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Abstract. Clive Granger proposed thick modelling as an alternative to selecting a unique model
based on a given criterion, or thin modelling. This stemmed from his research on forecast com-
bination and portfolio selection in which using just the best asset or forecast can be suboptimal
in many settings. This paper proposes to integrate thick modelling into the general-to-specific
model selection literature, yielding the benefits of selecting a set of well-specified encompassing
models while taking seriously Granger’s critique of model selection. The paper argues that model
uncertainty is addressed by applying selection to narrow down the class of models followed by
pooling across the retained set of close specifications. An example using artificial data illustrates
the approach.
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1. Introduction

Economic modelling requires a synthesis of theory and empirics, typically with varying
weights placed on each depending on the researcher’s beliefs or preferences. Granger was
clear that one of the main objectives of empirical modelling was to inform the decision
making process. He was relatively agnostic about the preferred approach to model building
as long as the models were carefully evaluated and validated using actual data, and the
models were useful in addressing the research question asked, specifically in terms of the
quality of decisions that are made based on the models. Model selection is inevitable in
this framework. Imposing theory models with no testing would fail Granger’s criteria, and
any other form of model building must necessitate model selection. In Granger’s Marshall
Lectures [24] he explains how he sees model selection:
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A sculptor once said that the way he viewed his art was that he took a large
block of stone and just chipped it away until he revealed the sculpture that was
hidden inside it. Some empirical modelers view their task in a similar fashion
starting with a mass of data and slowly discarding them to get at a correct
representation. My perception is quite different. I think of a modeler as start-
ing with some disparate pieces some wood, a few bricks, some nails, and so
forth - and attempting to build an object for which he (or she) has only a very
inadequate plan, or theory. The modeler can look at related constructs and can
use institutional information and will eventually arrive at an approximation of
the object that they are trying to represent, perhaps after several attempts.
Model building will be a team effort with inputs from theorists, econometri-
cians, local statisticians familiar with the data, and economists aware of local
facts or relevant institutional constraints.

The above quote can be misinterpreted by those who are not familiar with the general-to-
specific (Gets) model selection literature and perceive the approach to consist of ‘starting
with a mass of data and slowly discarding them to get at a correct representation’. In
fact, the approach is much more in line with Granger’s view of model building, whereby
theory, past evidence and institutional knowledge all inform the initial specification of the
general unrestricted model (GUM) but rigorous evaluation and validation is conducted
to reduce the model by eliminating those effects that are statistically irrelevant. The
important distinction is in the specification of the GUM – without careful thought informed
by the objective of the modelling exercise, theory and institutional knowledge, and an
understanding of the data and its limitations, one is in danger of data mining. The edited
volume by Granger (1990) (see [23]) provides a collection of critiques.

Granger’s interest in model selection came later in his research career, see Hendry
(2010) [37]. He showed remarkable foresight in Granger, King and White (1995) (see [31])
where he argues that model selection procedures were preferable to hypothesis testing when
specifying empirical models, thereby anticipating developments in Gets modelling such as
Hoover and Perez (1999) [51] and Hendry and Krolzig (1999) [42]. The general-to-specific
literature, often termed the LSE approach due to its proponents at the London School of
Economics in the 1960s and 1970s had been developing for some time, see, e.g. Pagan
(1987), Phillips (1988), Mizon (1995) and Hendry (2003) ([60],[63],[58],[35]), but were only
automated later. Granger, in an interview with David Hendry explored the Gets approach
in detail in Granger and Hendry (2005) (see [29]). Although Granger’s contributions to
the field of model selection were not as prolific as his contributions to other fields of
econometrics demonstrated by the papers in this special issue, he clearly had an interest
in model selection as seen in Granger and Hendry (2005) [29]. One of the contributions of
this paper is to consider how model selection performs under misspecification, which was
a question that Granger highlighted in [29].

Granger coined the phrase ‘thick modelling’ to argue that model selection need not
focus on selecting just one model specification from the infinite range of possibilities,
which would be defined as the ‘best’ model based on some pre-specified criterion. He
proposed keeping all alternative close specifications that are validated on empirical criteria
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and pool the resulting outcomes, be they parameter estimates, impulse responses, policy
simulations, hypothesis tests or forecasts, see Granger and Jeon (2004) and Granger (2005)
[30, 26]. Given Granger’s interest in portfolio theory (Granger, 2005, [27]) this is a natural
thing to do, and corresponds to his pragmatic approach to empirical modelling discussed
in Granger (2009) (see [28]). It also ties with his research on forecasting and forecast
combinations stemming from Bates and Granger (1969) (see [5]).

The close correspondence between the views on model selection of Granger’s thick
modelling and Hendry’s Gets modelling, and their many personal and professional inter-
actions on the subject, suggest that the two approaches can be integrated. This paper
investigates the approach to model selection of undertaking general-to-specific selection
and then applying thick modelling techniques of averaging across the selected models,
where one or more models can be retained. We find that thick modelling does not resolve
problems of misspecification, but can capture model uncertainty reflected by retaining
different model specifications commencing from the same starting point due to searching
many reduction paths. Thick modelling across well-specified models captures the relevant
model uncertainty implied by model selection. Section 2 outlines the selection approach
implemented by Autometrics and discusses how thick modelling can be implemented, sec-
tion 3 notes the literature in which thick modelling is employed, section 4 demonstrates
the approach with an artificial data series and section 5 concludes.

2. Model selection, model averaging and thick modelling

Commencing from an information set, model selection can be interpreted as pooling
the available information set and selecting possible model specifications therefrom. Thick
modelling will retain a set of specifications and thin modelling will retain a single specifica-
tion. Model averaging pools the model specifications resulting from subsets of information.
The distinction between pooling information and pooling models has implications for con-
gruency, which will now be discussed.

