EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 10, No. 4, 2017, 614-619
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

Honorary Invited Paper
 Selberg-Type Generalized Quadratic Forms Gamma and Beta Integrals

Arjun K. Gupta ${ }^{1, *}$, D. G. Kabe ${ }^{1,2}$
${ }^{1}$ Bowling Green State University, Bowling Green, Ohio, USA
${ }^{2}$ Deceased

Abstract

Although Selberg-type single positive definite symmetric matrices gamma and beta integrals have been evaluated by several authors, see e.g., Askey and Richards [1], Gupta and Kabe $[2,4]$, Mathai $[8]$, and elsewhere in the vast multivariate statistical analysis literature. However, several other types of Selberg-type integrals appear to have been neglected in the literature. Thus e.g., Selberg-type integrals associated with inverse Wishart densities, inverse multivariate beta densities, their noncentral counterparts, etc, have not been explored as yet. The present paper records Selberg-type generalized quadratic forms gamma and beta integrals. Our methodology is based on hypercomplex (HC) multivariate normal distribution theory, Kabe [6].

2010 Mathematics Subject Classifications: $62 \mathrm{H} 10,62 \mathrm{H} 12$
Key Words and Phrases: Selberg-Type Integral, Multivariate normal distribution, Hermitian matrix, beta density

1. Introduction

The HC multivariate normal distribution is defined as follows. Let $x_{1}, x_{2}, \ldots, x_{4 t}$, $t=\frac{1}{4}, \frac{1}{2}, 1,2$ be $4 \mathrm{t} p \times n$ real random matrices and for $t=2$, i.e., the octonions case, set

$$
\begin{equation*}
Y=x_{1}+i x_{2},+j x_{3}+k x_{4}+l x_{5}+m x_{6}+n x_{7}+r x_{8}, \tag{1}
\end{equation*}
$$

where the base octonions i, j, k, l, m, n, r satisfy the multiplication rule

$$
\begin{equation*}
i^{2}=j^{2}=k^{2}=l^{2}=m^{2}=n^{2}=r^{2}=-1=i j k=i l m=i r n=j m r=k j r=k n m . \tag{2}
\end{equation*}
$$

[^0]Email addresses: gupta@bgsu.edu (A. K. Gupta), Deceased (D. G. Kabe)

For $t=1, t=2, t=4, t=4 i$ is the bioctonion case, Hypercomplex variables do not form a field, they are known to form Clifford Algebras. The octonions conjugate of Y is defined by

$$
\begin{equation*}
\bar{Y}=x_{1}-i x_{2}-j x_{3}-k x_{4}-l x_{5}-m x_{6}-n x_{7}-r x_{8} . \tag{3}
\end{equation*}
$$

Note that $Y \bar{Y}^{\prime}$ is a positive definite HC Hermitian matrix (HCHM).
Next set

$$
\begin{equation*}
\sum=\sum_{1}+i \sum_{2}+j \sum_{3}+k \sum_{4}+l \sum_{5}+m \sum_{6}+n \sum_{7}+r \sum_{8}, \tag{4}
\end{equation*}
$$

where \sum_{1} is a $p \times p$ positive definite symmetric matrix, and $\sum_{2}, \ldots, \sum_{8}$ are real $p \times p$ skew symmetric matrices. Note that $\sum^{-1}=\sum$ and \sum is HCHM. Now setting $d y=d x_{1} \ldots d x_{8}$, Kabe [6] shows that the $p n$ variate HC multivariate normal density of Y can be written as

$$
\begin{equation*}
f(Y)=\pi^{-2 p n t}\left|\sum\right|^{-2 n t} \exp \left\{-t r \sum{ }^{-1} Y \bar{Y}\right\}, \tag{5}
\end{equation*}
$$

and hence the HC Wishart density of the $p \times p$ HCHM $G=Y \bar{Y}^{\prime}$ is

$$
\begin{equation*}
f(G)=\left\{\Gamma_{p}(2 n t)\right\}^{-1}\left|\sum\right|^{-2 n t}|G|^{-2 t(n-p+1)-1} \exp \left\{-\operatorname{tr} \sum^{-1} G\right\}, \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma_{p}(a)=\pi^{t p(p-1)} \Pi_{i=1}^{p} \Gamma(a-2 t(p-i)) . \tag{7}
\end{equation*}
$$

Further for given two $p \times p$ HCHM matrices A and B, having HC Wishart densities with n and q degrees of freedom, the density of the $p \times p$ HCHM R defined by

$$
\begin{equation*}
R=G^{-\frac{1}{2}} A G^{-\frac{1}{2}}, A+B=G, \tag{8}
\end{equation*}
$$

is given by the expression

$$
\begin{equation*}
f(R)=\left\{B_{p}(2 n t, 2 q t)\right\}^{-1}|I-R|^{2 t(n-p+1)-1}|R|^{2 t(q-p+1)-1}, \tag{9}
\end{equation*}
$$

where (see [5]),

$$
\begin{equation*}
B_{p}(a, b)=\frac{\Gamma_{p}(a) \Gamma_{p}(b)}{\Gamma_{p}(a+b)} . \tag{10}
\end{equation*}
$$

