problem for K binary SVM

problems, where the binary state vector y ′
k

is

y ′
k
=

¨

1 for y = yk

2 for y 6= yk

.

For example, if we had K = 4 classes A, B, C, and D, OAA would solve four binary problems:

A vs BCD, B vs ACD, C vs ABD, D vs ABC

The multi-class classification rule used is then

q
�

x i

�

= max
k=1,2,...,K

fk

�

x i

�

. (7)

OAO, on the other hand, solves the multi-class problem by solving K ′ = K (K − 1)/2 binary

SVM problems, in which all pairs of classes are considered. The majority voting strategy shown

in (8) is used to select the final class assignments. The vector vote
�

x i

�

indicates the frequency

with which, from all K ′ binary SVM results, the ith datapoint was classified into each group.

vote
�

x i

�

=
�
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�

x i

�

, v2

�

x i

�

, . . . , vK ′
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x i
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vote
�
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Using the same groups A, B, C, and D, OAO solves the six binary SVMs

A vs B, A vs C, A vs D, B vs C, B vs D, C vs D
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2.5. Hybridized Covariance Estimation

In broad terms, KDA means applying the appropriate calculations in Sections 2.2 through

2.4 after application of the kernel trick. When performing KDA, it can be usually expected that

the within-group covariance matrix (4) won’t be nonsingular or positive definite. Singularity

of this kernel covariance matrix is a problem that has attracted many researchers, and many

methods have been proposed to make the matrix well-conditioned. In [12], Liberati et al.

introduced a hybridized covariance estimator Σ̂STA_CSE that joins the stabilization technique

of Thomaz [15] with the convex sum covariance estimator shrinkage technique of press [14]

and Chen [6]. There is an optional third step, which we apply to help regularize especially

sparse and / or singular matrices. After computing the hybrid stabilized kernel matrix, we

compute its singular values. Σ̂STA_CSE is then replaced with a diagonal matrix of some subset

of the largest singular values as a reduced rank approximation Σ̂∗STA_CSE . For the real datasets

analyzed in this research, we kept the top 25 when further regularization was necessary.

3. Cross-Validation Genetic Algorithm for Optimization

The Genetic Algorithm (GA) is a stochastic search algorithm that borrows concepts from

biological evolution [7–10]; it has been used successfully in a wide range of statistical mod-

eling applications. The solution space for a problem is explored via an ensemble of strings

which represent possible solutions. In the parlance of the GA, these solution strings are called

chromosomes. Chromosomes are created by encoding solutions using a fixed, finite-length al-

phabet of symbols. Solutions for the GA are most typically coded as binary strings. Individual

chromosomes are allowed to compete with each other a la natural selection, to create better

solutions, with the goal to optimize some objective function. Operational details of the GA can

be found in the above-mentioned sources, or any number of others.

For the problem of selecting a subset of p variables, a chromosome is a p-length vector

such that each element represents the presence (1) or absence (0) of a specific variable. An

example chromosome may be [10011001]; in this case, predictors 1,4,5,8 are selected while

2,3,6,7 are not. Our algorithm uses the GA to simultaneously determine the best subset of

variables AND the best kernel function. We do this by coding the different kernel functions

into a binary string, and appending this onto the feature selection string.

We have 9 kernels to choose from; 9 in binary representation requires 4 bits. Hence, the

kernels are represented by binary strings from [0000] (linear polynomial) to [1001] (inverse

multi-quadric). The allowed kernel binary codes are shown along with the kernel functions in

Table 1. An obvious issue is that four binary digits can be used to represent all the counting

numbers up to fifteen, and yet we only have nine kernels. Hence, the GA’s crossover and

mutation operators can both generate illegal strings representing kernels that we don’t have.

When this occurs, we apply modular arithmetic to scale back the offending binary string.

For example, say the kernel portion of a chromosome is [1100], encoding the nonexistent

twelfth kernel. Applying modular arithmetic, we have mod(12,9) = 3 = [0011]. Thus, we

replace a string that is too large with its remainder when divided by [1001]. This repair

mechanism will impart a slight bias to the six simplest kernel functions, but does not seem to
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be have any systemic effect.

Hence, a chromosome in our algorithm is a p+4-length binary string representing a specific

subset of features and kernel function. The genetic algorithm is allowed to progress for twenty

generations, operating on an ensemble of twenty of these solutions, with the goal to minimize

the objective function ICOM PPERF .

