EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 3, No. 1, 2010, 16-25 ISSN 1307-5543 – www.ejpam.com

On N(k)-Mixed Quasi Einstein Manifolds

H G Nagaraja

Department of Mathematics, Central College, Bangalore University, Bangalore-560 001, Karnataka, India.

Abstract. In this paper N(k)-Mixed Quasi Einstein Manifolds($N(k) - (MQE)_n$) are introduced and the existence of these manifolds is proved. We give hyper surfaces of Euclidean spaces as examples of $N(k) - (MQE)_n$ and semi symmetric, ricci symmetric and ricci recurrent $N(k) - (MQE)_n$ manifolds are studied.

2000 Mathematics Subject Classifications: 53C25

Key Words and Phrases: N(k)-mixed quasi Einstein, mixed quasi constant curvature, ricci recurrent, semi symmetric, ricci symmetric

1. Introduction

M.C.Chaki and R.K.Maity [1] introduced the concept quasi Einstein manifolds. A non-flat Riemannian manifold $(M^n, g)(n > 2)$ is said to be a quasi Einstein manifold if its ricci tensor S of type (0,2) is not identically zero and satisfies the condition

$$S(X,Y) = ag(X,Y) + bA(X)A(Y),$$

where a and b are smooth functions of which $b \neq 0$ and A is a non zero 1-form such that g(X,U) = A(X), for all vector fields X and U is a unit vector field. U.C.De and Gopal Chandra Ghosh [4, 5] generalized the quasi Einstein manifolds. A non-flat Riemannian manifold $(M^n, g)(n > 2)$ is said to be a generalized quasi Einstein manifold if its ricci tensor S of type (0,2) is not identically zero and satisfies the condition

$$S(X,Y) = ag(X,Y) + bA(X)A(Y) + cB(X)B(Y),$$

where a, b and c are certain smooth functions, A and B are non zero 1-forms, and C and C are unit vector fields corresponding to 1-forms C and C are spectively such that C and C are called generators of

Email address: hgnraj@yahoo.com (H. Nagaraja)

the quasi Einstein manifold. The k-nullity distribution N(k) [8] of a Riemannian manifold M is defined by

$$N(k): p \to N_p(k) = \{Z \in T_pM \backslash R(X,Y)Z = k(g(Y,Z)X - g(X,Z)Y)\}$$

for all $X, Y \in TM$ and k is a smooth function.

M.M.Tripathy and Jeong - Jik Kim [6] introduced the notion of N(k)-quasi Einstein manifold which is defined as follows: If the generator U belongs to the k-nullity distribution N(k), then a quasi Einstein manifold (M^n, g) is called N(k)-quasi Einstein manifold. Motivated by the above definitions we give the following definition.

Definition 1. Let (M^n, g) be a non flat Riemannian manifold. If the ricci tensor S of (M^n, g) is non zero and satisfies

$$S(X,Y) = ag(X,Y) + bA(X)B(Y) + cB(X)A(Y), \tag{1}$$

where a, b and c are smooth functions and A and B are non zero 1-forms such that g(X,U) = A(X) and g(X,V) = B(X) for all vector fields X, and U and V being the orthogonal unit vector fields called generators of the manifold belong to N(k), then we say that (M^n, g) is a N(k)-mixed quasi Einstein manifold and is denoted by $N(k) - (MQE)_n$.

In this paper we introduce another notion of a manifold of mixed quasi constant curvature similar to manifold of quasi constant curvature defined in [4]. A Riemannian manifold (M^n , g) is called a manifold of mixed quasi constant curvature if it is conformally flat and the curvature tensor R of type (0,4) satisfies the condition

Let $\{e_i\}$ be an orthonormal basis of the tangent space at each point of the manifold. Taking $X = W = e_i$ and summing over $i, 1 \le i \le n$ in (2), we obtain

$$S(Y,Z) = (n-1)pg(Y,Z) + (n-1)q[A(Y)B(Z) + A(Z)B(Y)]$$

+s \[2g(Y,Z) - A(Z)B(Y) - A(Y)B(Z) \]

which implies

$$S(Y,Z) = ag(Y,Z) + bA(Y)B(Z) + cA(Z)B(Y)$$
(3)

where b = c = (n-1)q - s, a = (n-1)p + 2s. i.e. the space (M^n, g) is mixed quasi Einstein. Thus we have

Theorem 1. A manifold of mixed quasi constant curvature is a mixed quasi Einstein manifold.

