EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 10, No. 3, 2017, 473-487
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

Common fixed point theorems for three maps in cone pentagonal metric spaces

Abba Auwalu ${ }^{1, *}$, Evren Hınçal ${ }^{1}$
${ }^{1}$ Department of Mathematics, Near East University, Nicosia-TRNC, Turkey

Abstract

In this paper, we prove some common fixed point theorems of three self mappings in non-normal cone pentagonal metric spaces. Our results extend and improve the recent results announced by many authors.

2010 Mathematics Subject Classifications: $47 \mathrm{H} 10,54 \mathrm{H} 25$
Key Words and Phrases: Cone pentagonal metric spaces, Common fixed point, Contraction mapping principle, Weakly compatible maps

1. Introduction

The concept of metric space was introduced by Fŕechet $[8]$. Let (X, d) be a metric space and $S: X \rightarrow X$ be a mapping. Then S is called Banach contraction if there exists $\alpha \in[0,1)$ such that

$$
\begin{equation*}
d(S x, S y) \leq \alpha d(x, y), \quad \text { for all } x, y \in X \tag{1}
\end{equation*}
$$

Banach [7] proved that if X is complete, then every Banach contraction mapping has a fixed point. The mapping S is called Kannan contraction if there exists $\alpha \in[0,1 / 2)$ such that

$$
\begin{equation*}
d(S x, S y) \leq \alpha[d(x, S x)+d(y, S y)], \quad \text { for all } x, y \in X \tag{2}
\end{equation*}
$$

Kannan [14] proved that if X is complete, then every Kannan contraction has a fixed point. He further showed that the conditions (1) and (2) are independent of each other (see, [14, 15]).
The study of existence and uniqueness of fixed points of a mapping and common fixed points of two or more mappings has become a subject of great interest. Many authors proved the Banach contraction and Kannan contraction principles in various generalized metric spaces (e.g., see $[4,5,6,9,10,11,13,18])$.
Long-Guang and Xian [11] introduced the concept of a cone metric space and proved some fixed point theorems for contractive type conditions in cone metric spaces. Later on many
*Corresponding author.
Email addresses: abba.auwalu@neu.edu.tr, abbaauwalu@yahoo.com (A. Auwalu), evren.hincal@neu.edu.tr, evrenhincal@yahoo.co.uk (E. Hınçal)
http://www.ejpam.com 473 © 2017 EJPAM All rights reserved.
authors have (for e.g., $[1,6,9,12,17,19]$) proved some fixed point theorems for different contractive types conditions in cone metric spaces.

Recently, Garg and Agarwal [9] introduced the notion of cone pentagonal metric space and proved Banach contraction mapping principle in a normal cone pentagonal metric space setting.
Motivated and inspired by the results of [9, 17, 16], it is our purpose in this paper to continue the study of common fixed points of a three self mappings in non-normal cone pentagonal metric space setting. Our results extend and improve the results of $[2,3,6,9$, $13,18,17,16]$, and many others.

2. Preliminaries

The following definitions and Lemmas, introduced in [1, 3, 6, 9, 11], are needed in the sequel.

Definition 1. Let E be a real Banach space and P subset of E. P is called a cone if and only if:
(i) P is closed, nonempty, and $P \neq\{0\}$;
(ii) $a, b \in \mathbb{R}, \quad a, b \geq 0$ and $x, y \in P \Longrightarrow a x+b y \in P$;
(iii) $x \in P$ and $-x \in P \Longrightarrow x=0$.

Given a cone $P \subseteq E$, we defined a partial ordering \leq with respect to P by $x \leq y$ if and only if $y-x \in P$. We shall write $x<y$ to indicate that $x \leq y$ but $x \neq y$, while $x \ll y$ will stand for $y-x \in \operatorname{int}(P)$, where $\operatorname{int}(P)$ denotes the interior of P.

A cone P is called normal if there is a number $k \geq 1$ such that for all $x, y \in E$, the inequality

$$
\begin{equation*}
0 \leq x \leq y \Longrightarrow\|x\| \leq k\|y\| . \tag{3}
\end{equation*}
$$

The least positive number k satisfying (3) is called the normal constant of P.
In this paper, we always suppose that E is a real Banach space and P is a cone in E with $\operatorname{int}(P) \neq \emptyset$ and \leq is a partial ordering with respect to P.

Definition 2. Let X be a nonempty set. Suppose the mapping $\rho: X \times X \rightarrow E$ satisfies:
(i) $0<\rho(x, y)$ for all $x, y \in X$ and $\rho(x, y)=0$ if and only if $x=y$;
(ii) $\rho(x, y)=\rho(y, x)$ for all $x, y \in X$;
(iii) $\rho(x, y) \leq \rho(x, z)+\rho(z, y)$ for all $x, y, z \in X$.

Then ρ is called a cone metric on X, and (X, ρ) is called a cone metric space.
The concept of a cone metric space is more general than that of a metric space, because each metric space is a cone metric space where $E=\mathbb{R}$ and $P=[0, \infty)$ (e.g., see [11]).

Definition 3. Let X be a nonempty set. Suppose the mapping $\rho: X \times X \rightarrow E$ satisfies:
(i) $0<\rho(x, y)$ for all $x, y \in X$ and $\rho(x, y)=0$ if and only if $x=y$;
(ii) $\rho(x, y)=\rho(y, x)$ for all $x, y \in X$;
(iii) $\rho(x, y) \leq \rho(x, w)+\rho(w, z)+\rho(z, y)$ for all $x, y, z \in X$ and for all distinct points $w, z \in X-\{x, y\}$ [Rectangular property].

Then ρ is called a cone rectangular metric on X, and (X, ρ) is called a cone rectangular metric space.