3.1. Information Complexity Criteria for Supervised Classification

A logical next step from information theoretic model selection criteria such as Akaike’s AIC

and Schwartz’s SBC, Bozdogan introduced and developed his information complexity criteria

ICOM P in [4, 5, (and others)]. ICOM P typically penalizes models based on the maximal

entropic complexity C1 of the model covariance matrix [3], as opposed to functions of the

number parameters estimated. This penalty allows ICOM P, shown in (9), to simultaneously

penalize a model based on lack-of-fit, lack-of-parsimony and profusion-of-complexity.

ICOM P(F̂−1) = −2 log L(θ̂ | X )
lack-of-fit

+ 2C1(F̂−1)
complex i t y

(9)

Several versions of ICOM P have been developed for various model selection problems. For

the problem of kernel-based supervised learning, Liberati et al. [12] introduced ICOM PPERF .

This form of ICOM P is conceptually based on the regression-basis of discriminant analysis:

ICOM PPERF = n log 2π+ n log σ̂2 + n
︸ ︷︷ ︸

lack−o f − f i t

+ 2C1F

�

Σ̂∗STA_CSE

�

︸ ︷︷ ︸

complex i t y

, (10)

where σ̂2 = 1
n

∑n

i=1

�

yi − ŷi

�2
. The yi are the actual known group labels, and the ŷi are

the group labels predicted with KDA. The kernel methods used in KDA lead to orthogonal

and highly sparse matrices, which can cause problems for the C1 measure of complexity. Ac-

cordingly, ICOM PPERF uses a modified measure of complexity based on the Frobenius norm

characterization of the entropic complexity CF , shown in (11) as a function of the eigenvalues

of the matrix.

C1F (·) =
1

4λ
2

p∑

i=1

�

λi −λ
�2

(11)

By minimizing ICOM PPERF , our algorithm can simultaneously minimize classification error,

maximize fit, and minimize model complexity.

3.2. Cross-Validation within the GA: CVGA

Cross-validation (CV) partitioning of datasets is commonly used in machine learning to

assess the predictive power of models. The model is estimated based on a training set of the

data, then the model is used to classify a testing set. Classification rates are reported from

the testing set. Observations are randomly grouped into training and testing sets based on a

specified percentage (in this research, we use 20% for training, with the remaining 80% for

testing).
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To avoid bias due to the randomized partitioning, we could run the GA many times (called

replications), each time with a new CV sample, but it would be very time consuming to do

this on top of the GA. At the end, we’d need to combine the results from all the replications

to determine the optimal model. Instead, we propose a hybrid algorithm that combines the

GA with cross-validation, called CVGA. CVGA adds an extra layer of randomness to the GA in

that every time the fitness of a chromosome is evaluated, it is based on a new cross-validation

sample. Instead of nesting the GA within CV, CV is nested within the GA. This allows us to score

solutions during optimization with no concern that our partitioning into training / testing for

the GA was somehow not representative. However, the extra randomness within the CVGA

does present a challenge.

Suppose in one iteration of the CVGA, we find the best solution to use variables 1 and 2

and the Gaussian kernel, with a score of −67. In a later generation, the same solution could

result in a score of −23, and not be the best for that iteration. This variability is obviously

due to the fact that the fitness of each chromosome is evaluated on different data. We have

implemented a two-stage process to smooth out this variation.

First, in summarizing the results from the GA, we store the median ICOM PPERF and testing

/ training classification error rates for every unique solution (since good solutions will tend to

be occur multiple times). The median is used instead of the average to ensure that the optimal

solution selected at the end of the process is robust against cross-validations with outlying

performances. Secondly, we actually run the GA 100 times, for a maximum of 100 × 20 ×
20= 40,000 unique solutions evaluated. The median ICOM PPERF for each solution evaluated

is then averaged over all 100 replications, and we compute the 95% empirical confidence

intervals for the misclassification rates.

