States on Pseudo-BCI Algebras
DOI:
https://doi.org/10.29020/nybg.ejpam.v10i3.2779Keywords:
pseudo-BCI algebra, local bounded, state, state-morphism, MV-algebraAbstract
In this paper, we discuss the structure of pseudo-BCI algebras and get that any pseudo-BCI algebra is a union of it's branches. We introduce the notion of local bounded pseudo-BCI algebras and study some related properties. Moreover we define two operations $\wedge_1$, $\wedge_2$ in a local bounded pseudo-BCI algebra $A$ and two local operations $\vee_1$ and $\vee_2$ in $V(a)$ for $a\in M(A)$. We show that in a local $\wedge_1$($\wedge_2$)-commutative local bounded pseudo-BCI algebra $A$, $(V(A),\wedge_1,\vee_1)$($(V(A),\wedge_2,\vee_2)$) forms a lattice for all $a\in M(a)$. We define a Bosbach state on a local bounded pseudo-BCI algebra. Then we give two examples of local bounded pseudo-BCI algebras to show that there is local bounded pseudo-BCI algebras having a Bosbach state but there is some one having no Bosbach states. Moreover we discuss some basic properties about Bosbach states. If $s$ is a Bosbach state of a local bounded pseudo-BCI algebra $A$, we prove that $A/ker(s)$ is equivalent to an MV-algebra. We also introduce the notion of state-morphisms on local bounded pseudo-BCI algebras and discuss the relations between Bosbach states and state-morphisms. Finally we give some characterization of Bosbach states.
Downloads
Published
Issue
Section
License
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.