Remark 1. Every cone metric space is cone rectangular metric space. The converse is not necessarily true (e.g., see [6]).
Definition 4. Let X be a non empty set. Suppose the mapping $d: X \times X \rightarrow E$ satisfies:
(i) $0<d(x, y)$ for all $x, y \in X$ and $d(x, y)=0$ if and only if $x=y$;
(ii) $d(x, y)=d(y, x)$ for $x, y \in X$;
(iii) $d(x, y) \leq d(x, z)+d(z, w)+d(w, u)+d(u, y)$ for all $x, y, z, w, u \in X$ and for all distinct points $z, w, u, \in X-\{x, y\}$ [Pentagonal property].

Then d is called a cone pentagonal metric on X, and (X, d) is called a cone pentagonal metric space.
Remark 2. Every cone rectangular metric space and so cone metric space is cone pentagonal metric space. The converse is not necessarily true (e.g., see [9]).

Let (X, d) be a cone pentagonal metric space. Let $\left\{x_{n}\right\}$ be a sequence in X and $x \in X$. If for every $c \in E$ with $0 \ll c$ there exist $n_{0} \in \mathbb{N}$ and that for all $n>n_{0}, d\left(x_{n}, x\right) \ll c$, then $\left\{x_{n}\right\}$ is said to be convergent and $\left\{x_{n}\right\}$ converges to x, and x is the limit of $\left\{x_{n}\right\}$. We denote this by $\lim _{n \rightarrow \infty} x_{n}=x$ or $x_{n} \rightarrow x$ as $n \rightarrow \infty$. If for every $c \in E$, with $0 \ll c$ there exist $n_{0} \in \mathbb{N}$ such that for all $n, m>n_{0}, d\left(x_{n}, x_{m}\right) \ll c$, then $\left\{x_{n}\right\}$ is called Cauchy sequence in X. If every Cauchy sequence is convergent in X, then X is called a complete cone pentagonal metric space.

Definition 5. Let P be a cone defined as above and let Φ be the set of non decreasing continuous functions $\varphi: P \rightarrow P$ satisfying:
(i) $0<\varphi(t)<t$ for all $t \in P \backslash\{0\}$,
(ii) the series $\sum_{n \geq 0} \varphi^{n}(t)$ converge for all $t \in P \backslash\{0\}$

From (i), we have $\varphi(0)=0$, and from (ii), we have $\lim _{n \rightarrow 0} \varphi^{n}(t)=0$ for all $t \in P \backslash\{0\}$.
Let T and S be self maps of a nonempty set X. If $w=T x=S x$ for some $x \in X$, then x is called a coincidence point of T and S and w is called a point of coincidence of T and S. Also, T and S are said to be weakly compatible if they commute at their coincidence points, that is, $T x=S x$ implies that $T S x=S T x$.

Lemma 1. Let T and S be weakly compatible self mappings of nonempty set X. If T and S have a unique point of coincidence $w=T x=S x$, then w is the unique common fixed point of T and S.

Lemma 2. Let (X, d) be a cone metric space with cone P not necessary to be normal. Then for $a, c, u, v, w \in E$, we have
(i) If $a \leq h a$ and $h \in[0,1)$, then $a=0$.
(ii) If $0 \leq u \ll c$ for each $0 \ll c$, then $u=0$.
(iii) If $u \leq v$ and $v \ll w$, then $u \ll w$.

Lemma 3. Let (X, d) be a complete cone pentagonal metric space. Let $\left\{x_{n}\right\}$ be a Cauchy sequence in X and suppose that there is natural number N such that:
(i) $x_{n} \neq x_{m}$ for all $n, m>N$;
(ii) x_{n}, x are distinct points in X for all $n>N$;
(iii) x_{n}, y are distinct points in X for all $n>N$;
(iv) $x_{n} \rightarrow x$ and $x_{n} \rightarrow y$ as $n \rightarrow \infty$.

Then $x=y$.

3. Main Results

In this section, we prove Banach type and Kannan type contraction principles in cone pentagonal metric spaces of a three self mappings. We give some examples to illustrate the results.

Theorem 1. Let (X, d) be a cone pentagonal metric space. Suppose the mappings S, f, g : $X \rightarrow X$ satisfies the contractive condition:

$$
\begin{equation*}
d(S x, f y) \leq \varphi(d(g x, g y)), \tag{4}
\end{equation*}
$$

for all $x, y \in X$, where $\varphi \in \Phi$. Suppose that $S(X) \cup f(X) \subseteq g(X)$, and $g(X)$ is a complete subspace of X, then the mappings S, f and g have a unique point of coincidence in X. Moreover, if (S, g) and (f, g) are weakly compatible then S, f and g have a unique common fixed point in X.

Proof. Let x_{0} be an arbitrary point in X. Since $S(X) \cup f(X) \subseteq g(X)$, we can choose $x_{1} \in X$ such that $g x_{1}=S x_{0}$. Also we can choose $x_{2} \in X$ such that $g x_{2}=f x_{1}$. Continuing this process, having chosen x_{n} in X, we obtain x_{n+1} such that

$$
g x_{n+1}=S x_{n} \text { and } g x_{n+2}=f x_{n+1}, \text { for all } n=0,1,2, \cdots .
$$

If $g x_{n}=g x_{n+1}$, then $g x_{n}=S x_{n}=f x_{n}$, and x_{n} is a coincidence point of S, f and g. Hence, we assume that $x_{n} \neq x_{n+1}$ for all $n \in \mathbb{N}$. Then, from (4), it follows that

$$
\begin{align*}
d\left(g x_{n}, g x_{n+1}\right) & =\varphi\left(d\left(S x_{n-1}, f x_{n}\right)\right) \\
& \leq \varphi\left(d\left(g x_{n-1}, g x_{n}\right)\right) \\
& \leq \varphi^{2}\left(d\left(g x_{n-2}, g x_{n-1}\right)\right) \\
& \vdots \\
& \leq \varphi^{n}\left(d\left(g x_{0}, g x_{1}\right)\right) \tag{5}
\end{align*}
$$