In summary, computing the fitness for each chromosome follows these steps:

(i) randomly partition the data into training and testing sets, keeping only the features

selected by the chromosome

(ii) perform KDA on the training set, measuring the classification error, and the complexity

of the reduced rank hybrid stabilized kernel matrix; this is for the complexity term of

ICOM PPERF in (10)

(iii) use the KDA model to classify the data in the testing set, measuring the classification

error, and the negative maximized likelihood; this is for the lack-of-fit term in (10)

(iv) join the two parts of ICOM PPERF together

4. Numerical Results

4.1. X-ray Burst Event Data

Our first example is an easy 2-dimensional dataset regarding X-ray bursts as gathered by

the PHEBUS instrument on the Granat Satellite. This data was gathered with the purpose of

predicting the effects of x-ray bursts on weather. There are two classes of data: the first class
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with n1 = 132 observations, and the second with the remaining n2 = 42. Table 2 displays the

four unique solutions chosen across by the CVGA.

Table 2: Models Selected for the X-ray Burst Data.

Subset Kernel ICOM PPERF Training Err. CI Testing Err. CI GA. Freq.

{1,2} Laplace -77.78 [0.00,0.00] [0.72,0.72] 86

{1,2} Exponential -71.81 [0.00,0.00] [0.57,0.89] 10

{1,2} Inv. Multi-Quadric -55.2 [0.00,0.00] [0.33,1.29] 1

{1} Laplace 9.12 [0.00,2.62] [0.45,2.33] 3

Not only was the best solution selected by 86% of the replications, more than half of the

total generations selected it. Using the Laplace kernel function on both variables of this data

is a very clear winner with a 0.72% probability of misclassification, not that any of these four

models had unreasonable error rates. Figure 2 has the scatter plots plus the contours for the

top two solutions. Note the clear separation boundary between each group - hence the low

misclassification rates are not unexpected. Both models used a small number of support vectors

- 14 and 11, respectively. Less than 10% of the observations was needed, which shows the

efficiency of support vector classification. Clearly the full GA with cross-validation model was

overkill for this dataset, as complete enumeration would only need to evaluate 27 solutions. It

has been included here purely for the visualization the support-vector-based separation areas,

which will not be possible for the other examples.

(a) With Laplace Kernel (b) With Exponential Kernel

Figure 2: Demonstrating Separation with the Two Best KDA Models. The classes are marked

by "x" and "+", and "o" indicates the support vectors.
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4.2. Wine Composition Data

Our next example is the wine recognition dataset of M. Fiorina, et al., used in [1]. These

data are the results of a chemical analysis of n = 178 wines grown in the same region in

Italy but derived from K = 3 different cultivars (n1 = 59, n2 = 71, n3 = 48). The analysis

determined the quantities of p = 13 chemical constituents found in each of the three types of

wines. The variables are shown in Table 3.

Table 3: Wine Data Variables.

Variable Variable

x1 Alcohol x8 Non-flavonoid Phenols

x2 Malic Acid x9 Proanthocyanins

x3 Ash x10 Color Intensity

x4 Alkalinity of Ash x11 Hue

x5 Magnesium x12 OD280/OD315 of Diluted Wines

x6 Total Phenols x13 Proline

x7 Total Flavonoids

With this dataset, there are 9×�213 − 1
�

= 73,719 possible nontrivial solutions; the CVGA

with 100 replications of the GA explored nearly half of the solution space. None of the gener-

ations selected the saturated model with all features as the best; the most frequently selected

kernel functions were the Quadratic (25%) and Exponential (18%). In Table 4, we report the

best 6 models with their classification results. The top 6, as opposed to a round number, were

chosen, since they had identically perfect training errors.

Table 4: Top 6 Models Selected for Wine Data.

Subset Kernel ICOM PPERF Training Error Testing Error

{1− 4,7,8,11− 13} Quadratic -229.61 0.00% 0.70%

{1,3,7,11,13} Cubic -222.45 0.00% 0.70%

{1,3,6− 8,11− 13} Quadratic -145.87 0.00% 1.41%

{1,3,4,7,8,9,11,12} Quadratic -127.64 0.00% 1.41%

{1− 3,7,10,13} Quadratic -125.01 0.00% 1.41%

{1,4,6,9− 13} Quadratic -123.36 0.00% 1.41%

All the subset models shown here exhibit substantial overlap - almost all include at least

the first, third, and thirteenth features. In considering the classification errors, there’s no

difference between the best two models. Additionally, since the ICOM PPERF scores are so

close, it’s likely, due to the random variation from cross validation, that the scores are not

significantly different. However, the first model uses nine variables, while the second, which

achieves the same low error, uses only five. Hence, the principle of parsimony drives us to

prefer the subset {1,3,7,11,13}.
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In Figure 3, we show 3-way scatterplots for two of the possible ten combinations of these

five variables. The plots selected were fairly representative of all 10 - there were no 3-way

plots with clear separation of all classes in the original data space. This suggests that the

kernel methods boosted classification performance as we expect.

x
1

x
3

x 11

(a) Features 1× 3× 11

x
3

x
7

x 13

(b) Features 3× 7× 13

Figure 3: Trivariate Grouped Scatterplots for the Best Wine Subset.