2.1. Model selection

Granger emphasized the importance of establishing the purpose of the econometric
modelling exercise. Let us assume that the objective is to identify a model(s) that matches
the unknown Data Generation Process (DGP) in all measured aspects. This introduces
the notion of congruence which relates to the model being statistically well-specified, see
e.g., Bontemps and Mizon (2003) [6]. Congruence requires that the empirical model is
statistically ‘close’ to the evidence. The Theory of Reduction establishes the properties
of the unknown local data generating process (LDGP) which delivers a mean-zero, ho-
moskedastic innovation process that the model aims to capture. Hendry (1995, ch.9) (see
[34]) provides extensive discussion.∗ A further step in the Gets literature is that the model

∗The Theory of Reduction commences from an unmanageably large DGP denoted by Du

(
U1
T |U0, ψ

1
T

)
,

with ψ1
T ∈ Ψ ⊆ RkT , where U1

T = (u1, . . . ,uT ) is the full sample vector of random variables defined
on probability space (Ω,F ,P). A series of reduction steps are applied to the DGP, including sequential
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should encompass every other model that is a valid restriction of the general unrestricted
model. Encompassing refers to the ability of a model to explain the results of rival models
and hence make them redundant, enabling selection between two or more congruent mod-
els. Mutually encompassing models are able to explain the results of each other’s model,
so the models cannot be ranked. The LDGP will be congruent and will encompass all
other models, so models that are non-congruent or non-encompassing fail to model the
LDGP. Encompassing has been extensively discussed in, inter alia Mizon and Richard
(1986) [59], Hendry and Richard (1989) [45], Mizon (1994) [57] and Hendry (1995, ch.14)
[34].

The most recent generation of automated Gets software, Autometrics (see Doornik,
2009, [19] and Hendry and Doornik, 2014, [39]), uses a tree search to eliminate irrelevant
variables, with various methods for speeding up the full multipath search. Diagnostic
checks are used to ensure the resulting terminal models are congruent. Encompassing
tests are implemented to ensure the terminal models encompass the GUM so there is
no significant loss of information by undertaking the reduction. They are also performed
against the union of the terminal models. This may result in a single unique terminal model
being retained, but in general there may be multiple terminal models, all of which are valid
reductions of the GUM and mutually encompass each other. In practice, the automated
algorithm selects one model based on the Schwarz (1978) (see [64]) information criterion,
but a range of other methods to select between congruent encompassing models could be
introduced at this stage, or the user may have a preference for a particular terminal model
on theory or aesthetic grounds.

One of the criticisms of such an approach is that there is no accounting for ‘model’ or
‘specification’ uncertainty. It is argued that the standard errors of the selected terminal
model capture the estimation uncertainty due to sampling, but not the uncertainty of the
choice of model selected. In response to this criticism, searching many paths increases the
probability of locating the LDGP. However, thick modelling provides a route to capturing
model uncertainty due to selection, while retaining the benefits of selection. Model selec-
tion is designed to handle more complex problems than just locating relevant variables,
by jointly including variables, dynamics, outliers and structural breaks, non-stationarities
and non-linearities. Castle, Doornik and Hendry (2011) (see [9]) provide simulation evi-
dence establishing that Autometrics is able to recover the LDGP almost as often as when
commencing from the LDGP itself, and hence the costs of searching over a more general
initial specification are small relative to the costs of inference directly conducted on the

factorization to obtain an innovation process, marginalization and conditional factorization (to discard the
marginal distribution if weak exogeneity is satisfied), and further transformations including lag truncation,
functional form, constancy, etc, to result in an LDGP given by A (L) g (yt) = B (L) h (zt) + εt where
εt ∼

app
Nn (0,Σε) where εt is a mean-zero homoskedastic innovation process with variance Σε and A (L)

and B (L) are lag polynomials.
. The properties of the LDGP are determined by the reductions applied, so by ensuring there is no

loss of information in the reduction process we face the null hypothesis that the LDGP has homoskedastic
near normal innovation errors, with weakly exogenous conditioning variables and constant parameters and
encompasses the DGP, see Hendry (2009) [36] and Hendry and Doornik (2014, ch.6) [39]. So despite not
knowing the DGP or LDGP specification, we can establish the properties that the LDGP should possess.
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LDGP.
Model selection does incur costs—relevant variables can be omitted and irrelevant

variables can be incorrectly retained—but these costs are quantifiable using measures of
potency and gauge. Potency, which calculates how likely relevant variables are retained
(the average non-null rejection frequency for the null hypothesis that a coefficient is equal
to zero), should be close to the power of the corresponding test in the LDGP. The nominal
null rejection frequency chosen for selection, i.e. the significance level for hypothesis tests
of the kind H0 : βj = 0, should match the retention of irrelevant variables (the empirical
null rejection frequency), which is called the gauge. These measures refute the criticism
by Leamer (1983) (see [55]) that the model selection process is often hidden when the final
model is reported. If there are many irrelevant variables, then uncertainty appears to be
large as different irrelevant variables are likely to be selected on different draws by chance
sampling, commencing from the same information set, but those irrelevant variables will
have little impact given that their retention rate is controlled by the nominal significance
level. The important aspect of selection is to retain the same set of relevant variables
in different draws commencing from the same information set, which will be a function
of the non-centralities (population t−statistics) of the relevant variables and the nominal
significance level. Forcing the ‘theory-relevant’ variables and implementing selection over
only the additional candidate variables will control this cost, see Hendry and Johansen
(2015) [40].

2.2. Model Averaging

Model averaging is an alternative to model selection that claims to address model
uncertainty. By averaging over 2k possible models within the given model class, where k
is the number of potential variables, it is thought that the uncertainty over which model is
correct is captured. See Hoeting, Madigan, Raftery and Volinsky (1999) [50] for a Bayesian
interpretation and Hansen (2008) [33] for a classical motivation within forecasting. There
is a huge literature discussing the appropriate weights for model averaging depending
on the purpose of the modelling exercise, for example Akaike (1973), Schwarz (1978) or
Hannan and Quinn (1979) (see [2][64][32]) information criteria for in-sample averaging
or out-of-sample mean square forecast error criterion if the purpose of the exercise is to
forecast.

