EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 10, No. 2, 2017, 312-322 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global

Contra δ gb-Continuous Functions in Topological Spaces

S.S.Benchalli¹, P.G.Patil^{2,*}, J.B.Toranagatti³, S.R.Vighneshi⁴

^{1,2} Department of Mathematics, Karnatak University, Dharwad, India

³ Department of Mathematics, Karnatak University's Karnatak College, Dharwad, India

⁴ Department of Mathematics, R.L.S College, Dharwad, India

Abstract. In this paper, the notion of δgb -open sets in topological spaces is applied to study a new class of functions called contra δgb - continuous functions as a new generalization of contra continuity and obtain their characterizations and properties.

2010 Mathematics Subject Classifications: 54C08, 54C10

Key Words and Phrases: δ gb-open, δ gb-closed, δ gb-connected, contra δ gb-continuous, δ gb-continuous.

1. Introduction and Preliminaries

In 1996, Dontchev[6] introduced contra continuous functions. Nasef [10] introduced and studied contra b-continuous functions. Al-Omari and Noorani[1] introduced the concept of contra gb-continuous functions. Recently Benchalli et.al.[5] introduced and studied δ gb-continuous functions. These concepts motivated us to define a new class of functions called contra δ gb-continuous functions.

Throughout this paper,(X, τ),(Y, σ) and (Z, η)(or simply X,Y and Z) represent topological spaces on which no separation axioms are assumed unless explicitly stated. For a subset A of a space X, the closure of A, interior of A and complement of A are denoted by cl(A), int(A) and A^c respectively.

Definition 1. A subset A of a topological space X is called a

- (i) pre-closed [9] if $cl(int(A)) \subseteq A$
- (ii) b-closed [2] if $cl(int(A)) \cap int(cl(A)) \subseteq A$
- (iii) regular-closed [14] if A = cl(int(A))
- (iv) δ -closed [17] if $A = cl_{\delta}(A)$ where $cl_{\delta}(A) = \{x \in X: int(cl(U)) \cap A \neq \phi, U \in \tau \text{ and } x \in U\}$

Email addresses: benchalliss@gmail.com(S.S.Benchalli),pgpatil01@gmail.com(P.G.Patil), jagadeeshbt2000@gmail.com(J.B.Toranagatti),vighneshisr@gmail.com (S.R.Vighneshi)

http://www.ejpam.com

© 2017 EJPAM All rights reserved.

^{*}Corresponding author.

(v) delta generalized b-closed (briefly, δgb -closed) [4] if $bcl(A) \subseteq G$ whenever $A \subseteq G$ and G is δ -open in X.

The complements of the above mentioned closed sets are their respective open sets. The b-closure of a subset A of X is the intersection of all b-closed sets containing A and is denoted by bcl(A).

Definition 2. A function $f: X \rightarrow Y$ from a topological space X into a topological space Y is called a,

- (i) contra continuous [6] if $f^{-1}(G)$ is closed in X for every open set G of Y.
- (ii) contra b-continuous [10] if $f^{-1}(G)$ is b-closed in X for every open set G of Y.
- (iii) contra rgb-continuous [13] if $f^{-1}(G)$ is rgb-closed in X for every open set G of Y.
- (iv) δgb -continuous [5] if $f^{-1}(G)$ is δgb -open in X for every open set G of Y.
- (v) completely-continuous [3] if $f^{-1}(G)$ is regular-open in X for every open set G of Y.
- (vi) perfectly-continuous [12] if $f^{-1}(G)$ is clopen in X for every open set G of Y.
- (vii) δ^* -continuous if $f^{-1}(G)$ is δ -open in X for every open set G of Y.
- (viii) contra gb-continuous [1] if $f^{-1}(G)$ is gb-closed in X for every open set G of Y.
 - (ix) pre-closed [7] if for every closed subset A of X f(A) is pre-closed in Y.