4.3. Aorta Nuclear Resonance Image Data

Our final example is by application to medical imaging data from a study of heart tissue.

Hardening of the arteries is a leading cause of death and debility in the industrial world. In

the U.S. alone 13 million Americans suffer from heart attacks, and 90,000 people die from

heart disease annually. Nuclear Magnetic Resonance (NMR) imaging has been used to aid

clinical identification of fatty tissues in the arteries to aid in early detection of heart attacks.

The aorta data analyzed here was collected by Pearlman [13] at the Medical School of the

University of Virginia. There are observations from n = 418 patients on 16 different image

acquisition variables. Including direction and orientation variables, we have p = 20 variables.

The first n1 = 194 patients exhibited early atheroma, and the remaining n2 = 224 patients

were clinically deemed healthy.

For this dataset which exhibits marked non-normality, there are 9,437,175 possible sub-

set+kernel combinations. The CVGA ran 100 replications of the genetic algorithm, with each

running for twenty generations with a population size of twenty-five. With the elitism rule

turned on, our modeling process evaluated at most 69,000 unique solutions - 0.73% of the

solution space.

When sorted by the ICOM PPERF score, the top forty solutions used the Cauchy kernel,

had indistinguishable scores, with identical testing error rates of 0.30% and varying subsets

of features. None of the generations selected the fully saturated model. Among the indistin-

guishable (by score and testing error) solutions, the only kernels selected were the Cauchy

and Inverse Multi-Quadric kernels.
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Before running the full modeling procedure, we performed some exploratory data analy-

sis using the full set of features. In this analysis, we generated 100 training / testing cross-

validation samples, and fit each of the 9 kernels to all. With the full dataset, the 95% confidence

interval of the testing error rates with the Cauchy was abysmal: [43.80%,47.65%]. This once

again demonstrates the clear benefit of optimal feature selection.

Table 5 show five of the best models. While the Cauchy kernel appears superior for this

data, it seems there is no clear best set of features, since all of the top five performed nearly

perfectly. The top model with the Cauchy kernel has dramatically reduced the dimensionality

of the data, from p = 20 variables down to p∗ = 6. Figure 4 displays the poor separation in

the original data space for two sets of pairs of the original features.

Table 5: 5 of the Best Models Selected for Aorta Data.

Subset Kernel ICOM PPERF Training Error Testing Error

{5,7,8,11,12,15} Cauchy -530.05 0.00% 0.30%

{4,5,8,9,11,16,18} Cauchy -530.05 0.00% 0.30%

{4,7− 9,11− 13,15,18} Linear -440.22 0.00% 0.30%

{3,−5,7,9,12− 16,19} Cubic -145.87 0.00% 0.30%

{2− 7,9,10,12,14,15,17,19} Homogenous Poly -127.64 0.00% 0.30%

(a) Features 11× 15 (b) Features 12× 15

Figure 4: Bivariate Grouped Scatterplots for Aorta Data Showing Poor Separation.

5. Concluding Remarks

In summary, we have developed and applied a new hybrid stochastic algorithm, CVGA,

which combines the strengths of cross-validation and the genetic algorithm. Within the GA,

we’ve used a novel encoding strategy to create chromosomes which simultaneously encode for

feature selection and kernel selection. We’ve applied the CVGA to regularized support vector
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classification with kernel discriminant analysis. However, CVGA can be useful for any machine

learning problem that requires cross-validation and exploration of a large solution space. The

only requirement is the ability to encode solutions as GA chromosomes.

Recall that we set the kernel function parameters to certain values a priori, instead of

estimating them from the data. This research could be further extended to allow estimation of

the parameters. One approach might be to merge the CVGA with the data-adaptive technique

presented in [12].
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