Model averaging is most commonly used in forecasting, where combining forecasts can
outperform the individual forecasts if there are offsetting biases or breaks, see Hendry and
Clements (2004) [38]. Model or forecast averaging can also help if diversification provides a
reduction in variance, see Granger (2002) [25]. However, if proponents of model averaging
do wish to account for model uncertainty, then all possible models must be considered
rather than a reduced set based on some model selection criterion, unless this selection
uncertainty is also accounted for in measuring model uncertainty, which is not typically
done in the literature. Many procedures and algorithms have been proposed to narrow
down the search space, including Occams razor, branch and bound techniques (see Hocking
and Leslie, 1967, [47], LaMotte and Hocking, 1970, [54], and Gatu and Kontoghiorghes,
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2006, [21]), ridge regression (see Hoerl and Kennard, 1970, [49, 48]), the non-negative
garrote (see Breiman, 1995, [7]) and the least absolute shrinkage and selection operator
(LASSO: see Tibshirani, 1996, [65]). The cost of averaging over all possible models is that
a large subset will necessarily be mis-specified and could contaminate the averaged model.
Moreover, the average calculated from different data draws could still differ greatly when
regressors are highly collinear and the information set over which models are averaged is
not a good representation of the DGP.

2.3. Thick Modelling

Granger’s thick modelling can be viewed as an attempt to reconcile the distinct
methodologies of model selection and model averaging. The argument that justifies model
averaging, namely accounting for model uncertainty, is fallacious—averaging over all pos-
sible models of which many must necessarily be non-congruent and therefore lead to biased
coefficient estimates cannot be a sensible way to proceed, even if weights are rebased and
intercepts are forced, see Hendry and Reade (2008) [44]. Furthermore, model averaging
does not help if there are structural breaks in the data, whereas Gets selection seeks well-
specified encompassing models of the LDGP and in doing so handles possible structural
breaks, which is seen as more important than determining the uncertainty in a badly
specified representation. However, discarding potentially useful information in ignored
specifications because only one model is selected can also lead to poor outcomes, be they
parameter estimates or forecasts. Thick modelling is an approach that keeps all close
alternative specifications and pools across these. In the Gets terminology, the retained
terminal models are all congruent encompassing models of the LDGP, so pooling across
these models will give a thick representation of the LDGP.

We can summarise the approaches as the choice of weights on the model combination. If
there are k potential variables, there are 2k combinations of subsets of variables, including
the null and full set, resulting in 2k possible models. Let M denote the full set of models
and Ms the selected set of models, where Ms ⊆ M. Given a criterion cm, the weights
are given by:

wm =

{
cm∑

j∈Ms
cj

m ∈Ms

0 m /∈Ms

(1)

allowing us to characterize:

1. Model selection (thin modelling in Granger’s terminology): Ms has a single member
so wm = 1 for the selected model and 0 otherwise.

2. Unweighted model averaging: Ms =M and cj = 1, ∀j, resulting in wm = 2−k.

3. Thick modelling: assuming L models withinMs, equal weighted averaging overMs

with wm = L−1.

The criterion for Autometrics is the nominal significance level α which is set by the
user. This implies the set of selected models is a function of α,Ms (α), and varying α will
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324 C.W. Granger, Y. Jeon / Economic Modelling 21 (2004) 323–343

Fig. 1. Thin modeling.

Ysg(X,u)q´

where X, Y are, respectively, independent and dependent variables,g( , ) is some. .

function, u an unknown parameter(possibly a vector) and ´ is a residual. Given
this specification, the only task remaining for the econometrician is the estimation
of u and discussion of the properties of this estimate denoted , wheren is theûn

sample size. The plot of againstX gives a ‘thin’ curve, as in Fig.ˆw xE Y±X sg(X,u )n
1. This curve has length but no width. The analysis then proceeds by using this
model for whatever purpose it was originally constructed: for a policy scenario, for
testing a hypothesis, or for forming forecasts, for example.

This pristine sequence of events in selecting, estimating, and using a single
specification sounds well in a textbook but is not realistic. In practice there is rarely
a single specification that is considered; there may be alternative functionsg( , ). .

available, alternative forms for the explanatory variable termX, and different ways
to estimateu, for example. If each specification is estimated and plotted as before,
one will get a ‘thick’ representation as in Fig. 2, where it is expected that the
alternatives do not differ greatly from one to another. The present standard practice2

is to choose the ‘best’ specification from those that are available, using some
sensible criterion, such as one of the model selection criteria, AIC, BIC, or the
maximum likelihood estimator, for example, and so reduce the thick model to a
best thin one. This is then used for forecasting or whatever is the desired purpose.

However, here any useful information that is in the specifications that are not
selected is being ignored. There are good reasons for thinking that this may not be

The use of the terms ‘thick’ and ‘thin’ modeling here has little in common with the earlier use of2

these terms by McCloskey(1988)when discussing methodologies. She was writing about methodology
being ‘thin’ if it asked ‘thin’ questions; that is, ones that are two narrow or constrained to be of real
interest.

325C.W. Granger, Y. Jeon / Economic Modelling 21 (2004) 323–343

Fig. 2. Thick modeling.

a good strategy. For example, the combination of forecasts is often a better procedure
than using the individually best forecast. Similarly, a portfolio of assets is usually
better than investing in a single asset, even if it is better than any other single
alternative in comparisons of pairs. Thick modeling consists of using many
alternative specifications of similar quality, using each to produce the output required
for the purpose of the modeling exercise, such as a set of forecasts, policy scenarios,
elasticity estimates, or tests of some hypothesis, and then combine or synthesize the
results. One gets a simple form of ‘meta-analysis,’ which is a form of synthesis of
research used more in other fields than in economics.3

As a conceptional illustration, consider the estimation of an impulse response of
an increase in, say, money supply(M) on unemployment rate(U) in 6 months
time. If one builds a vector autoregressive(VAR) model involving m variables,
including M andU, with p lags, denote the vector of variables by then the VARXt

¯
is given by

X sA (B)X qet p t t
¯ ¯ ¯ ¯

Even though our work is adjacent to meta-analysis, for example as explained in Stanley(2001),3

we do not use it directly. Instead, we are merely discussing reduction(many-to-few) models rather than
trying to discuss the relationships to the many, which meta-analysis would do. At the thick stage we
only suggest actually combining forecasts, just considering a set of alternative estimators of a parameter
in some way. And Leamer(1983) and Leamer and Leonard(1983) adopt the extreme bounds analysis
as an approach to the model specification problem. The parameters of interest are estimated and,
depending on whether the range of these estimates including a maximum and a minimum effect is
narrow enough, the data can be considered to yield useful results. As the referee points out, our
approach is similar, but we utilize averaging models instead.