Definition 3. [5] A topological space X is said to be a,

- (i) $T_{\delta qb}$ -space if every δgb -closed subset of X is closed.
- (ii) $\delta g b T_{\frac{1}{2}}$ -space if every $\delta g b$ -closed subset of X is b-closed.

2. Contra δ gb-Continuous Functions.

Definition 4. A function $f:X \to Y$ is called contra δgb -continuous if $f^{-1}(V)$ is δgb -closed in X for each open set V of Y.

Clearly, $f:X \to Y$ is contra δgb -continuous if and only if $f^{-1}(G)$ is δgb -open in X for every closed set G in Y.

Theorem 1. If $f: X \to Y$ is contra gb-continuous then it is contra δgb -continuous. Proof: Follows from the fact that every gb-closed set is δgb -closed.

Theorem 2. If $f:X \rightarrow Y$ is contra b-continuous then it is contra δgb -continuous. Proof:Follows from the fact that every contra b-continuous function is contra gb-continuous and Theorem 1.

Remark 1. The converse of Theorem 1 and Theorem 2 need not be true as seen from the following example.

Example 1. Let $X=Y=\{a,b,c\}$. Let $\tau=\{X,\phi,\{a\}\}$ and $\sigma=\{X,\phi,\{a\},\{b\},\{a,b\}\}$ be topologies on X and Y respectively. Then the identity function $f:X \to Y$ is contra δgb -continuous but neither contra b-continuous and nor contra gb-continuous, since $\{a\}$ is open in Y but $f^{-1}(\{a\})=\{a\}$ is not gb-closed in X and hence not b-closed in X.

Theorem 3. If $f:X \rightarrow Y$ is contra δgb -continuous then it is contra rgb-continuous. Proof: Follows from the fact that every δgb -closed set is rgb-closed.

Remark 2. The converse of Theorem 3 need not be true as seen from the following example.

Example 2. Let $X=Y=\{a,b,c\}$. Let $\tau=\{X,\phi,\{a\},\{b\},\{a,b\}\}$ and $\sigma=\{X,\phi,\{a\}\}$ be topologies on X and Y respectively. Let $f:X \to Y$ be a function defined by f(a)=a=f(b) and f(c)=c. Then f is contra rgb-continuous but not contra δ gb-continuous, since $\{a\}$ is open in Y but $f^{-1}(\{a\})=\{a,b\}$ is not δ gb-closed in X.

Theorem 4. Let $f: X \rightarrow Y$ be a function.

- (i) If X is $T_{\delta qb}$ -space then f is contra δgb -continuous if and only if it is contra continuous.
- (ii) If X is $\delta gbT_{\frac{1}{2}}$ -space then f is contra δgb -continuous if and only if it is contra bcontinuous.

Proof:(i) Suppose X is $T_{\delta gb}$ -space and f is contra δgb -continuous. Let G be an open set in Y. Then by hypothesis $f^{-1}(G)$ is δgb -closed in X and hence $f^{-1}(G)$ is closed in X. Therefore f is contra continuous.

Converse is obvious.

(ii)Suppose X is $\delta gbT_{\frac{1}{2}}$ -space and f is contra δgb -continuous. Let G be an open set in Y then $f^{-1}(G)$ is δgb -closed in X and hence $f^{-1}(G)$ is b-closed in X. Therefore f is contra b-continuous.

Converse is follows from the Theorem 2.

Theorem 5. [5] Let $A \subseteq X$. Then $x \in \delta gbcl(A)$ if and only if $U \cap A \neq \Phi$, for every δgb -open set U containing x.

Lemma 1. [8] The following properties are hold for subsets A and B of a space X :

- (i) $x \in ker(A)$ if and only if $A \cap F = \phi$ for any closed set F of X containing x.
- (ii) $A \subseteq ker(A)$ and A = ker(A) if A is open in X.
- (iii) If $A \subseteq B$ then $ker(A) \subseteq ker(B)$.