In similar way, it again follows that

$$
\begin{align*}
& d\left(g x_{n}, g x_{n+2}\right) \leq \varphi^{n}\left(d\left(g x_{0}, g x_{2}\right)\right), \tag{6}\\
& d\left(g x_{n}, g x_{n+3}\right) \leq \varphi^{n}\left(d\left(g x_{0}, g x_{3}\right)\right) . \tag{7}
\end{align*}
$$

Similarly, for $k=1,2,3, \cdots$, it further follows that

$$
\begin{align*}
d\left(g x_{n}, g x_{n+3 k+1}\right) & \leq \varphi^{n}\left(d\left(g x_{0}, g x_{3 k+1}\right)\right), \tag{8}\\
d\left(g x_{n}, g x_{n+3 k+2}\right) & \leq \varphi^{n}\left(d\left(g x_{0}, g x_{3 k+2}\right)\right), \tag{9}\\
d\left(g x_{n}, g x_{n+3 k+3}\right) & \leq \varphi^{n}\left(d\left(g x_{0}, g x_{3 k+3}\right)\right) . \tag{10}
\end{align*}
$$

By pentagonal property and (5), we have

$$
\begin{aligned}
d\left(g x_{0}, g x_{4}\right) & \leq d\left(g x_{0}, g x_{1}\right)+d\left(g x_{1}, g x_{2}\right)+d\left(g x_{2}, g x_{3}\right)+d\left(g x_{3}, g x_{4}\right) \\
& \leq d\left(g x_{0}, g x_{1}\right)+\varphi\left(d\left(g x_{0}, g x_{1}\right)\right)+\varphi^{2}\left(d\left(g x_{0}, g x_{1}\right)\right)+\varphi^{3}\left(d\left(g x_{0}, g x_{1}\right)\right) \\
& \leq \sum_{i=0}^{3} \varphi^{i}\left(d\left(g x_{0}, g x_{1}\right)\right),
\end{aligned}
$$

and

$$
\begin{aligned}
d\left(g x_{0}, g x_{7}\right) \leq & d\left(g x_{0}, g x_{1}\right)+d\left(g x_{1}, g x_{2}\right)+d\left(g x_{2}, g x_{3}\right)+d\left(g x_{3}, g x_{4}\right) \\
& +d\left(g x_{4}, g x_{5}\right)+d\left(g x_{5}, g x_{6}\right)+d\left(g x_{6}, g x_{7}\right) \\
\leq & \sum_{i=0}^{6} \varphi^{i}\left(d\left(g x_{0}, g x_{1}\right)\right) .
\end{aligned}
$$

Now, by induction, we obtain for each $k=1,2,3, \cdots$

$$
\begin{equation*}
d\left(g x_{0}, g x_{3 k+1}\right) \leq \sum_{i=0}^{3 k} \varphi^{i}\left(d\left(g x_{0}, g x_{1}\right)\right) . \tag{11}
\end{equation*}
$$

Also, using (5), (6), and pentagonal property, we have that

$$
d\left(g x_{0}, g x_{5}\right) \leq \sum_{i=0}^{2} \varphi^{i}\left(d\left(g x_{0}, g x_{1}\right)\right)+\varphi^{3}\left(d\left(g x_{0}, g x_{2}\right)\right),
$$ and

$$
d\left(g x_{0}, g x_{8}\right) \leq \sum_{i=0}^{5} \varphi^{i}\left(d\left(g x_{0}, g x_{1}\right)\right)+\varphi^{6}\left(d\left(g x_{0}, g x_{2}\right)\right) .
$$

By induction, we obtain for each $k=1,2,3, \cdots$

$$
\begin{equation*}
d\left(g x_{0}, g x_{3 k+2}\right) \leq \sum_{i=0}^{3 k-1} \varphi^{i}\left(d\left(g x_{0}, g x_{1}\right)\right)+\varphi^{3 k}\left(d\left(g x_{0}, g x_{2}\right)\right) . \tag{12}
\end{equation*}
$$

Again, using (5), (7), and pentagonal property, we have that

$$
d\left(g x_{0}, g x_{6}\right) \leq \sum_{i=0}^{2} \varphi^{i}\left(d\left(g x_{0}, g x_{1}\right)\right)+\varphi^{3}\left(d\left(g x_{0}, g x_{3}\right)\right)
$$

and

$$
d\left(g x_{0}, g x_{9}\right) \leq \sum_{i=0}^{5} \varphi^{i}\left(d\left(g x_{0}, g x_{1}\right)\right)+\varphi^{6}\left(d\left(g x_{0}, g x_{3}\right)\right)
$$

By induction, we obtain for each $k=1,2,3, \cdots$

$$
\begin{equation*}
d\left(g x_{0}, g x_{3 k+3}\right) \leq \sum_{i=0}^{3 k-1} \varphi^{i}\left(d\left(g x_{0}, g x_{1}\right)\right)+\varphi^{3 k}\left(d\left(g x_{0}, g x_{3}\right)\right) \tag{13}
\end{equation*}
$$

Using (8) and (11), for $k=1,2,3, \cdots$, we have

$$
\begin{align*}
d\left(g x_{n}, g x_{n+3 k+1}\right) & \leq \varphi^{n} \sum_{i=0}^{3 k} \varphi^{i}\left(d\left(g x_{0}, g x_{1}\right)\right) \\
& \leq \varphi^{n}\left[\sum_{i=0}^{3 k} \varphi^{i}\left(d\left(g x_{0}, g x_{1}\right)+d\left(g x_{0}, g x_{2}\right)+d\left(g x_{0}, g x_{3}\right)\right)\right] \\
& \leq \varphi^{n}\left[\sum_{i=0}^{\infty} \varphi^{i}\left(d\left(g x_{0}, g x_{1}\right)+d\left(g x_{0}, g x_{2}\right)+d\left(g x_{0}, g x_{3}\right)\right)\right] \tag{14}
\end{align*}
$$