Figure 1: Figures from Granger and Jeon (2004) describing thin and thick modelling

vary the number of selected models. When α = 1 the GUM will be retained, so Ms will
have a single member although no selection has been applied. A tight α will likely lead to
a smaller subset of congruent mutually encompassing models retained, so fewer models to
average over for the thick modelling.

Figure 1, taken from Granger and Jeon (2004) (see [30]), captures the principle of
thick modelling. Although Granger did not frame his proposal of thick modelling within
Gets selection, the benefits of doing so are twofold. First, Gets aims to select congruent
encompassing specifications. Models that are discarded fail this criteria, either because
there are irrelevant variables in the model, the model fails to encompass the GUM so
information is lost, or the model fails diagnostic tests so cannot be a close approxima-
tion to the LDGP whose properties are known even though its specification is unknown.
Therefore, averaging over the retained set ensures a well-specified thick model. Second,
the intention of thick modelling is to consider alternative specifications of similar quality,
which the terminal models after Gets selection must satisfy to be mutually encompassing.
The final stage of choosing one terminal model using some pre-specified criteria can be
arbitrary and thick modelling will avoid this reliance on the chosen criterion.

The advantage of applying the procedure within the Gets framework is that most un-
certainty between model specifications will be captured by the range of terminal models
retained. A variable with a high non-centrality will most likely be retained in all specifi-
cations so the degree of model uncertainty is small, but distinguishing between, say, lag 1
and lag 2 of a persistent variable may be much more difficult, resulting in terminal models
that retain one or other of the lag length specifications. The information content of both
specifications is close, and therefore averaging across both lags of the variable would be
a sensible way to capture the timing uncertainty. A similar consideration applies to vari-
ables that have small non-centralities in the LDGP, where a given draw may result in the
relevant variable being statistically insignificant, and vice versa, irrelevant variables may
chance to have significant selection statistics in the particular data draw. This more closely
reflects model uncertainty in the robust model specification sense, where alternative draws
for the innovation could result in slightly different model specifications selected.

Factors affecting the selected set Ms for thick modelling will include the degree of
correlation between regressors and possible misspecification of the GUM, as well as α.
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High correlations between candidate variables contaminate the ranking of variables based
on t-statistics. Assume a GUM which is orthogonal in the sample:

yt =
N∑
k=1

βkxk,t + εt (2)

where T−1
∑T

t=1 xk,txj,t = λkδk,j ∀k, j, where δk,j = 1 if k = j and zero otherwise, with
εt ∼ IN[0, σ2ε ], independently of the {xk,t}, and T >> N . The DGP is nested within the
GUM, where n ≤ N of the regressors have non-zero βk. In this setting, orthogonality
enables 1-cut selection, in which the N sample t2-statistics testing H0: βk = 0 are ordered
from largest to smallest and variables are retained if, and only if, their associated t2-
statistic is greater than the critical value for a chosen significance level cα:

t2(ñ) ≥ c
2
α > t2(ñ+1) (3)

where ñ is the cut-off between the number of retained and excluded variables. In this
setting, Ms (α) will have a single member and there is no need for thick modelling, other
than exploring the consequences of choosing different values of α. If the regressors are
correlated, a multipath search must be conducted as the orderings based on t2-statistics
no longer represent the significance of the variables in the LDGP. Making a decision to
retain/exclude a variable will affect the t-statistics of other variables, thereby changing
the ordering. It is the multipath search that can lead to multiple terminal models which
are mutually encompassing and this is more likely the higher the degree of correlation.
One solution would be to find an orthogonal representation, so transforming an Autore-
gressive Distributed Lag (ADL) model to its Equilibrium Correction Mechanism (EqCM)
representation, for example, would reduce the correlation structure. But some correlations
are unavoidable, for example if a researcher was uncertain if the consumer price index or
retail price index was the relevant measure of inflation and therefore included both in
the GUM. These are highly correlated measures of inflation and if each was retained in
different model specifications, thick modelling would capture this uncertainty.

Misspecification of the GUM can also to lead to a larger Ms (α) as various irrelevant
variables are retained in an attempt to proxy the variables omitted from the LDGP that
are the cause of misspecification. Autometrics (Doornik, 2009, [19]) will still undertake
the search procedure even if the GUM fails diagnostic tests, with a process of tightening
the significance level of the diagnostic tests if they fail. The diagnostic tests can be user-
specified, but for time-series modelling we include tests for autocorrelation, autoregressive
conditional heteroskedasticity, normality, functional form and parameter constancy. Auto-
metrics will try to restore diagnostic validity along the path searches if the GUM initially
fails diagnostic tests. If there are multiple terminal models and some of those pass the
diagnostic tests at the original significance level prior to it being reduced, then only those
terminals are retained, so thick modelling in this setting would average over the congruent
set of terminal models.

