Fractional Orders of the Generalized Bessel Matrix Polynomials
Keywords:
Fractional calculus, Generalized Bessel matrix polynomials, Rodrigues’ formula.Abstract
This paper presents and investigates generalized Bessel matrix
polynomials (GBMPs) with order ∈ ℜ (the set of real numbers).
The given result is supposed to be an enhanced and a generalized
form of the scalar form to the fractional analysis setting. By using
the Liouville-Caputo operator of fractional analysis and Rodrigues
type representation form of fractional order, the generalized Bessel
matrix functions (GBMFs) Y(t;A; B); t ∈ C, for matrices A and B
in the complex space CNN are derived and supplied with a matrix
hypergeometric representation that are satisfied by these functions.
Subsequently, a fractional matrix recurrence relationship, a fractional
matrix of second-order differential equation and an orthogonal system
are then developed for GBMFs.
Downloads
Published
Issue
Section
License
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.