Theorem 6. Suppose that $\delta GBC(X)$ is closed under arbitrary intersections. Then the following are equivalent for a function $f: X \rightarrow Y$:

(i) f is contra δgb -continuous

- (ii) For each $x \in X$ and each closed set B of Y containing f(x) there exists an δgb -open set A of X containing x such that $f(A) \subseteq B$
- (iii) For each $x \in X$ and each open set G of Y not containing f(x) there exists an δgb -closed set H in X not containing x such that $f^{-1}(G) \subseteq H$
- (iv) $f(\delta gbcl(A)) \subseteq ker(f(A))$ for every subset A of X
- (v) $\delta gbcl(f^{-1}(B)) \subseteq f^{-1}(ker(B))$ for every subset B of Y.

Proof:(*i*)→(*ii*) Let B be a closed set in Y containing f(x) then $x \in f^{-1}(B)$. By (*i*), $f^{-1}(B)$ is δgb-open set in X containing x. Let $A = f^{-1}(F)$ then $f(A) = f(f^{-1}(B)) \subseteq B$.

 $(ii) \rightarrow (i)$ Let F be a closed set in Y containing f(x) then $x \in f^{-1}(F)$. From (ii), there exists δgb -open set G_x in X containing x such that $f(G_x) \subset F$ which implies $G_x \subseteq f^{-1}(F)$. Thus $f^{-1}(F) = \cup \{ Ux: x \in f^{-1}(F) \}$ which is δgb -open. Hence $f^{-1}(F)$ is δgb -open set in X.

(ii) \rightarrow (iii) Let G be an open set in Y not containing f(x). Then Y-G is closed set in Y containing f(x). From (ii), there exists a δgb -open set F in X containing x such that $f(F) \subseteq Y$ -G. This implies $F \subseteq f^{-1}(Y-G) = X - f^{-1}(G)$. Hence $f^{-1}(G) \subseteq X$ -F. Set H = X-F, then H is δgb -closed set not containing x in X such that $f^{-1}(G) \subseteq H$.

(iii) \rightarrow (ii) Let F be a closed set in Y containing f(x). Then Y-F is an open set in Y not containing f(x). From (iii), there exists δgb -closed set K in X not containing x such that $f^{-1}(Y-F)\subseteq K$. This implies $X-K\subseteq f^{-1}(F)$ that is $f(X-K)\subseteq F$. Set U=X-K then U is δgb -open set containing x in X such that $f(U)\subseteq F$.

 $(i) \rightarrow (iv)$ Let A be any subset of X. Suppose $y \notin ker(f(A))$. Then by Lemma 1, there exists a closed set F in Y containing y such that $f(A) \cap F = \phi$. Hence we have $A \cap f^{-1}(F) = \phi$ and $\delta gb - cl(A) \cap f^{-1}(F) = \phi$ which implies $f(\delta gbcl(A)) \cap F = \phi$ and hence $y \notin \delta gbcl(A)$. Therefore $f(\delta gbcl(A)) \subset ker(f(A))$

 $(iv) \rightarrow (v)$ Let $B \subseteq Y$ then $f^{-1}(B) \subseteq X$. By (iv), $f(\delta gbcl(f^{-1}(B))) \subseteq ker(f(f^{-1}(B))) \subseteq Ker(B)$. Thus $\delta gbcl(f^{-1}(B)) \subseteq f^{-1}(ker(B))$.

 $(v) \rightarrow (i)$ Let V be any open subset of Y. Then by (v) and Lemma 1, $\delta gbcl(f^{-1}(V) \subseteq f^{-1}(ker(V)) = f^{-1}(V)$ and $\delta gbcl(f^{-1}(V)) = f^{-1}(V)$. Therefore $f^{-1}(V)$ is δgb -closed set in X

Lemma 2. [16] For a subset A of a space X, the following are equivalent:

- (i) A is open and gb-closed
- (ii) A is regular open.

Theorem 7. [4] If $A \subseteq X$ is both δ -open and δgb -closed then it is b-closed.

Theorem 8. If $A \subseteq X$ is regular open then it is b-closed.