Castle and Hendry (2011, 2014) (see [12, 14]) discuss the implications of applying model
selection to an underspecified GUM, i.e. one that omits relevant variables so the unknown
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LDGP is not nested. In this setting, there can be no hope of finding a set of terminal models
that closely approximates the LDGP. However, model selection still yields advantages over
imposing a given theory model or simple model averaging when implementing impulse-
indicator saturation (IIS) within the selection procedure. IIS includes a set of saturating
impulse dummies in the GUM, see Hendry, Johansen and Santos (2008) [41], Johansen
and Nielsen (2009, 2016) [52, 53], and Hendry and Santos (2010) [46], which acts as a
robust method when there is model misspecification by accounting for location shifts and
outliers in omitted relevant variables, helping to mitigate the adverse impacts of induced
location shifts on intercepts and equation standard errors.† Interestingly, location shifts
in omitted variables do not affect slope parameters, even when correlated with included
variables, so thick modelling would be still be valid on the slope parameters in the case
where the GUM is underspecified and the omitted variables shift. This suggests that IIS
should always be implemented to provide robustness against misspecified GUMs and to
account for outliers and location shifts in-sample.

In dynamic models, locating the precise timing of shifts can be difficult which may
result in multiple terminal models in which the specifications differ due to the timing of
retained impulses. Thick modelling would average over these terminal models, capturing
the uncertainty of the timing of possible location shifts. In many cases, outliers or shifts
are due to known reasons such as a policy change in a given month/quarter. Institutional
knowledge of this kind would allow the researcher to narrow down the set of terminal
models to retain those in which impulses correspond to known events. However, if there
are dynamic effects which make policy effects slow to feed through, or the researcher is
uncertain of such events leading to outliers or shifts in the data, then thick modelling
provides a way of capturing the timing uncertainty.

Granger’s proposal of thick modelling in which alternative specifications of similar
quality are combined rather than selecting one and discarding all others is made feasible
by using Gets which results in a set of terminal models that satisfy his criterion of similar
valid models. Granger’s pragmatic approach to modelling enables model averaging and
model selection to complement each other. In the next section we briefly review the
literature, before demonstrating the approach using artificial data.

3. Literature on thick modelling

Granger’s proposal for thick modelling was motivated by his work on forecasting, where
pooling of forecasts often outperformed the selected ‘best’ forecast. The subsequent litera-
ture using thick modelling has followed in this tradition, focussing on forecasting applica-
tions, see for example McNelis and McAdam (2004) [56] and Albacete and Espasa (2005)
[3] for inflation forecasting examples, and Aiolfi and Favero (2005) [1] for an application

†Robustness in the statistics literature refers to methods that perform well under non-standard distribu-
tions, and in particular when there are large-sized observations or outliers. Here we use a broader definition
of robustness, whereby methods are robust if they have good properties against many forms of misspecifica-
tion, including outliers, location shifts, omitted variables, incorrect distributional shape, non-stationarity,
misspecified dynamics and non-linearities.
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Figure 2: Dependent variable for the artificial data set

to the predictability of stock returns. Pesaran and Timmermann (2004) (see [62]) suggest
thick modelling as a technique for real-time forecasting. Granger’s second motivation for
thick modelling came from his work on portfolio theory, and thick modelling has been
applied in the multivariate volatility literature by papers such as Amendola and Storti
(2015) [4], and Pesaran, Schleicher and Zaffaroni (2009) [61], who use thick modelling as
a way to address model uncertainty in multivariate volatility models.

The literature has mainly focussed on the use of thick modelling in forecasting, where
forecast combination has a long pedigree, but the proposal in Granger and Jeon (2004) [30]
was not specific to forecasting, and thick modelling can be applied in-sample successfully
as well, as we now explore.

4. Applying Gets with thick modelling to a data set

In this section, we apply Autometrics selection to a single draw from a known LDGP
and then use thick modelling over the resulting terminal models.

Assume the LDGP is an I(0) autoregressive distributed lag model which contains two
location shifts within the sample that shifts the unconditional mean but not the slope
parameters:

yt = β0 + βyyt−1 +
10∑
i=1

βixi,t + δ1(tL<t≤tU ) + εt, εt ∼ IN [0, 1] (4)

where 1(tL<t≤tU ) is an indicator function with the value zero except for unity over the

interval tL = 50 and tU = 81, and xt = (x1,t, . . . , x10,t)
′ is generated by:

xt = λIxt−1 + νt, νt ∼ IN [010,Ω] (5)

We set the parameter values at β0 = 0; βy = 0.6; β1 = 0.2; β2 = 0.3; β3 = 0.4; β4 = 0.5;
β5 = 0.6; β6, . . . , β10 = 0 so only the first five variables enter the DGP, δ = 3; λ = 0.6;
Ω = I10, with T = 100, discarding an initial 20 observations. Figure 2 records the
dependent variable.
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4.1. Thick modelling with misspecification

First consider the case of selection with a misspecified model, so the DGP is not nested
within the GUM:

yt = γ0 +
1∑
j=0

γ1jx1,t−j +
1∑
j=0

γ3jx3,t−j +
1∑
j=0

γ5jx5,t−j +
10∑
i=6

1∑
j=0

γijxi,t−j + ηt (6)

The GUM is heavily misspecified as it excludes the lagged dependent variable and two
relevant exogenous regressors (x2,t and x4,t) as well as ignoring the structural break. There
are a further 5 irrelevant variables and their lags included in the GUM.

TM1 TM2 TM3 TM4 TM5 TM6 TM7 Union Pooled

Constant 1.976 1.923 2.028 1.939 2.048 2.009 2.008 2.138 2.009
x3,t . 0.524 . . 0.256 . . 0.174 0.119
x3,t−1 0.921 . 0.804 0.637 0.816 0.816 0.920 0.901 0.727
x5,t 0.992 . . . 0.953 . 0.862 0.883 0.461
x5,t−1 1.325 1.638 1.868 1.754 1.227 1.852 1.333 1.351 1.543
x6,t . -0.562 . -0.532 -0.587 . -0.568 -0.389 -0.330
x6,t−1 -0.802 . -0.704 . . -0.710 . -0.576 -0.349
x8,t . . -1.062 . -1.083 -1.049 -1.105 -0.578 -0.609
x8,t−1 -1.111 -1.105 . -1.098 . . . -0.802 -0.514
x9,t . . . . -0.271 -0.278 . -0.129 -0.085
x10,t−1 . . 0.590 . . . 0.503 0.491 0.198