Conversely suppose (M^n, g) is conformally flat mixed quasi Einstein manifold. Then

$$R(X,Y)Z = \frac{1}{n-2} \{ g(Y,Z)QX - g(X,Z)QY + S(Y,Z)X - S(X,Z)Y \}$$

$$-\frac{r}{(n-1)(n-2)} \{ g(Y,Z)X - g(X,Z)Y \}.$$
(4)

Here Q is Ricci operator defined by S(X,Y) = g(QX,Y). From the above equation, we get

$$'R(X,Y,Z,W) = g(R(X,Y)Z,W)
= \frac{1}{n-2} \{ g(Y,Z)S(X,W) - g(X,Z)S(Y,W)
+ S(Y,Z)g(X,W) - S(X,Z)g(Y,W) \}
- \frac{r}{(n-1)(n-2)} \{ g(Y,Z)g(X,W) - g(X,Z)g(Y,W) \}$$
(5)

Taking $X = Y = e_i$ and taking summation over $i, 1 \le i \le n$ in (1), we obtain r = na. Substituting this in (5) and using (1), we get

$$R(X,Y,Z,W) = p[g(Y,Z)g(X,W) - g(X,Z)g(Y,W)]$$

$$+ q[g(X,W)A(Y)B(Z) - g(X,Z)A(Y)B(W) + g(X,W)A(Z)B(Y)$$

$$- g(X,Z)A(W)B(Y)] + s[g(Y,Z)A(W)B(X) - g(Y,W)A(Z)B(X)$$

$$+ g(Y,Z)A(X)B(W) - g(Y,W)A(X)B(Z)]$$

where $p = \frac{a}{n-1}$, $q = \frac{b}{n-2}$, $s = \frac{c}{n-2}$.

i.e. (M^n, g) is a manifold of mixed quasi constant curvature.

2. Existence Theorem of a N(k)-mixed Quasi Einstein Manifolds

Theorem 2. If in a conformally flat Riemannian manifold (M^n, g) , the ricci tensor S satisfies the relation

$$S(X,Z)g(Y,W) - S(Y,Z)g(X,W) = \beta(g(Y,Z)S(X,W) - g(X,Z)S(Y,W)$$
(6)

where β is a non zero scalar, then (M^n, g) is a N(k)-mixed quasi Einstein manifold.

Proof. Let *U* be a vector field defined by g(X, U) = A(X), $\forall X \in TM$. Taking X = W = U in (6), we obtain

$$S(Y,Z) = ag(Y,Z) + bA(Y)B(Z) + cA(Z)B(Y)$$
(7)

where $a=\frac{-\alpha\beta}{u}, \alpha=S(U,U), u=g(U,U), b=\frac{1}{u}, c=\frac{\beta}{u},$ and S(U,Z)=S(Z,U)=g(QZ,U)=A(QZ)=B(Z). Therefore (M^n,g) is mixed quasi Einstein.

If (M^n, g) is conformally flat, then taking Z = U in (4), we obtain

$$R(X,Y)U = \frac{1}{n-2} \{ A(Y)QX - A(X)QY + S(Y,U)X - S(X,U)Y \}$$
 (8)

$$-\frac{r}{(n-1)(n-2)} \{A(Y)X - A(X)Y\} \tag{9}$$

Taking $\beta = 1$ in (6), we get

$$S(X,Z)g(Y,W) - S(Y,Z)g(X,W) - g(Y,Z)S(X,W) + g(X,Z)S(Y,W) = 0$$

Taking Z = U in the above equation, we obtain

$$S(X, U)g(Y, W) - S(Y, U)g(X, W) - A(Y)S(X, W) + A(X)S(Y, W) = 0,$$

which can be rewritten as g(S(X,U)Y - S(Y,U)X - A(Y)QX + A(X)QY,W) = 0, $\forall W$. Therefore we have S(X,U)Y - S(Y,U)X - A(Y)QX + A(X)QY = 0.

Substituting this in (8), we get R(X,Y)U = k(A(Y)X - A(X)Y), where $k = \frac{-r}{(n-1)(n-2)}$.

Therefore we have $U \in N_p(k)$, where $k = \frac{-r}{(n-1)(n-2)}$.

Suppose V is a unit vector field orthogonal to U. Then, we have $V \in N_p(k)$. Hence (M^n, g) is a N(k)-mixed quasi Einstein manifold.