Similarly for $k=1,2,3, \cdots,(9)$ and (12) implies that

$$
\begin{align*}
d\left(g x_{n}, g x_{n+3 k+2}\right) & \leq \varphi^{n}\left[\sum_{i=0}^{3 k-1} \varphi^{i}\left(d\left(g x_{0}, g x_{1}\right)\right)+\varphi^{3 k}\left(d\left(g x_{0}, g x_{2}\right)\right)\right] \\
& \leq \varphi^{n}\left[\sum_{i=0}^{\infty} \varphi^{i}\left(d\left(g x_{0}, g x_{1}\right)+d\left(g x_{0}, g x_{2}\right)+d\left(g x_{0}, g x_{3}\right)\right)\right] \tag{15}
\end{align*}
$$

Again, for $k=1,2,3, \cdots,(10)$ and (13) implies that

$$
\begin{equation*}
d\left(g x_{n}, g x_{n+3 k+3}\right) \leq \varphi^{n}\left[\sum_{i=0}^{\infty} \varphi^{i}\left(d\left(g x_{0}, g x_{1}\right)+d\left(g x_{0}, g x_{2}\right)+d\left(g x_{0}, g x_{3}\right)\right)\right] \tag{16}
\end{equation*}
$$

Thus, by (14), (15), and (16), we have, for each m,

$$
\begin{equation*}
d\left(g x_{n}, g x_{n+m}\right) \leq \varphi^{n}\left[\sum_{i=0}^{\infty} \varphi^{i}\left(d\left(g x_{0}, g x_{1}\right)+d\left(g x_{0}, g x_{2}\right)+d\left(g x_{0}, g x_{3}\right)\right)\right] . \tag{17}
\end{equation*}
$$

Since $\sum_{i=0}^{\infty} \varphi^{i}\left(d\left(g x_{0}, g x_{1}\right)+d\left(g x_{0}, g x_{2}\right)+d\left(g x_{0}, g x_{3}\right)\right)$ converges (by definition 5), where $d\left(g x_{0}, g x_{1}\right)+d\left(g x_{0}, g x_{2}\right)+d\left(g x_{0}, g x_{3}\right) \in P \backslash\{0\}$, and P is closed, then $\sum_{i=0}^{\infty} \varphi^{i}\left(d\left(g x_{0}, g x_{1}\right)+\right.$ $\left.d\left(g x_{0}, g x_{2}\right)+d\left(g x_{0}, g x_{3}\right)\right) \in P \backslash\{0\}$. Hence

$$
\lim _{n \rightarrow \infty} \varphi^{n}\left[\sum_{i=0}^{\infty} \varphi^{i}\left(d\left(g x_{0}, g x_{1}\right)+d\left(g x_{0}, g x_{2}\right)+d\left(g x_{0}, g x_{3}\right)\right)\right]=0 .
$$

Then, for given $c \gg 0$, there is a natural number N_{1} such that

$$
\begin{equation*}
\varphi^{n}\left[\sum_{i=0}^{\infty} \varphi^{i}\left(d\left(g x_{0}, g x_{1}\right)+d\left(g x_{0}, g x_{2}\right)+d\left(g x_{0}, g x_{3}\right)\right)\right] \ll c, \quad \forall n \geq N_{1} . \tag{18}
\end{equation*}
$$

Thus, from (17) and (18), we have

$$
d\left(g x_{n}, g x_{n+m}\right) \ll c, \text { for all } n \geq N_{1}
$$

Therefore, $\left\{g x_{n}\right\}$ is a Cauchy sequence in X. Since $g(X)$ is a complete subspace of X, there exists a points $u, v \in g(X)$ such that $\lim _{n \rightarrow \infty} g x_{n}=v=g u$.
Now, we show that $g u=S u$. Given $c \gg 0$, we choose a natural numbers N_{2}, N_{3} such that $d\left(v, g x_{n}\right) \ll \frac{c}{4}, \quad \forall n \geq N_{2}$, and $d\left(g x_{n}, g x_{n+1}\right) \ll \frac{c}{4}, \quad \forall n \geq N_{3}$. Since $x_{n} \neq x_{m}$ for $n \neq m$, by pentagonal property, we have that

$$
\begin{aligned}
d(g u, S u) & \leq d\left(g u, g x_{n}\right)+d\left(g x_{n}, g x_{n+1}\right)+d\left(g x_{n+1}, g x_{n+2}\right)+d\left(g x_{n+2}, S u\right) \\
& =d\left(v, g x_{n}\right)+d\left(g x_{n}, g x_{n+1}\right)+d\left(g x_{n+1}, g x_{n+2}\right)+d\left(S u, f x_{n+1}\right) \\
& \leq d\left(v, g x_{n}\right)+d\left(g x_{n}, g x_{n+1}\right)+d\left(g x_{n+1}, g x_{n+2}\right)+\varphi\left(d\left(g u, g x_{n+1}\right)\right) \\
& <d\left(v, g x_{n}\right)+d\left(g x_{n}, g x_{n+1}\right)+d\left(g x_{n+1}, g x_{n+2}\right)+d\left(v, g x_{n+1}\right) \\
& \ll \frac{c}{4}+\frac{c}{4}+\frac{c}{4}+\frac{c}{4}=c, \text { for all } n \geq N,
\end{aligned}
$$

where $N:=\max \left\{N_{2}, N_{3}\right\}$. Since c is arbitrary, we have $d(g u, S u) \ll \frac{c}{m}, \forall m \in \mathbb{N}$. Since $\frac{c}{m} \rightarrow 0$ as $m \rightarrow \infty$, we conclude $\frac{c}{m}-d(g u, S u) \rightarrow-d(g u, S u)$ as $m \rightarrow \infty$. Since P is closed, $-d(g u, S u) \in P$. Hence $d(g u, S u) \in P \cap-P$. By definition of cone we get that $d(g u, S u)=0$, and so $g u=S u=v$. Hence, v is a coincidence point of S and g. Similarly, we can prove that $g u=f u=v$, which implies that v is a point of coincidence of S, f and g, i.e. $g u=f u=S u=v$.
Next, we show that v is unique. For suppose v^{\prime} be another point of coincidence of S, f and g, that is $S u^{\prime}=f u^{\prime}=g u^{\prime}=v^{\prime}$, for some $u^{\prime} \in X$, then

$$
d\left(v, v^{\prime}\right)=d\left(S u, f u^{\prime}\right) \leq \varphi\left(d\left(g u, g u^{\prime}\right)\right)=\varphi\left(d\left(v, v^{\prime}\right)\right)<d\left(v, v^{\prime}\right)
$$

Hence $v=v^{\prime}$. Since (S, g) and (f, g) are weakly compatible, by Lemma $1, v$ is the unique common fixed point of S, f and g. This completes the proof of the theorem.