LL -284.0 -288.2 -284.9 -287.5 -285.1 -286.0 -284.4 -281.3
σ̂ 4.273 4.429 4.309 4.402 4.367 4.360 4.313 4.273
AR(2) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ARCH(1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Normality 0.064 0.022 0.019 0.018 0.011 0.017 0.013 0.096
Hetero 0.060 0.295 0.012 0.412 0.070 0.052 0.094 0.012
Chow(70%) 0.206 0.762 0.415 0.776 0.322 0.488 0.274 0.275

Table 1: Terminal models (TM) from Autometrics undertaking selection at a target size of 5% for GUM (6).
Coefficient estimates reported along with p-values for diagnostic tests, the log-likelihood (LL) and estimated
equation standard error (σ̂). Union model includes all variables that are retained in one or more terminal models.
Final column reports average coefficients across all terminal models and union model.

Table 1 records the parameter estimates and p-values for the diagnostic tests from
the terminal models and the union of the terminal models, using a target significance
level of 5% with default settings for Autometrics, fixing the intercept.‡ The union model
includes all variables which are retained in one or more terminal models. As a result of the

‡It is advisable to always fix the intercept, i.e. do not select over it, as the intercept can have a substantial
impact on the set of models retained, particularly if there are structural breaks present that are not
modelled. See Castle, Doornik and Hendry (2012) [10] for simulation evidence on Autometrics with a fixed
or free intercept.
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GUM misspecification, additional irrelevant regressors are retained to proxy the omitted
variables. As these are imperfect proxies, a range of terminal models are retained, all of
which are non-congruent as evidenced by a failure of the diagnostic tests, including most
notably second order serial correlation (Godfrey, 1978, [22]) and first order autoregressive
conditional heteroscedasticity (Engle, 1982, [20]). The Chow (1960) test (see [16]) splits
the sample in a 70%/30% split and tests for parameter constancy using a residual sum
of squares (RSS) F-statistic. The lack of failure of parameter constancy across all models
is due to the model fitting badly before the breakpoint, thereby inflating the RSS. Thick
modelling averages across the terminal models using a simple unweighted average, and
we include the union of the terminal models in the set to be averaged, given in the final
column of table 1.

The intercept, averaged over the full sample, is:

E (yt) =
δ1(50<t≤81)

1− βy
=

0.31× 3

1− 0.6
= 2.325

as all exogenous variables have zero means in expectation, with the equilibrium mean
converging quite quickly to a mean of 7.5 during the structural break, before converging to
zero again after the break. All terminal models underestimate the full sample equilibrium
mean if the breaks are not modelled, with the union providing the closest estimate.

The choice of α affects the set of terminal models. Selection at α = 0.1 results in 3
terminal models, each with 6 parameters, and selection at α = 0.01 results in 9 termi-
nal models with between 4 and 8 parameters. Variables are retained despite statistical
insignificance in the terminal models if including them mitigates the failure of diagnostic
tests. In this misspecified case, tightening α results in more terminal models being re-
tained. A large number of terminal models points towards possible misspecification as no
model mutually encompasses the others.

The conditional expectation, ŷt = E [yt|Xt] where Xt denotes the vector of conditioning
variables including lagged variables, of each terminal model is plotted in figure 3, panel a.
All the retained models follow a similar pattern although with some variation, captured by
panel b which records the minimum and maximum conditional expectation computed at
each observation to give a range in which the conditional expectation lies along with the
actual outturn. The outturns frequently lie outside of the range of terminal models, which
is unsurprising given the degree of misspecification in the GUM due to omitted breaks.
Note that the range is not a measure of estimation uncertainty (i.e. computing E [yt|Xt] for
±2σ of the parameter estimates). Instead it is a reflection of the possible admissible model
specifications. Confidence intervals for thick modelling could be obtained by bootstrap
aggregation (bagging, see Breiman, 1996, [8]) although the time series properties would
need to be carefully handled. Another note of caution is that the terminal models are
assumed to represent the admissible set defined by the set of congruent models. As
the GUM does not nest the LDGP, neither the GUM or any reduction thereof will be
congruent.

Thick modelling does not insure against model misspecification. Commencing with
a non-congruent GUM is disastrous for in-sample modelling but is detected by the diag-
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Figure 4: 1-step ahead conditional minimum, maximum and mean forecasts with known exogenous regressors
from all terminal models, along with outturns.

nostic tests. Figure 4 records the 1-step ahead conditional forecasts, giving the pointwise
minimum, mean and maximum forecasts. Although ±2σ error bars are not included on
the figure, it is clear that thick modelling does not solve the forecasting problem relative
to selecting a single model as the set of models is misspecified, although model misspeci-
fication need not imply forecast failure, see inter alia Clements and Hendry (1998, 1999)
[17, 18]. The large number of retained terminals for thick modelling could further indicate
the failure of congruence, with a wide range for the pointwise conditional expectation
function, but it does not ‘fix’ the problem of a lack of congruence or reveal anything useful
about model uncertainty as all terminal models are equally poor.

The information set available should nest the LDGP for a successful modelling ap-
proach. Without this, any form of model selection or model averaging is likely to fail.
With 16 variables in (6) (with a fixed intercept in every model) there are 216 = 65, 536
possible models. Using an unweighted average over the full set, figure 5 records the model
average fit and forecasts superimposed over the thick modelling results. The results are
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Figure 5: Panel (a): the conditional expectation for the model average and all terminal models used for thick
modelling, plotted against the outturns; panel (b): forecasts from model averaging plotted with the 1-step
ahead conditional minimum, maximum and mean forecasts with known exogenous regressors from all terminal
models, along with outturns.

very similar to the thick model results, both in-sample and out-of-sample, both of which
perform poorly. The technique, be it model averaging, thick or thin modelling, is of sec-
ondary importance to the requirement that the information set nests the LDGP. Without
this, all forms of model building can fail. Methods that test for congruence to ensure the
LDGP is nested within the available information set insure against this serious failure.