As it is well known that a 3-dimensional Riemannian manifold is conformally flat. Thus we have

Corollary 1. A 3- dimensional manifold is $N\left(\frac{-r}{(n-1)(n-2)}\right)$ -mixed quasi Einstein manifold provided (6) holds.

3. Example of a $N(k) - (MQE)_n$ manifold

Let (M^n, \tilde{g}) be a hypersurface of the Euclidean space E^{n+1} . Let A be a (1,1) tensor corresponding to the normal valued second fundamental tensor H.

$$\tilde{g}(A_{\varepsilon}(X), Y) = g(H(X, Y), \xi) \tag{10}$$

where ξ is a unit normal vector field and X and Y are tangent vector fields. Further

$$H_{\mathcal{E}}(X,Y) = \tilde{g}(A_{\mathcal{E}}(X),Y) \tag{11}$$

The hypersurface (M^n, \tilde{g}) is quasi umbilical if

$$H_{\varepsilon}(X,Y) = \alpha \tilde{g}(X,Y) + \beta C(X)D(Y) \tag{12}$$

In view of (10), we have

$$H(X,Y) = \alpha g(X,Y)\xi + \beta C(X)D(Y)\xi. \tag{13}$$

The Gauss equation of M^n in E^{n+1} can be written as

$$\tilde{g}(\tilde{R}(X,Y)Z,W) = \tilde{g}(H(X,W),H(Y,Z)) - \tilde{g}(H(W,Y),H(Z,X)) \tag{14}$$

From (12) and (14), we have

Contracting the above equation with $X = W = e_i$ and taking summation over $i, 1 \le i \le n$, we obtain

$$\tilde{S}(Y,Z) = ag(Y,Z) + bC(Y)D(Z) + cC(Z)D(Y)$$

where $a = (n - 1)\alpha^{2}$, $b = (n - 1)\alpha\beta + \beta^{2}$, $c = -\beta(2\alpha + \beta)$.

Hence (M^n, \tilde{g}) is a mixed quasi Einstein manifold.

Suppose U and V are unit orthogonal vectorfields corresponding to the 1-forms C and D respectively. Then putting Z = U in (13), we get

$$H(X,U) = \alpha C(X)\xi. \tag{15}$$

Putting Z = U in (14) and using (15), we get

$$\tilde{R}(X,Y)U = k(C(Y)X - C(X)Y)$$

where $k = \alpha^2$. Similarly we can show that

$$\tilde{R}(X,Y)V = k(D(Y)X - D(X)Y)$$

where $k = \alpha^2$. Thus we have

Theorem 3. A quasi umbilical hypersurface of a Euclidean space E^{n+1} is a N(k)-mixed quasi Einstein manifold.

4. Ricci Curvature, Eigen Vectors and Associated Scalars of a $N(k) - (MQE)_n$

From (1) we have S(U,U)=a=S(V,V), b=S(U,V)=S(V,U)=c, since g(U,V)=0. Therefore only one of b or c is sufficient to define a mixed quasi Einstein space. A mixed quasi Einstein space may be defined as a Riemannian manifold in which ricci tensor S satisfies

$$S(X,Y) = ag(X,Y) + b(A(X)B(Y) + B(X)A(Y)),$$

It is well known that for a unit vector field X, S(X,X) is the ricci curvature in the direction of X. Now if X is a unit vector field in the section spanned by U and V, then we have

$$1 = g(X,X) = g(\alpha U + \beta V, \alpha U + \beta V) = \alpha^2 + \beta^2,$$

since g(U,V) = 0 and g(U,U) = g(V,V) = 1. Now

$$S(X,X) = S(\alpha U + \beta V, \alpha U + \beta V)$$

= $\alpha + 2bA(X)B(X)$.

Thus we can state that

Theorem 4. In a $N(k) - (MQE)_n$ manifold, the ricci curvature in the direction of both U and V is 'a' and the ricci curvature in all other directions of the section of U and V is a + 2bA(X)B(X).

Let (M^n, g) be a $N(k) - (MQE)_n$ manifold.

Then S(U, U) = S(V, V) = a from which we get g(QU, U) = g(QV, V) = a. Since $U, V \in N_p(k)$, we have,

$$g(R(X,Y)U,W) = k \{A(Y)g(X,W) - A(X)g(Y,W)\}.$$

Putting $X = W = e_i$ and taking summation over $i, 1 \le i \le n$, we obtain

$$S(Y,U) = (n-1)kA(X)$$
(16)

Similarly we can get

$$S(Y,V) = (n-1)kB(X) \tag{17}$$

From (1), we have

$$S(X,U) = aA(X) + bB(X)$$
(18)

$$S(X,V) = bA(X) + aB(X) \tag{19}$$

Substracting (17) from (16) and (19) from (18), and comparing the resulting equations, we obtain

$$k = \frac{a-b}{n-1}$$
.