Lemma 3. For a subset A of a space X the following are equivalent:

- (i) A is δ -open and δ gb-closed
- (ii) A is regular open

(iii) A is open and b-closed.

Proof:(i) \rightarrow (ii):Let A be an δ -open and δ gb-closed set. Then by Theorem 7, A is b-closed that is $bcl(A)\subseteq A$ and so $int(cl(A))\subseteq A$. Since A is δ -open then A is pre-open and thus $A\subseteq int(cl(A))$. Hence A is regular open.

(ii) \rightarrow (i): Follows from the fact that every regular open set is δ -open and by Theorem 8. (ii) \rightarrow (iii): Follows from the fact that every regular open set is open and Theorem 8. (iii) \rightarrow (ii): Let A be an open and b-closed set then $bcl(A)\subseteq A$ and so $int(cl(A))\subseteq A$. since A is open, then A is pre-open and thus $A\subseteq int(cl(A))$, which implies A=int(cl(A)).

As a consequence of the above lemma, we have the following result:

Theorem 9. The following statements are equivalent for a function $f:X \rightarrow Y$:

- (i) f is completely continuous
- (ii) f is contra δgb -continuous and δ^* -continuous
- (iii) f is contra b-continuous and continuous.

Definition 5. [16] A subset A of X is said to be Q-set if int(cl(A))=cl(int(A)).

Definition 6. [16] A function $f:X \to Y$ is Q-continuous if $f^{-1}(V)$ is Q-set in X for every open set V of Y.

Theorem 10. For a subset A of a space X the following are equivalent:

- (i) A is clopen
- (ii) A is δ -open and δ -closed
- (iii) A is regular-open and regular-closed.

Theorem 11. For a subset A of a space X the following are equivalent:

- (i) A is clopen
- (ii) A is δ -open, Q-set and δ gb-closed
- (iii) A is open, Q-set and b-closed.

Proof:(i) \rightarrow (ii):Let A be clopen then by Theorem 10 we have A = int(cl(A)) = cl(int(A)). Hence A is Q-set.Again by Theorem 10, A is δ -open and δ -closed. Since every δ -closed set is δ gb-closed. Therefore (ii) holds.

 $(ii) \rightarrow (iii)$: Follows from the Theorem 7.

 $(iii) \rightarrow (i)$:Let A be an open, Q-set and b-closed set then by Lemma 3, A is regular open. Since A is Q-set, then A = int(cl(A)) = cl(int(A)) which implies A is regular closed. Hence by Theorem 10, A is clopen.

Theorem 12. The following statements are equivalent for a function $f: X \rightarrow Y$:

- (i) f is perfectly continuous
- (ii) f is δ^* -continuous, Q-continuous and contra δgb -continuous
- (iii) f is continuous, Q-continuous and contra b-continuous.

Definition 7. A space X is called locally δgb -indiscrete if every δgb -open set is closed in X.

Theorem 13. If $f: X \to Y$ is a contra δgb -continuous and X is locally δgb -indiscrete space then f is continuous.

Proof: Let G be a closed set in Y.Since f is contra δgb -continuous and X is locally δgb -indiscrete space then $f^{-1}(G)$ is a closed set in X. Hence f is continuous

Definition 8. [11] A space X is called locally indiscrete if every open set is closed in X.

Theorem 14. If $f:X \to Y$ is a contra δgb -continuous preclosed surjection and X is $T_{\delta gb}$ -space then Y is locally indiscrete.

Proof: Let V be an open set in Y. Since f is contra δgb -continuous and X is $T_{\delta gb}$ -space then $f^{-1}(G)$ is closed in X. Also f is preclosed then V is preclosed in Y. Now we have $cl(V)=cl(int(V))\subseteq V$. This means V is closed in Y and hence Y is indiscrete.

Theorem 15. Suppose that $\delta GBC(X)$ is closed under arbitrary intersections. If $f:X \rightarrow Y$ is contra δgb -continuous and Y is regular then f is δgb -continuous.