4.1.1. Alternative forms of misspecification

The information set in the above case did not nest the LDGP. Misspecification included
omitted exogenous variables, omitting the lagged dependent variable and unmodelled
structural breaks. We now extend the available information set slightly to include all
relevant exogenous variables, but it still does not nest the LDGP as the GUM in equation
(7) excludes the lagged dependent variable and the structural break:

yt = γ0 +

10∑
i=1

1∑
j=0

γijxi,t−j + ηt (7)

Results are similar to above, with selection at 5% resulting in 5 terminal models being
retained, with 4 terminals retained at 10% and 13 terminals retained at the 1% target
significance level. Figure 6, left hand panels, record the results at 5%. The pointwise min-
imum and maximum conditional expectation recorded in panel (a) has a slightly narrower
range than in the case above, but the thick model bands still fail to fully capture the period
around the location shift. Panel (c) is a cross plot of the conditional expectation against
the outturn for each terminal model with fitted splines, which should be on the 45 degree
line if the terminal models were well-specified. Finally, panel (e) records the minimum,
maximum and mean 1-step ahead conditional forecasts with known exogenous regressors
from all terminal models along with the forecast period outturns. Despite including the
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exogenous regressors the thick model forecasts poorly. Model averaging would require in
excess of 1 million models, all of which would be misspecified.

Omitting the lagged dependent variable results in lags of the exogenous variables being
retained in an attempt to proxy the dynamics. If we extend the information set to include
the lagged dependent variable but not the structural break, model averaging would require
more than 2 million models to be estimated, all of which are misspecified. In model
selection, the GUM based on such an information set is given by:

yt = γ0 + γyyt−1 +
10∑
i=1

1∑
j=0

γijxi,t−j + ηt (8)

Selection from (8) at 5% results in 3 terminal models (the three identical terminals are
retained at 10%) and 2 terminals are retained at 1%, corresponding to our conjecture
regarding the dependence of Ms on α delivering fewer terminal models for a tighter se-
lection significance level. This is in contrast to the above results where more variables
were retained at tighter α, probably due to the degree of departure from congruence. The
inclusion of the lagged dependent variable enables the structural break to be proxied by
increased persistence (β̂y is biased upwards) so misspecification is less extreme.

Figure 6, right hand panels, record the results for selection at 5%. Inclusion of the
lagged dependent variable results in very similar terminals as can be seen by the narrowing
of the pointwise minimum and maximum conditional expectation. The differences are due
to (i) one relevant variable being retained either t dated or t− 1 dated, and (ii) one of two
irrelevant variables being retained in each terminal model. With 15 irrelevant variables in
the GUM we would expect 0.75 of a variable to be retained on average, so one irrelevant
variable in each terminal model accords with the theory.

Despite the improved model fit of all terminal models, the failure to explicitly model
the structural break results in an estimated coefficient on the lagged dependent variable
that is too large:[

γ̂TM1
y = 0.814; γ̂TM2

y = 0.812; γ̂TM3
y = 0.828; γ̂Uniony = 0.809

]
,

so the thick model estimate is γ̂Thicky = 0.816. The true parameter is βy = 0.6. The
LDV is biased upwards as more persistence is needed to capture the unmodelled struc-
tural break. Again, thick modelling serves the purpose of highlighting model uncertainty
due to correlated lags or marginally significant irrelevant variables, but it does not solve
misspecification arising from unmodelled breaks.

4.2. Selection from a well-specified GUM

Finally we consider an information set that nests the LDGP so the GUM and resulting
terminal models are congruent. Equation (9) is the GUM specification in which we assume
that the location shift is unknown and is therefore searched for using a full set of saturating
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yt ŷT+h |T+h−1
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Figure 6: Left hand panels record selection from selection from (7) and right hand panels record selection from
(8), using Autometrics with a 5% target size. Top panels plot pointwise minimum and maximum for conditional
expectation against outturns, middle panel records cross plots of conditional expectations of terminal models
against the dependent variable with splines and bottom panels record mean, minimum and maximum 1-step
ahead point forecasts from pooled terminal models with known exogenous regressors.

impulse and step indicators.

yt = γ0 + γyyt−1 +
10∑
i=1

1∑
j=0

γijxi,t−j +
T∑
j=1

µj1{t=tj} +
T−1∑
k=1

κj1{t≤tj} + ηt (9)

Model averaging would estimate 2220 models. Even assuming the known break, so the step
shift 1(50<t≤81) is included in the information set, there would be over 4 million models to
estimate of which all but one will be misspecified in some direction and half would exclude
the known structural break. Even with tiny weights on the misspecified models, model
averaging will not produce a conditional expectation close to the outturn.

The GUM includes 212 irrelevant regressors (excluding the intercept which is fixed),
and so N > T , but selection is perfectly feasible using Autometrics within a few seconds,
see Castle and Hendry (2014) [13]. Applying selection at the tighter target significance
level of 2.5% results in two terminal models being retained, see table 2. We would expect
approximately 5 irrelevant variables to be retained on average at this significance level but
this is not the case for the given draw. At 10% 7 terminal models are retained, with the only
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difference in terminals due to the impulse and step indicators. At this loose significance
level Autometrics heavily overfits, retaining between 68 and 74 indicator variables due
to the downward bias in the equation standard error by removing many observations.
Eliminating sequentially marginally significant indicators results in the significance of other
indicators collapsing, which we term the ‘house of cards’ problem which can be present
when the selection significance level is too loose. At 1% a unique terminal model is retained
so no thick modelling is required.