Therefore

$$S(X,U) = (a-b)g(X,U)$$

and

$$S(X,V) = (a-b)g(X,V).$$

Therefore *U* and *V* are eigen vectors corresponding to the eigen value (a - b).

5. Semi Symmetric and Ricci Symmetric $N(k) - (MQE)_n$ Manifolds

A Riemannian manifold (M^n, g) is semi symmetric if $R(X, Y).R = 0, \forall X, Y \in TM$ Since U and V are in $N_p(k)$, we have

$$R(X,Y)U = k(A(Y)X - A(X)Y)$$
(20)

$$R(X,Y)V = k(B(Y)X - B(X)Y)$$
(21)

The equation (20) is equivalent to

$$R(U,Y)Z = k\left(g(Y,Z)U - A(Z)Y\right) \tag{22}$$

$$R(X,U)Z = k\left(A(Z)X - g(X,Z)U\right) \tag{23}$$

The equation (21) is equivalent to

$$R(V,Y)Z = k\left(g(Y,Z)V - B(Z)Y\right) \tag{24}$$

$$R(X,V)Z = k\left(B(Z)X - g(X,Z)V\right) \tag{25}$$

If (M^n, g) is semi symmetric then we have

$$R(X,Y)R(Z,W)T - R(R(X,Y)Z,W)T - R(Z,R(X,Y)W)T - R(Z,W)R(X,Y)T = 0$$
 (26)

Putting X = U and T = V in (26), then using (21) and (22), we get

$$k^{2} \left\{ 2A(Z)B(Y)W + A(W)B(Z)Y - 2B(Z)g(Y,W)U \right\} = 0$$
 (27)

From (27), we have

If $k \neq 0$, then $2A(Z)B(Y)W + A(W)B(Z)Y = 2B(Z)g(Y,W)U, \forall Y, Z, W \in TM$ holds. Putting Z = V in the above equation, we get

$$g(Y, W)U = A(W)Y$$

Taking covariant derivative on both sides of the above equation with respect to Z, we obtain

$$g(X,Y)\nabla_Z U = (ZA(Y)X - A(Y))\nabla_Z X, \forall X, Y$$

Putting Y = V, we get $B(X)\nabla_Z U = 0$.

Since $B(X) \neq 0$, we obtain $\nabla_Z U = 0$.

i.e. *U* is a parallel vector field.

Similarly by taking X = V and T = U in (26),

we obtain $\nabla_Z V = 0$.

i.e. *V* is a parallel vector field.

Conversely suppose that U and V are parallel vector fields. Then $\nabla_Z U = 0$ and $\nabla_Z V = 0$, which then imply that

R(X, Y)U = 0 and R(X, Y)V = 0.

Substituting this in (26) with X = U, we obtain R(U,X).R = 0.

Similarly we get R(V,X).R = 0.

Thus we can state that

Theorem 5. A $N(k) - (MQE)_n$ manifold with $k \neq 0$ satisfies R(U,X).R = 0 (or R(V,X).R = 0) if and only if U(orV) is a parallel vector field.

Let (M^n, g) be a $N(k) - (MQE)_n$ ricci semi symmetric manifold. Then we have

$$S(R(X,Y)Z,W) + S(Z,R(X,Y)W = 0$$
 (28)

Putting X = V in (28) we obtain

$$k \{g(Y,Z)S(V,W) - B(Z)S(Y,W) + g(Y,W)S(Z,V) - B(W)S(Z,Y)\} = 0$$

Putting W = V in the above equation, we get

$$k \left[S(Z,Y) - ag(Y,Z) + bA(Y)B(Z) - bA(Z)B(Y) \right] = 0$$

If $k \neq 0$ then we have S(Z, Y) = a g(Y, Z) - b A(Y) B(Z) + b A(Z) B(Y).

Comparing this with (1), we obtain b + c = 0.

But we have b - c = 0, { section 4 }

Therefore b = 0 and c = 0. i.e. (M^n, g) reduces to Einstein space which it is not.

Therefore we must have k = 0.

Conversely suppose k = 0. Then we obtain R(V,X)Y = 0 which implies R(V,X).S = 0. Similarly, we have, R(U,X).S = 0. if and only if k = 0.