Proof: Let $x \in X$ and V be an open set of Y containing f(x). Since Y is regular, there exists an open set G in Y containing f(x) such that $cl(G) \subseteq V$. Since f is contra δgb -continuous, there exists an δgb -open set U in X containing x such that $f(U) \subseteq cl(G)$. Then $f(U) \subseteq cl(G) \subseteq V$. Hence f is δgb -continuous.

Recall that for a function $f:X \to Y$ the subset $\{(x,f(x)): x \in X\} \subseteq X \times Y$ is called the graph of f and is denoted by G(f).

Definition 9. The graph G(f) of a function $f:X \to Y$ is said to be contra δgb -closed if for each $(x,y) \in (X \times Y)$ -G(f) there exists $U \in \delta gbO(X,x)$ and $V \in C(Y,y)$ such that $(U \times V) \cap G(f) = \phi$.

Theorem 16. The graph G(f) of a function $f:X \to Y$ is contra δgb -closed in $X \times Y$ if and only for each $(x,y) \in (X \times Y)$ -G(f) there exists $U \in \delta gbO(X,x)$ and $V \in C(Y,y)$ such that $f(U) \cap V = \phi$.

Theorem 17. If $f:X \rightarrow Y$ is contra δgb -continuous and Y is Urysohn then G(f) is contra δgb -closed in the product space $X \times Y$.

Proof: Let $(x,y) \in (X \times Y) - G(f)$, then $y \neq f(x)$ and there exist open sets A and B such that $f(x) \in A$, $y \in B$ and $cl(A) \cap cl(B) = \phi$. Since f is contra δgb -continuous then there exists $U \in \delta gbO(X,x)$ such that $f(U) \subseteq cl(A)$. Therefore we obtain $f(U) \cap cl(B) = \phi$. This shows that G(f) is contra δgb -closed.

Theorem 18. If $f: X \to Y$ is δgb -continuous and Y is T_1 then G(f) is contra δgb -closed in $X \times Y$.

Proof: Let $(x,y) \in (X \times Y)$ -G(f) then $y \neq f(x)$ and there exists open set U such that $f(x) \in U$ and $y \notin U$. Since f is δgb -continuous, then there exists $V \in \delta gbO(X,x)$ such that $f(V) \subseteq U$. Therefore we obtain $f(V) \cap (Y-U) = \phi$ and $Y-U \in C(Y,y)$. This shows that G(f) is contra δgb -closed.

Theorem 19. Let $f:X \to Y$ be a function and $g:X \to X \times Y$ be the graph function of f defined by g(x)=(x,f(x)) for each $x \in X$. If g is contra δgb -continuous then f is contra δgb -continuous. Proof: Let U be an open set in Y then $X \times U$ is an open set in $X \times Y$. Since g is contra δgb -continuous. It follows that $f^{-1}(U)=g^{-1}(X \times U)$ is δgb -closed in X. Thus f is contra δgb -continuous.

Theorem 20. If $f:X \to Y$ is contra δgb -continuous then for each $x \in X$ and for each closed set V in Y with $f(x) \in V$ there exists a δgb -open set U in X containing x such that $f(U) \subseteq V$. Proof: Let $x \in X$ and V is a closed set in Y with $f(x) \in V$ then $x \in f^{-1}(V)$. Since f is contra δgb continuous, $f^{-1}(V)$ is δgb -open in X. Put $U = f^{-1}(V)$ then $x \in U$ and $f(U) = f(f^{-1}(V)) \subseteq V$.

Definition 10. [16] A space X is submaximal and extremally disconnected if every b-open set is open.

Theorem 21. If A and B are δgb -closed sets in submaximal and extremally disconnected space X then $A \cup B$ is δgb -closed in X.

Proof: Let $A \cup B \subseteq G$ where G is δ -open in X. Since $A \subseteq G, B \subseteq G$, A and B are δgb -closed sets then $bcl(A) \subseteq G$ and $bcl(B) \subseteq G$. As X is submaximal and extremally disconnected, bcl(M) = cl(M) for any $M \subseteq X$. Therefore $bcl(A \cup B) = bcl(A) \cup bcl(B) \subseteq G$ and hence $A \cup B$ is δgb -closed.

