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1. Introduction and definitions

Let A denote the class of functions f(z) defined by

f(z) = z +

∞∑
n=2

anz
n (1)

which are analytic and univalent in the open unit disk U = {z : |z| < 1}. A function f
∈ A is said to be starlike of order α if it satisfies

R

(
zf ′(z)

f(z)

)
> α (z ∈ U) (2)

for some α(0 ≤ α < 1). We denote by S∗(α) the subclass of A consisting of functions
which are starlike of order α in U . Clearly S∗(α) ⊆ S∗(0) = S∗, where S∗is the class of
functions that are starlike in U .

A function f ∈ A is said to be starlike of reciprocal order α if

R

{
f(z)

zf ′(z)

}
> α (z ∈ U) (3)

for some α(0 ≤ α < 1). We denote the class of such functions by S−1∗(α) (see, [1, 4, 8]).
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In view of the fact that

Rp(z) > 0⇒ R
1

p(z)
= R

p(z)

|p(z)|2
> 0,

it follows that a starlike function of reciprocal order 0 is same as a starlike function. In
particular, every starlike function of reciprocal order α ≥ 0 is starlike and hence univalent
(cf. [10, Example 1]).

Example 1. The function f(z) = ze(1−α)z is a starlike function of reciprocal order 1/(2−
α) [10, Example 2].

Sufficient conditions were studied by various authors for starlikeness [e.g., see [2–7, 9–
12]). The object of the present paper is to derive certain sufficient conditions for starlike-
ness of reciprocal order α by using the same techniques as in [9].

In order to establish our main results, we require the following lemma due to
Nunokawa et al. [9].

Lemma 1. Let p(z) = 1 +
∞∑
n=1

cnz
n be analytic in U and suppose that there exists a point

z0 ∈ U such that
R {p(z)} > 0 for |z| < |z0| (4)

and
R {p(z0)} = 0. (5)

Then we have

z0p
′
(z0) ≤ −

1

2
(1 + |p(z0)|2), (6)

where z0p
′
(z0) is a negative real number.

2. Sufficient conditions for starlikeness of reciprocal order

Our first result is contained in the following.

Theorem 2. Let f(z) ∈ A satisfies f(z) f
′
(z) 6= 0 in 0 < |z| < 1 and

R

{
f(z)

zf ′(z)

(
1− αzf

′′
(z)

f ′(z)

)}
> −α

2

(
3 +

∣∣∣∣ f(z)

zf ′(z)

∣∣∣∣2
)

(z ∈ U ;α > 0). (7)

Then f(z) is starlike of reciprocal order 0 in U and thus, f(z) is starlike in U .
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Proof. Let us define the function p(z) by

p(z) =
f(z)

zf ′(z)
. (8)

Then p(z) is analytic in U and p(0) = 1. Differentiating (8) logarithmically we obtain

f(z)

zf ′(z)

(
1− αzf

′′
(z)

f ′(z)

)
= αzp

′
(z) + (α+ 1)p(z)− α. (9)

Suppose that there exists a point z0 ∈ U such that

R {p(z)} > 0 for |z| < |z0|

and
R {p(z0)} = 0,

then from Lemma 1, we have,

z0p
′
(z0) ≤ −

1

2
(1 + |p(z0)|2).

Therefore from (9),we have

R

{
f(z0)

z0f
′(z0)

(
1− αz0f

′′
(z0)

f ′(z0)

)}
= R

{
αz0p

′
(z0) + (α+ 1)p(z0)− α

}
.

≤ −α
2

(
1 + |p(z0)|2

)
− α

≤ −α
2

(
3 +

∣∣∣∣ f(z0)

z0f
′(z0)

∣∣∣∣2
)
.

which contradicts our condition (6) of Theorem 2. Thus we complete the proof of
Theorem 2.

Next, we derive the following.

Theorem 3. Let f(z) ∈ A satisfies f(z) f
′
(z) 6= 0 in 0 < |z| < 1 and

R

{
f(z)

zf ′(z)

(
−1− zf

′′
(z)

f ′(z)

)}
> −5

4
− 1

4

∣∣∣∣ 2f(z)

zf ′(z)
− 1

∣∣∣∣2 (z ∈ U).

Then f(z) is starlike of reciprocal order 1
2 in U .

Proof. Putting

p(z) = 2

(
f(z)

zf ′(z)
− 1

2

)
, (10)
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then we have p(0) = 1. Suppose that there exists a point z0 ∈ U satisfies the conditions
(4) and (5) of Lemma 1, from (10) we have

R

{
f(z0)

z0f
′(z0)

(
−1− zf

′′
(z0)

f ′(z0)

)}
= R

{
1

2
z0p

′
(z0)− 1

}
. (11)

Using (6) of Lemma 1 in (11), it follows that

R

{
f(z0)

z0f
′(z0)

(
−1− z0f

′′
(z0)

f ′(z0)

)}
≤ −1

4

(
1 + |p(z0)|2

)
− 1

≤ −5

4
− 1

4
|p(z0)|2

≤ −5

4
− 1

4

∣∣∣∣ 2f(z0)

z0f
′(z0)

− 1

∣∣∣∣2 .
which contradicts the hypothesis of Theorem 3 and therefore, we have

R {p(z)} > 0 (z ∈ U)

or

R

{
f(z)

zf ′(z)

}
>

1

2
(z ∈ U).

Finally, we discuss the following theorem.

Theorem 4. Let f(z) ∈ A satisfies

R

{
f(z)

zf ′(z)

(
1− αzf

′′
(z)

f ′(z)

)}
> − α

(2− α)

∣∣∣∣ f(z)

zf ′(z)
− α

2

∣∣∣∣2 +
α

4
(3α−4) (z ∈ U ; 0 ≤ α < 2).

(12)
Then f(z) is starlike of reciprocal order α

2 in U .

Proof. Let the function p(z) be defined by

f(z)

zf ′(z)
=
(

1− α

2

)
p(z) +

α

2
, p(0) = 1. (13)

Suppose that there exists a point z0 ∈ U satisfies the conditions (4) and (5) of Lemma 1,
from (13) we have

R

{
f(z0)

z0f
′(z0)

(
1− αz0f

′′
(z0)

f ′(z0)

)}
= R

{
α
(

1− α

2

)
z0p

′
(z0) + (1 + α)

(
1− α

2

)
p(z0) +

α

2
(α− 1)

}
. (14)
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Thus, by using (5) and (6) of Lemma 1 in (14), it follows that

R

{
f(z0)

z0f
′(z0)

(
1− αz0f

′′
(z0)

f ′(z0)

)}
≤ −α

2

(
1− α

2

)(
1 + |p(z0)|2

)
+
α

2
(α− 1)

≤ −α
2

(
1− α

2

)
|p(z0)|2 +

α

4
(3α− 4)

≤ − α

(2− α)

∣∣∣∣ f(z0)

z0f
′(z0)

− α

2

∣∣∣∣2 +
α

4
(3α− 4)

which contradicts the hypothesis (12). It follows that

R

{
f(z)

zf ′(z)

}
>
α

2
(z ∈ U).

Thus proof of the Theorem 4 is completed.
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