Thus we have.

Theorem 6. $A N(k) - (MQE)_n$ manifold satisfies R(V,X).S = 0. and R(U,X).S = 0 if and only if k = 0.

6. Ricci Recurrent $N(k) - (MQE)_n$ Manifolds

Let (M^n, g) be a $N(k) - (MQE)_n$ manifold. If U and V are parallel vector fields, then $\nabla_X U = 0$ and $\nabla_X V = 0$.

From which we get that R(X, Y)U = 0 and R(X, Y)U = 0. Therefore

$$S(X, U) = 0, S(X, V) = 0$$
 (29)

From (1), we have

$$S(X, U) = aA(X) + bB(X)$$
and (30)

$$S(X,V) = aB(X) + bA(X)$$
(31)

From (29), (30) and (31), we have a = b.

Therefore we can rewrite the equation (1) in the following form:

$$S(X,Y) = a \{g(X,Y) + A(X)B(Y) + B(X)A(Y)\}.$$

Taking the covariant derivative of the above equation with respect to Z, we obtain

$$\nabla_Z S(X,Y) = da(Z) \left\{ g(X,Y) + A(X)B(Y) + B(X)A(Y) \right\}$$

REFERENCES 24

since $\nabla_X U = 0$ and $\nabla_X V = 0$ imply that $\nabla_Z A(X) = 0$ and $\nabla_Z B(X) = 0$. Therefore $(\nabla_Z S)(X, Y) = \frac{da(Z)}{a} S(X, Y)$,

i.e. the manifold (M^n, g) is ricci recurrent.

Conversely, suppose that $N(k) - (MQE)_n$ manifold is ricci recurrent. Then

$$(\nabla_X S)(Y,Z) = D(X)S(Y,Z), D(X) \neq 0.$$

But

$$(\nabla_X S)(Y,Z) = XS(Y,Z) - S(\nabla_X Y,Z) - S(Y,\nabla_X Z)$$

Therefore

$$D(X)S(Y,Z) = XS(Y,Z) - S(\nabla_X Y,Z) - S(Y,\nabla_X Z)$$

Putting Y = Z = U, we obtain

 $Xa - aD(X) = 2a \left(g \left(\nabla_X U, U \right) + B(\nabla_X U) \right)$

i.e. $(da - aD)X = 2aB(\nabla_X U)$. since g(U, U) = 1 implies $g(\nabla_X U, U) = 0$

Therefore $B(\nabla_X U) = 0$ if and only if

$$(da)(X) = aD(X) \tag{32}$$

But $B(\nabla_X U) = 0$ implies that either U is a parallel vector field or $\nabla_X U \perp V$. Similarly we have, if (32) holds then either V is a parallel vector field or $\nabla_X V \perp U$. Thus we can state that

Theorem 7. A $N(k)(MQE)_n$ manifold, where the generators U and V are parallel is a ricci recurrent manifold. Conversely suppose that $N(k) - (MQE)_n$ manifold is ricci recurrent, then either the vector field U (or V) is parallel or $\nabla_X U \perp V$ (or $\nabla_X V \perp U$).

References

- [1] M.C.Chaki and R.K.Maity, *On Quasi Einstein manifolds*, publ. math. Debrecen, 57(2000) 297-306.
- [2] B.Y.Chen, Geometry of Submanifolds, Marcel Dekker, Inc., New York, 1973.
- [3] B.Y.Chen and K. Yano, hypersurfaces of a conformally flat space, Tensor, N.S., 26 (1972) 318-322.
- [4] U.C.De and Gopal Chandra Ghosh, *On quasi Einstein manifolds*, Periodica Mathematica Hungarica, 48(1-2)(2004) 223-231.
- [5] U.C.De and Gopal Chandra Ghosh, *On generalized quasi Einstein manifolds*, Kyungpook math. J., 44(2004) 607-615.
- [6] Mukut Mani tripathi and Jeong-Sik Kim, *On N(k)-quasi Einstein manifolds,* Commun. Korean Math. Soc. 22(3) (2007),411-417.

REFERENCES 25

[7] Özgür Cihan and Sular Sibel, *On N(k)-quasi Einstein manifolds satisfying certain conditions*, Balkan J. Geom. Appl. 13(2008), no: 2, 74-79.

[8] S.Tanno, Ricci curvatures of contact Riemannian manifolds, Tohoku Math. J. 40 (1988) 441-448.