Corollary 1. If A and B are δgb -open sets in submaximal and extremally disconnected space X then $A \cap B$ is δgb -open in X.

Theorem 22. :Suppose that $\delta GBC(X)$ is closed under arbitrary intersections then $A \subseteq X$ is δgb -closed if and only if $A = \delta gbcl(A)$

Theorem 23. Suppose that $\delta GBC(X)$ is closed under arbitrary intersections. If $f:X \to Y$ and $g:X \to Y$ are contra δgb -continuous, Y is Urysohn and X is submaximal and extremally disconnected, then $K = \{x \in X: f(x) = g(x)\} \delta$ is gb-closed in X.

Proof: Let $x \in X$ -K. Then $f(x) \neq g(x)$. Since Y is Urysohn there exist open sets U and V such that $f(x) \in U, g(x) \in V$ and $cl(U) \cap cl(V) = \phi$. Since f and g are contra δgb -continuous, $f^{-1}(cl(U))$ and $g^{-1}(cl(V))$ are δgb -open sets in X. Let $A = f^{-1}(cl(U))$ and $B = g^{-1}(cl(V))$. Then A and B are δgb -open sets containing x.Set $C = A \cap B$, then C is δgb -open set in X. Hence $f(C) \cap g(C) = f(A \cap B) \cap g(A \cap B) \subseteq f(A) \cap g(B) = cl(U) \cap cl(V) = \phi$. Therefore $C \cap K = \phi$. By Theorem 5, $x \notin \delta gbcl(K)$. Hence K is δgb -closed in X.

Definition 11. A space X is called δgb -connected provided that X is not the union of two disjoint nonempty δgb -open sets.

Theorem 24. If $f: X \to Y$ is a contra δgb -continuous function from a δgb - connected space X onto any space Y then Y is not a discrete space.

Proof: Since f is contra δgb -continuous and X is δgb -connected space. Suppose Y is a discrete space. Let V be a proper non empty open and closed subset of Y. Then $f^{-1}(V)$ is proper nonempty δgb -open and δgb -closed subset of X, which contradicts the fact that X is δgb -connected space. Hence Y is not a discrete space.

Theorem 25. If $f: X \to Y$ is a contra δgb -continuous surjection and X is δgb -connected space then Y is connected.

Proof: Let $f:X \to Y$ is a contra δgb -continuous and X is δgb -connected space. Suppose Y is not connected. Then there exist disjoint open sets U and V in Y such that $Y=U\cup V$. Therefore U and V are clopen in Y. Since f is contra δgb -continuous $f^{-1}(U)$ and $f^{-1}(V)$ are δgb -open sets in X. Further f is surjective implies, $f^{-1}(U)$ and $f^{-1}(V)$ are non empty disjoint and $X = f^{-1}(U) \cup f^{-1}(V)$. This contradicts the fact that X is δgb -connected space. Therefore Y is connected.

Theorem 26. Let X be a δgb -connected and Y be T_1 -space. If $f:X \rightarrow Y$ is contra δgb -continuous then f is constant.

Proof: Since Y is T_1 -space, $U = \{f^{-1}(y): y \in Y\}$ is a disjoint δgb -open partition of X. If $|U| \ge 2$ then X is the union of two nonempty δgb -open sets. This contradicts the fact that X is δgb -connected. Therefore |U| = 1 and hence f is constant.

Definition 12. [4] A topological space X is said to be δgb - T_2 space if for any pair of distinct points x and y there exist disjoint δgb -open sets G and H such that $x \in G$ and $y \in H$.

Theorem 27. Let X and Y be topological spaces. If

- (i) for each pair of distinct points x and y in X there exists a function $f:X \to Y$ such that $f(x) \neq f(y)$,
- (ii) Y is Urysohn space and
- (iii) f is contra δgb -continuous at x and y. Then X is δgb -T₂.