TM1 TM2 Union Pooled

Constant 0.089 0.126 0.081 0.099
yt−1 0.640 0.666 0.641 0.649
x1,t 0.357 0.342 0.354 0.351
x2,t−1 0.428 0.415 0.423 0.422
x3,t 0.302 0.275 0.297 0.291
x4,t 0.512 0.477 0.503 0.497
x5,t 0.766 0.757 0.761 0.761
1t≤51 -2.528 -2.324 -2.547 -2.426∗

1t≤82 . 2.338 0.611 1.169∗

1t≤83 2.555 . 1.967 1.278∗

LL -149.0 -150.3 -148.9
σ̂ 1.126 1.140 1.131
AR(2) 0.230 0.158 0.229
ARCH(1) 0.118 0.254 0.118
Normality 0.553 0.470 0.557
Hetero 0.141 0.146 0.132
Chow(70%) 0.718 0.623 0.745

Table 2: Terminal models from Autometrics undertaking selection at a target size of 2.5% for GUM (9).
Coefficient estimates reported, with the unweighted average of TM1, TM2 and Union in the Pooled column.
p-values for diagnostic tests reported, along with the log-likelihood (LL) and estimated equation standard error
(σ̂). ∗ denotes averaging across TM1 and TM2 but excluding the union model.

The benefits of thick modelling are most apparent in this well-specified case where
the exogenous regressors are consistently selected across terminals and the only difference
between the two terminal models highlights the difficulty in pinpointing the precise date of
the structural break. Both terminals are mutually encompassing so thick modelling reflects
the uncertainty of the break timing. Thick modelling proposes to average the coefficient
estimates if a point estimate is required, although just reporting the range would be in
keeping with the thick modelling philosophy. Mean coefficient estimates for step indicators
should be treated carefully if averaging with the union of the terminal models. TM1 and
TM2 retain different break dates, but the union combines these resulting in a joint effect
of the step shift given by the sum of the coefficients in the union model. Therefore we
pool the step shift coefficients by excluding the union model.

In order to judge how well the thick modelling performs we should evaluate the pooled
model against the estimated LDGP. Even if a researcher knew the LDGP specification
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Figure 7: In-sample model fit and forecasts for selection from congruent GUM

she would still need to estimate the model, and as such could make mistakes based on
inference from the estimated LDGP. The estimated LDGP is given in equation (10):

yt = 0.704
(0.041)

yt−1 + 0.265
(0.087)

x1,t + 0.313
(0.086)

x2,t + 0.289
(0.093)

x3,t + 0.441
(0.098)

x4,t

+0.732
(0.113)

x5,t + 2.141
(0.400)

1{50<t≤81}

σ̂ = 1.176 (10)

Both terminal models retain an irrelevant variable, x2,t−1, instead of the relevant vari-
able x2,t, which has t̂ = 3.64. The other pooled coefficient estimates are close to the
estimated LDGP, with the lagged dependent variable closer to the true parameter value
than the estimated LDGP. Indeed, the terminals and the pooled model have smaller equa-
tion standard errors than the estimated LDGP, although fit is not a criterion used for
selection.

Figure 7 records the thick model bands given by the pointwise minimum and maximum
conditional expectation along with the outturns. The range has narrowed, even around
the uncertain break date, so the class of mutually encompassing congruent models all
result in very similar in-sample predictions. The purpose of thick modelling here is to
demonstrate that there is very little model uncertainty. Panel b records the 1-step ahead
conditional forecasts taken as the pointwise minimum, mean and maximum forecasts from
the thick modelling. Again, the range is virtually indistinguishable from a point forecast.
Applying forecast error bands to the thick model range would demonstrate the good
forecast performance of the thick model.

5. Conclusions

Granger’s pragmatic approach to econometrics led him to recognise that econometric
models will never exactly capture the LDGP, but will be approximations to it, with some
models closer approximations than others. Rather than discarding useful information
in the process of selecting just one unique model there are advantages to retaining all
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specifications that are close approximations. Combining this argument with the theory
of reduction, which gives measurable criteria for determining whether a model is a close
approximation to the LDGP, enables thick modelling over a congruent encompassing set
of models that are valid representations of the phenomenon of interest.

Thick modelling does not insure against model misspecification. The information set
must nest the LDGP, otherwise any form of model selection or model averaging is likely to
fail. If the information set available results in a poorly specified GUM it is unlikely that any
resulting terminal model will be congruent. Thick modelling across non-congruent terminal
models will lead to a wide pointwise range for the conditional expectation function. Such
a measure of model uncertainty is another signal of non-congruence. Model averaging will
fail in this context too.

Thick modelling is very helpful in cases where variables are highly correlated such as
where two consecutive lags are indistinguishable or where different impulses are retained
but are within close proximity of each other. In this setting, thick modelling flags model
uncertainty which will have implications for the timing of policy implementation, for
example. The resulting thick model in which parameter estimates are pooled (as opposed
to variables, as in the union model, or forecasts) will enable pointwise interpretation,
although statistical tests will require the standard errors to be pooled as well.

The dependence of the set of terminals for thick modelling on α suggest that different
criteria may be used for in-sample modelling and forecasting. Typically a tight significance
level is used such as α = min (1/N, 1/T, 1%), particularly when applying IIS and/or SIS,
to control the gauge. In forecasting it is not clear that ensuring parsimony by tight
selection is advantageous. Castle, Doornik and Hendry (2016) (see [11]) suggest setting α
between 15-30% to obtain a large set of undominated congruent terminal models. However,
these are likely to contain many adventitiously significant variables, and so applying bias
correction (Hendry and Krolzig, 2005, [43]) will downweight such effects. Averaging over
the resulting class of retained terminals will reduce the problem of retaining bad models
which selection aims to address, but will capture a broader range of close specifications
that thick modelling advises. A further alternative would be to apply thick modelling by
averaging over the terminals from a range of α, which is left for future research.

Although thick modelling does not overcome misspecification, indicator saturation
techniques such as IIS and SIS help to deliver well-specified models. Such techniques are
a form of robust estimation (see Johansen and Nielsen, 2016, [53]), such that the resulting
terminal models are valid representations of the data. Thick modelling in conjunction with
robust Gets selection using IIS and SIS would seem to be a pragmatic and informative
approach to model building which is in keeping with Granger’s views.
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