Example 1. Let $X=\{1,2,3,4,5\}, E=\mathbb{R}^{2}$ and $P=\{(x, y): x, y \geq 0\}$ is a cone in E.
Define $d: X \times X \rightarrow E$ as follows:

$$
\begin{aligned}
d(x, x) & =0, \forall x \in X ; \\
d(1,2) & =d(2,1)=(4,8) ; \\
d(1,3)=d(3,1)=d(3,4)=d(4,3) & =d(2,4)=d(4,2)=(1,2) ; \\
d(1,5)=d(5,1)=d(2,5)=d(5,2)=d(3,5) & =d(5,3)=d(4,5)=d(5,4)=(3,6) .
\end{aligned}
$$

Then (X, d) is a cone pentagonal metric space, but (X, d) is not a cone rectangular metric space because it lacks the rectangular property:

$$
\begin{aligned}
(4,8) & =d(1,2)>d(1,3)+d(3,4)+d(4,2) \\
& =(1,2)+(1,2)+(1,2) \\
& =(3,6) \text { as }(4,8)-(3,6)=(1,2) \in P
\end{aligned}
$$

Define a mapping S, f and $g: X \rightarrow X$ as follows:

$$
S(x)=4, \forall x \in X
$$

$$
\begin{gathered}
f(x)= \begin{cases}4, & \text { if } x \neq 5 \\
2, & \text { if } x=5\end{cases} \\
g(x)=x, \quad \forall x \in X
\end{gathered}
$$

Clearly $S(X) \cup f(X) \subseteq g(X), g(X)$ is a complete subspace of X. Also, the pairs (S, g) and (f, g) are weakly compatibles. The conditions of Theorem 1 holds for all $x, y \in X$, where $\varphi(t)=\frac{1}{3} t$, and 4 is the unique common fixed point of the mappings S, f and g.

Corollary 1. Let (X, d) be a cone pentagonal metric space. Suppose the mappings S, f, g : $X \rightarrow X$ satisfies the contractive condition:

$$
d(S x, f y) \leq \lambda d(g x, g y)
$$

for all $x, y \in X$, where $\lambda \in[0,1)$. Suppose that $S(X) \cup f(X) \subseteq g(X)$, and $g(X)$ is a complete subspace of X, then the mappings S, f and g have a unique point of coincidence in X. Moreover, if (S, g) and (f, g) are weakly compatible then S, f and g have a unique common fixed point in X.

Proof. Define $\varphi: P \rightarrow P$ by $\varphi(t)=\lambda t$. Then it is clear that φ satisfies the conditions in definition 5. Hence the results follows from Theorem 1.

Corollary 2. (see [4]) Let (X, d) be a cone pentagonal metric space. Suppose the mappings $S, g: X \rightarrow X$ satisfies the contractive condition:

$$
d(S x, S y) \leq \varphi(d(g x, g y))
$$

for all $x, y \in X$, where $\varphi \in \Phi$. Suppose that $S(X) \subseteq g(X)$, and $g(X)$ or $S(X)$ is a complete subspace of X, then the mappings S and g have a unique point of coincidence in X. Moreover, if S and g are weakly compatible then S and g have a unique common fixed point in X.

Proof. Putting $f=S$ in Theorem 1. This completes the proof.

Corollary 3. Let (X, d) be a cone pentagonal metric space. Suppose the mappings S, g : $X \rightarrow X$ satisfies the contractive condition:

$$
d(S x, S y) \leq \lambda d(g x, g y)
$$

for all $x, y \in X$, where $\lambda \in[0,1)$. Suppose that $S(X) \subseteq g(X)$, and $g(X)$ or $S(X)$ is a complete subspace of X, then the mappings S and g have a unique point of coincidence in X. Moreover, if S and g are weakly compatible then S and g have a unique common fixed point in X.

Proof. Putting $f=S$ in Theorem 1. The results follows from Corollary 1.

Corollary 4. (see [16]) Let (X, d) be a cone rectangular metric space. Suppose the mappings $S, f, g: X \rightarrow X$ satisfies the contractive condition:

$$
d(S x, f y) \leq \lambda d(g x, g y)
$$

for all $x, y \in X$, where $\lambda \in[0,1)$. Suppose that $S(X) \cup f(X) \subseteq g(X)$, and $g(X)$ is a complete subspace of X, then the mappings S, f and g have a unique point of coincidence in X. Moreover, if (S, g) and (f, g) are weakly compatible then S, f and g have a unique common fixed point in X.

Proof. This follows from the Remark 2 and Theorem 1.

Corollary 5. (see [17]) Let (X, d) be a cone rectangular metric space. Suppose the mappings $S, g: X \rightarrow X$ satisfies the contractive condition:

$$
d(S x, S y) \leq \varphi(d(g x, g y))
$$

for all $x, y \in X$, where $\varphi \in \Phi$. Suppose that $S(X) \subseteq g(X)$, and $g(X)$ or $S(X)$ is a complete subspace of X, then the mappings S and g have a unique point of coincidence in X. Moreover, if S and g are weakly compatible then S and g have a unique common fixed point in X.