Proof: Let x and y be any distinct points in X and f is a function such that $f(x) \neq f(y)$. Let a=f(x) and b=f(y) then $a\neq b$. Since Y is an Urysohn space there exist open sets V and W in Y containing a and b respectively such that $cl(V) \cap cl(W) = \phi$. Since f is contra δgb -continuous at x and y then there exist δgb -open sets A and B in X containing x and y respectively such that $f(A) \subseteq cl(V)$ and $f(B) \subseteq cl(W)$. We have $A \cap B \subseteq f^{-1}(cl(V)) \cap f^{-1}(cl(W)) = f^{-1}(\phi) = \phi$. Hence X is δgb -T₂.

Corollary 2. Let $f: X \to Y$ be a contra δgb -continuous injective function from a space X into Urysohn space Y then X is δgb - T_2 .

Definition 13. [14] A topological space X is called Ultra Hausdorff space if for every pair of distinct points x and y in X there exist disjoint clopen sets U and V in X containing x and y respectively.

Theorem 28. If $f: X \to Y$ be contra δgb -continuous injective function from space X into a Ultra Hausdorff space Y then X is δgb - T_2 .

Proof: Let x and y be any two distinct points in X. Since f is injective $f(x) \neq f(y)$ and Y is Ultra Hausdorff space implies there exist disjoint clopen sets U and V of Y containing f(x) and f(y) respectively. Then $x \in f^{-1}(U)$ and $y \in f^{-1}(V)$ where $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint δgb -open sets in X. Therefore X is δgb -T₂.

Definition 14. [14] A space X is called Ultra normal space if each pair of disjoint closed sets can be separated by disjoint clopen sets.

Definition 15. [4] A topological space X is said to be δgb -normal if each pair of disjoint closed sets can be separated by disjoint δgb -open sets.

Theorem 29. If $f: X \to Y$ be contra δgb -continuous closed injection and Y is ultra normal then X is δgb -normal.

Proof: Let E and F be disjoint closed subsets of X. Since f is closed and injective f(E) and f(F) are disjoint closed sets in Y. Since Y is ultra normal there exists disjoint clopen sets U and V in Y such that $f(E) \subseteq U$ and $f(F) \subseteq V$. This implies $E \subseteq f^{-1}(U)$ and $F \subseteq f^{-1}(V)$. Since f is contra δgb -continuous injection, $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint δgb -open sets in X. This shows X is δgb -normal.

Remark 3. The composition of two contra- δgb -continuous functions need not be contra- δgb -continuous as seen from the following example.

Example 3. Let $X=Y=Z=\{a,b,c\}, \tau=\{X,\phi,\{a\},\{b\},\{a,b\}\},\sigma=\{Y,\phi,\{a\}\}$ and $\eta=\{Z,\phi,\{b,c\}\}$ be topologies on X, Y and Z respectively. Then the identity function $f:X \to Y$ and a function $g:Y \to Z$ defined by g(a)=b,g(b)=c and g(c)=a are contra δgb -continuous but $g\circ f:X \to Z$ is not contra δgb -continuous, since there exists a open set $\{b,c\}$ in Z such that $(g\circ f)^{-1}\{b,c\}=\{a,b\}$ is not δgb -closed in X.

Theorem 30. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be any two functions.

- (i) If f is contra δgb -continuous and g is continuous then $g \circ f$ is contra δgb -continuous.
- (ii) If f is contra δgb -continuous and g is contra continuous then $g \circ f$ is δgb -continuous.
- (iii) If f is δgb -continuous and g is contra continuous then $g \circ f$ is contra δgb -continuous.
- (iv) If f is δgb -irresolute and g is contra δgb -continuous then $g\circ f$ is contra δgb -continuous.