Proof. This follows from the Remark 2 and Corollary 2.
Corollary 6. (see [2]) Let (X,d) be a cone pentagonal metric space. Suppose the mapping $S: X \rightarrow X$ satisfy the following:

$$
d(S x, S y) \leq \varphi(d(x, y)),
$$

for all $x, y \in X$, where $\varphi \in \Phi$. Then S has a unique fixed point in X.
Proof. Putting $g=I$ in Corollary 2, where I is the identity mapping. This completes the proof.

Corollary 7. (see [17]) Let (X, d) be a cone rectangular metric space. Suppose the mapping $S: X \rightarrow X$ satisfy the following:

$$
d(S x, S y) \leq \varphi(d(x, y)),
$$

for all $x, y \in X$, where $\varphi \in \Phi$. Then S has a unique fixed point in X.
Proof. This follows from the Remark 2 and Putting $g=I$ in Corollary 2.
Corollary 8. (see [9]) Let (X, d) be a cone pentagonal metric space and P be a normal cone with normal constant k. Suppose the mapping $S: X \rightarrow X$ satisfies the contractive condition:

$$
d(S x, S y) \leq \lambda d(x, y)
$$

for all $x, y \in X$, where $\lambda \in[0,1)$. Then S has a unique fixed point in X.
Proof. Putting $g=I$ in Corollary 3, where I is the identity mapping. This completes the proof.

Corollary 9. (see [6]) Let (X, d) be a cone rectangular metric space and P be a normal cone with normal constant k. Suppose the mapping $S: X \rightarrow X$ satisfies:

$$
d(S x, S y) \leq \lambda d(x, y)
$$

for all $x, y \in X$, where $\lambda \in[0,1)$. Then S has a unique fixed point in X.
Proof. Putting $g=I$ in Corollary 3 and Remark 2, the results follows.
Theorem 2. Let (X, d) be a cone pentagonal metric space. Suppose the mappings S, f, g : $X \rightarrow X$ satisfies the contractive condition:

$$
\begin{equation*}
d(S x, f y) \leq \lambda[d(g x, S x)+d(g y, f y)] \tag{19}
\end{equation*}
$$

for all $x, y \in X$, where $\lambda \in[0,1 / 2)$. Suppose that $S(X) \cup f(X) \subseteq g(X)$, and $g(X)$ is a complete subspace of X, then the mappings S, f and g have a unique point of coincidence in X. Moreover, if (S, g) and (f, g) are weakly compatible then S, f and g have a unique common fixed point in X.

Proof. Let x_{0} be an arbitrary point in X. Define, like in Theorem 1, a sequence $\left\{g x_{n}\right\}$ in X such that

$$
g x_{n+1}=S x_{n} \text { and } g x_{n+2}=f x_{n+1}, \text { for all } n=0,1,2, \cdots .
$$

We assume that $x_{n} \neq x_{n+1}$, for all $n \in \mathbb{N}$. Then, from (19), it follows that

$$
\begin{aligned}
d\left(g x_{n}, g x_{n+1}\right) & =d\left(S x_{n-1}, f x_{n}\right) \\
& \leq \lambda\left(d\left(g x_{n-1}, S x_{n-1}\right)+d\left(g x_{n}, f x_{n}\right)\right) \\
& \leq \lambda\left(d\left(g x_{n-1}, g x_{n}\right)+d\left(g x_{n}, g x_{n+1}\right)\right) .
\end{aligned}
$$

So that,

$$
\begin{align*}
d\left(g x_{n}, g x_{n+1}\right) & \leq \frac{\lambda}{1-\lambda} d\left(g x_{n-1}, g x_{n}\right) \\
& \leq r d\left(g x_{n-1}, g x_{n}\right), \text { where } r=\frac{\lambda}{1-\lambda} \in[0,1) \\
& \leq r^{2} d\left(g x_{n-2}, g x_{n-1}\right) \\
& \vdots \tag{20}\\
& \leq r^{n}\left(d\left(g x_{0}, g x_{1}\right)\right) .
\end{align*}
$$

In similar way, it again follows that

$$
\begin{equation*}
d\left(g x_{n}, g x_{n+2}\right) \leq r^{n}\left(d\left(g x_{0}, g x_{2}\right)\right), \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
d\left(g x_{n}, g x_{n+3}\right) \leq r^{n}\left(d\left(g x_{0}, g x_{3}\right)\right) \tag{22}
\end{equation*}
$$

Similarly, for $k=1,2,3, \cdots$, It further follows that

$$
\begin{align*}
d\left(g x_{n}, g x_{n+3 k+1}\right) & \leq r^{n}\left(d\left(g x_{0}, g x_{3 k+1}\right)\right), \tag{23}\\
d\left(g x_{n}, g x_{n+3 k+2}\right) & \leq r^{n}\left(d\left(g x_{0}, g x_{3 k+2}\right)\right), \tag{24}\\
d\left(g x_{n}, g x_{n+3 k+3}\right) & \leq r^{n}\left(d\left(g x_{0}, g x_{3 k+3}\right)\right) . \tag{25}
\end{align*}
$$