Proof:(i) Let $h=g\circ f$ and V be an open set in Z. Since g is continuous, $g^{-1}(V)$ is open in Y. Therefore $f^{-1}[g^{-1}(V)]=h^{-1}(V)$ is δgb -closed in X because f is contra δgb -continuous. Hence $g\circ f$ is contra δgb -continuous.

The proofs of (ii),(iii) and (iv) are similar to (i).

Theorem 31. Let $f:X \to Y$ be contra δgb -continuous and $g:Y \to Z$ be δgb -continuous. If Y is $T_{\delta gb}$ -space, then $g \circ f:X \to Z$ is contra δgb - continuous.

Proof: Let V be any open set in Z. Since g is δgb -continuous $g^{-1}(V)$ is δgb -open in Y and since Y is $T_{\delta gb}$ -space, $g^{-1}(V)$ open in Y. Since f is contra δgb -continuous, then $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is δgb -closed set in X. Therefore $g \circ f$ is contra δgb -continuous.

Acknowledgements

The authors are grateful to the University Grants Commission, New Delhi, India for financial support under UGC SAP DRS-III: F-510/3/DRS-III/2016(SAP-I) dated 29th Feb 2016 to the Department of Mathematics, Karnatak University, Dharwad, India.

References

- [1] A.Al-Omari and M.S.Noorani, *Decomposition of continuity via b-open set*, Bol.Soc.Paran.Mat., 26(2008),53-64.
- [2] D. Andrijivic, On b-open sets, Mat. Vesnic, 48(1996), 59-64.
- [3] S.P.Arya and R.Gupta, On strongly continuous mappings, Kyungpook Math., 14(1974),131-143.
- [4] S.S.Benchalli, P.G.Patil, J, B.Toranagatti and S.R.Vighneshi, δgb-separation axioms in topological spaces, International Mathematical Forum, 23(2016),1117-1131.
- [5] S.S.Benchalli, P.G.Patil and J.B.Toranagatti, *Delta generalized b-continuous func*tions in topological spaces, International Journal of Scientific and Innovative Mathematical Research, 3(2015), 440-446.
- [6] J.Dontchev, Contra continuous functions and strongly S-closed mappings, Int.J.Math.Sci., 19(1996), 303-310.
- [7] N.El-Deeb, I.A.Hasanein, A.S.Mashhour and T.Noiri, On p-regular spaces, Bull. Math. Soc.Sci.Math.R.S.Roumanie, 27(1983),311-315.
- [8] S.Jafari and T.Noiri, Contra-super-continuous functions. Ann.Univ.Sci. Budapest. Eotvos Sect.Math., 42(1999), 27-34.
- [9] A.S.Mashhour, M.E.Abd El-Monsef and S. N. EL-Deeb, On pre-continuous and weak pre continuous mappings, Proc. Math and Phys.Soc. Egypt, 53(1982), 47-53.
- [10] A.A.Nasef, Some properties of contra-γ-continuous functions, Chaos Solitons and Fractals, 24(2005),471-477.
- [11] T.Nieminen, On ultrapseudocompact and related spaces, Ann.Acad.Sci.Fenn.Ser.A.I.Math.,3(1977),185-205.
- [12] T.Noiri, Super-continuity and some strong forms of continuity, Indian J.Pure Appl.Math., 15(1984), 241-250.
- [13] S.Sekar and K.Mariappa, Almost contra regular generalized b-continuous functions, International Journal of Pure and Applied Mathematics, 97(2014), 161-176.

- [14] R.Staum, The algebra of bounded continuous functions into a non-archimedean field, Pacific J.Math., 50(1974), 169-185.
- [15] M.Stone, Application of the theory of Boolean rings to general topology, Trans.Amer.Math.Soc.,41(1937),371-381.
- [16] K.V.Tamilselvi, P.Thangaraj and O.Ravi, On contra $g\gamma$ -continuous functions, Recent and Innovation Trends in Computing and Communication, 4(2016), 260-269.
- [17] N.V.Veliko, *H-closed topological spaces*, Amer. Math. Soc. Transl., 78(1968), 103-118.