Using the same argument in the proof of Theorem 1, we can show that $\left\{g x_{n}\right\}$ is a Cauchy sequence in X. Since $g(X)$ is a complete subspace of X, there exists a points $u, v \in g(X)$ such that $\lim _{n \rightarrow \infty} g x_{n}=v=g u$.
Now, we show that $g u=S u$. Given $c \gg 0$, we choose a natural numbers M_{1}, M_{2}, M_{3} such that $d\left(v, g x_{n}\right) \ll \frac{c(1-\lambda)}{3}, \quad \forall n \geq M_{1}, d\left(g x_{n}, g x_{n+1}\right) \ll \frac{c(1-\lambda)}{3}, \quad \forall n \geq M_{2}$ and $d\left(g x_{n+1}, g x_{n+2}\right) \ll \frac{c(1-\lambda)}{3(1+\lambda)}, \quad \forall n \geq M_{3}$. Since $x_{n} \neq x_{m}$ for $n \neq m$, by pentagonal property, we have that
$d(g u, S u) \leq d\left(g u, g x_{n}\right)+d\left(g x_{n}, g x_{n+1}\right)+d\left(g x_{n+1}, g x_{n+2}\right)+d\left(g x_{n+2}, S u\right)$

$$
\begin{aligned}
& \leq d\left(v, g x_{n}\right)+d\left(g x_{n}, g x_{n+1}\right)+d\left(g x_{n+1}, g x_{n+2}\right)+d\left(f x_{n+1}, S u\right) \\
& \leq d\left(v, g x_{n}\right)+d\left(g x_{n}, g x_{n+1}\right)+d\left(g x_{n+1}, g x_{n+2}\right)+\lambda\left(d(g u, S u)+d\left(g x_{n+1}, f x_{n+1}\right)\right) \\
& <d\left(v, g x_{n}\right)+d\left(g x_{n}, g x_{n+1}\right)+d\left(g x_{n+1}, g x_{n+2}\right)+\lambda\left(d(g u, S u)+d\left(g x_{n+1}, g x_{n+2}\right)\right) \\
d(g u, S u) & \leq \frac{1}{1-\lambda}\left(d\left(v, g x_{n}\right)+d\left(g x_{n}, g x_{n+1}\right)+(1+\lambda) d\left(g x_{n+1}, g x_{n+2}\right)\right) \\
& \ll \frac{c}{3}+\frac{c}{3}+\frac{c}{3}=c, \text { for all } n \geq M,
\end{aligned}
$$

where $M:=\max \left\{M_{1}, M_{2}, M_{3}\right\}$. Since c is arbitrary, we have $d(g u, S u) \ll \frac{c}{m}, \quad \forall m \in \mathbb{N}$. Since $\frac{c}{m} \rightarrow 0$ as $m \rightarrow \infty$, we conclude $\frac{c}{m}-d(g u, S u) \rightarrow-d(g u, S u)$ as $m \rightarrow \infty$. Since P is closed, $-d(g u, S u) \in P$. Hence $d(g u, S u) \in P \cap-P$. By definition of cone we get that $d(g u, S u)=0$, and so $g u=S u=v$. Hence, v is a point of coincidence of S and g. Similarly, we can prove that $g u=f u=v$, which implies that v is a point of coincidence of S, f and g, i.e. $g u=f u=S u=v$.
Next, we show that v is unique. For suppose v^{\prime} be another point of coincidence, that is $g u^{\prime}=f u^{\prime}=S u^{\prime}=v^{\prime}$, for some $u^{\prime} \in X$, then

$$
d\left(v, v^{\prime}\right)=d\left(S u, f u^{\prime}\right) \leq \lambda\left(d(g u, S u)+d\left(g u^{\prime}, f u^{\prime}\right)\right) \leq \lambda\left(d(v, v)+d\left(v^{\prime}, v^{\prime}\right)\right)
$$

Hence $v=v^{\prime}$. Since (S, g) and (f, g) are weakly compatible, by Lemma $1, v$ is the unique common fixed point of S, f and g. This completes the proof of the theorem.

Corollary 10. (see [5]) Let (X, d) be a cone pentagonal metric space. Suppose the mappings $S, g: X \rightarrow X$ satisfies the contractive condition:

$$
d(S x, S y) \leq \lambda[d(g x, S x)+d(g y, S y)]
$$

for all $x, y \in X$, where $\lambda \in[0,1 / 2)$. Suppose that $S(X) \subseteq g(X)$, and $S(X)$ or $g(X)$ is a complete subspace of X, then the mappings S and g have a unique point of coincidence in X. Moreover, if S and g are weakly compatible then S and g have a unique common fixed point in X.

Proof. Putting $f=S$ in Theorem 2. This completes the proof.
Corollary 11. (see [16]) Let (X, d) be a cone rectangular metric space. Suppose the mappings $S, f, g: X \rightarrow X$ satisfies the contractive condition:

$$
d(S x, f y) \leq \lambda[d(g x, S x)+d(g y, f y)]
$$

for all $x, y \in X$, where $\lambda \in[0,1 / 2)$. Suppose that $S(X) \cup f(X) \subseteq g(X)$, and $g(X)$ is a complete subspace of X, then the mappings S, f and g have a unique point of coincidence in X. Moreover, if (S, g) and (f, g) are weakly compatible then S, f and g have a unique common fixed point in X.

Proof. This follows from the Remark 2 and Theorem 2.

Corollary 12. (see [3]) Let (X, d) be a complete cone pentagonal metric space and P be a normal cone with normal constant k. Suppose the mapping $S: X \rightarrow X$ satisfies the contractive condition:

$$
\begin{equation*}
d(S x, S y) \leq \lambda[d(x, S x)+d(y, S y)] \tag{26}
\end{equation*}
$$

for all $x, y \in X$, where $\lambda \in[0,1 / 2)$. Then
(i) S has a unique fixed point in X.
(ii) For any $x \in X$, the iterative sequence $\left\{S^{n} x\right\}$ converges to the fixed point.

Proof. Putting $g=I$ in Corollary 10. This completes the proof.
Corollary 13. (see [18]) Let (X, d) be a cone rectangular metric space. Suppose the mappings $S, g: X \rightarrow X$ satisfies the contractive condition:

$$
d(S x, S y) \leq \lambda[d(g x, S x)+d(g y, S y)],
$$

for all $x, y \in X$, where $\lambda \in[0,1 / 2)$. Suppose that $S(X) \subseteq g(X)$, and $S(X)$ or $g(X)$ is a complete subspace of X, then the mappings S and g have a unique point of coincidence in X. Moreover, if S and g are weakly compatible then S and g have a unique common fixed point in X.

Proof. This follows from the Remark 2 and Corollary 10.
Corollary 14. (see [13]) Let (X, d) be a complete cone rectangular metric space and P be a normal cone with normal constant k. Suppose the mapping $S: X \rightarrow X$ satisfies the contractive condition:

$$
\begin{equation*}
d(S x, S y) \leq \lambda[d(x, S x)+d(y, S y)] \tag{27}
\end{equation*}
$$

for all $x, y \in X$, where $\lambda \in[0,1 / 2)$. Then
(i) S has a unique fixed point in X.
(ii) For any $x \in X$, the iterative sequence $\left\{S^{n} x\right\}$ converges to the fixed point.

Proof. Putting $g=I$ in Corollary 10 and Remark 2. This completes the proof.
Example 2. Let $X=\{1,2,3,4,5\}, E=\mathbb{R}^{2}$ and $P=\{(x, y): x, y \geq 0\}$ is a cone in E. Define $d: X \times X \rightarrow E$ as follows:

$$
\begin{aligned}
d(x, x) & =0, \forall x \in X ; \\
d(1,2) & =d(2,1)=(4,8) ; \\
d(1,3)=d(3,1)=d(3,4)=d(4,3) & =d(2,4)=d(4,2)=(1,2) ; \\
d(1,5)=d(5,1)=d(2,5)=d(5,2)=d(3,5) & =d(5,3)=d(4,5)=d(5,4)=(3,6) .
\end{aligned}
$$

Then (X, d) is a cone pentagonal metric space, but (X, d) is not a cone rectangular metric space because it lacks the rectangular property:

$$
\begin{aligned}
(4,8) & =d(1,2)>d(1,3)+d(3,4)+d(4,2) \\
& =(1,2)+(1,2)+(1,2) \\
& =(3,6) \text { as }(4,8)-(3,6)=(1,2) \in P
\end{aligned}
$$

Define a mapping S, f and $g: X \rightarrow X$ as follows:

$$
\begin{gathered}
S(x)=4, \quad \forall x \in X \\
f(x)= \begin{cases}4, & \text { if } x \neq 5 \\
2, & \text { if } x=5\end{cases} \\
g(x)= \begin{cases}3, & \text { if } x=1 \\
1, & \text { if } x=2 \\
2, & \text { if } x=3 \\
4, & \text { if } x=4 \\
5, & \text { if } x=5\end{cases}
\end{gathered}
$$

Clearly $S(X) \cup f(X) \subseteq g(X), g(X)$ is a complete subspace of X. Also, the pairs (S, g) and (f, g) are weakly compatibles. The conditions of Theorem 2 holds for all $x, y \in X$, where $\lambda=\frac{1}{3}$, and 4 is the unique common fixed point of the mappings S, f and g.

Acknowledgements

This research project was supported by the Center of Excellence, Near East University, Nicosia-TRNC, Mersin 10, Turkey.

References

[1] M Abbas and G Jungck. Common fixed point results for non commuting mappings without continuity in cone metric spaces. Journal of Mathematical Analysis and Applications, 341(1):416-420, 2008.
[2] A Auwalu. Banach fixed point theorem in a cone pentagonal metric spaces. Journal of Advanced Studies in Topology, 7(2):60-67, 2016.
[3] A Auwalu. Kannan fixed point theorem in a cone pentagonal metric spaces. Journal of Mathematics and Computational Sciences, 6(4):515-526, 2016.
[4] A Auwalu and E Hınçal. Common fixed points of two maps in cone pentagonal metric spaces. Global Journal of Pure and Applied Mathematics, 12(3):2423-2435, 2016.
[5] A Auwalu and E Hınçal. Kannan - type fixed point theorem in cone pentagonal metric spaces. International Jounal of Pure and Applied Mathematics, 108(1):29-38, 2016.
[6] A Azam, M M Arshad, and I Beg. Banach contraction principle on cone rectangular metric spaces. Applicable Analysis and Discrete Mathematics, 3(2):236-241, 2009.
[7] S Banach. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundamenta Mathematicae, 3:133-181, 1922.
[8] M Fŕechet. Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Matematico di Palermo, 22:1-74, 1906.
[9] M Garg and S Agarwal. Banach contraction principle on cone pentagonal metric space. Journal of Advanced Studies in Topology, 3(1):12-18, 2012.
[10] R George, S Janković, K Reshma, and S Shukla. Rectangular b-metric space and contraction principles. Journal of Nonlinear Scienceand Applications, 8(6):1005-1013, 2015.
[11] L Huang and X Zhang. Cone metric spaces and fixed point theorems of contractive mappings. Journal of Mathematical Analysis and Applications, 332(2):1468-1476, 2007.
[12] D Ilić and V Rakoćević. Common fixed points for maps on cone metric space. Journal of Mathematical Analysis and Applications, 341(2):876-882, 2008.
[13] M Jleli and B Samet. The kannans fixed point theorem in a cone rectangular metric space. Journal of Nonlinear Sciences and Applications, 2(3):161-167, 2009.
[14] R Kannan. Some results on fixed points. Bulletin of Calcutta Mathematical Society, 60:71-76, 1968.
[15] R Kannan. Some results on fixed points ii. American Mathematics Monthly, 76:405408, 1969.
[16] S Patil and J Salunke. Fixed point theorems for expansion mappings in cone rectangular metric spaces. General Mathematics Notes, 29(1):30-39, 2015.
[17] R Rashwan and S Saleh. Some fixed point theorems in cone rectangular metric spaces. Mathematica Aeterna, 2(6):573-587, 2012.
[18] M Reddy and M Rangamma. A common fixed point theorem for two self maps in a cone rectangular metric space. Bulletin of Mathematics and Statistics Research, $3(1): 47-53,2015$.
[19] S Rezapour and R Hamlbarani. Some notes on the paper cone metric spaces and fixed point theorems of contractive mappings. Journal of Mathematical Analysis and Applications, 345(2):719-724, 2008.