If now \wedge is the $p \times p$ diagonal matrix of the roots of R , then Kabe $[6, \mathrm{p} .68$, equation (21)] shows that the Jacobian

$$
\begin{equation*}
J(R: \wedge)=\Pi_{i<j}^{p}\left(x_{i}-x_{j}\right)^{4 t}, \wedge=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{p}\right), \tag{11}
\end{equation*}
$$

and the HC multivariate beta density of \wedge is

$$
\begin{equation*}
f(\wedge)=\left\{B_{p}(2 n t, 2 q t)^{-1}|I-\wedge|^{2 t(n-p+1)-1}|\wedge|^{2 t(q-p+1)-1} \Pi_{i<j}^{p}\left(\lambda_{i}-\lambda_{j}\right)^{4 t},\right. \tag{12}
\end{equation*}
$$

with a similar result for the density of the roots matrix of (6).
Now our paper proceeds as follows. The next section derives the real generalized quadratic forms Wishart density (GQFWD), and section 3 develops the real generalized quadratic forms multivariate beta density (GQFMBD). Section 4 records the gamma integrals, and section 5 records the beta integrals of the context.

2. GQFWD

Let X be a $p \times n$ matrix of rank $p \leq n$, and $\Delta=\operatorname{diag}\left(\delta_{1}, \ldots, \delta_{n}\right) n \times n$ diagonal matrix, then GQFWD of $p \times p \mathrm{~T}$ is defined by the integral

$$
\begin{equation*}
f(T)=k \int_{X X^{\prime}=T} \exp \left\{-\operatorname{tr} X \Delta X^{\prime}\right\} d X \tag{13}
\end{equation*}
$$

where k , as a generic letter, denotes the normalizing constants of density functions in this paper.

The moment generating function of T is

$$
\begin{equation*}
\phi(\theta)=k \int \exp \left\{-\operatorname{tr}\left(X \Delta X^{\prime}-\theta X X^{\prime}\right)\right\} d X=\Pi_{i=1}^{n}\left|\delta_{i} I-\theta\right|^{-\frac{1}{2}} \tag{14}
\end{equation*}
$$

where θ, in the usual sense, is $p \times p$ positive definite symmetric matrix.
Indeed, Mathai [8, p.353], derives the density (13); however, his density function is not suitable in our context. In our context inverting (14) we find that

$$
\begin{gather*}
f(T)=|\Delta|^{-\frac{1}{2} p}\left|\delta_{1}\right|^{-\frac{1}{2} p n} \exp \left\{-\delta_{1} t r T\right\}|T|^{\frac{1}{2}(n-p-1)}\left\{\Gamma_{p}\left(\frac{1}{2} n\right)\right\}^{-1} \\
{ }_{\cdot 1} F_{1}\left(\frac{1}{2}(n-1) ; \frac{1}{2} n ;\left((n-1) \delta_{1}-\delta_{2}-\ldots-\delta_{n}\right) T\right) \tag{15}
\end{gather*}
$$

where $\delta_{1}=\max \left(\delta_{1}, \ldots, \delta_{n}\right)$. It is possible to use Mathai's [8] GQFWD and GQFMBD results to derive Selberg-type gamma and beta integrals of our context; however, our expressions for the GQFWD and GQFMBD appear to be simpler than the ones given by Mathai [8], and Mathai, Provost and Hayakawa [7, Chapter 5]

We proceed to prove (15). Given the joint density of n gamma variates to be

$$
\begin{equation*}
f\left(y_{1}, \ldots, y_{n}\right)=k \exp \left\{-\left(\alpha_{1} y_{1}++\alpha_{n} y_{n}\right)\right\} y_{1}^{g_{1}-1} \ldots y_{n}^{g_{n}-1} \tag{16}
\end{equation*}
$$

the density of $t=y_{1}+\ldots+y_{n}$ is desired, where $\alpha^{\prime} s$ are distinct real positive constants. The moment generating function $\Psi(\theta)$ of t is,

$$
\begin{align*}
\Psi(\theta)= & \left(\alpha_{1}-\theta\right)^{-g_{1}} \ldots\left(\alpha_{n}-\theta\right)^{-g_{n}} \\
= & \left(\alpha_{1}-\theta\right)^{-g_{1}}\left(\left(\alpha_{1}-\theta\right)-\left(\alpha_{1}-\alpha_{2}\right)\right)^{-g_{2}} \ldots\left(\left(\alpha_{1}-\theta\right)-\left(\alpha_{1}-\alpha_{n}\right)\right)^{-g_{n}} \\
= & \left(\alpha_{1}-\theta\right)^{-\left(g_{1}+\ldots+g_{n}+r_{2}+\ldots r_{n}\right)} \sum_{r_{2}=0}^{\infty} \ldots \sum_{r_{n}=0}^{\infty}\binom{g_{2}+r_{2}-1}{r_{2}} \ldots\binom{g_{n}+r_{n}-1}{r_{n}}\left(\alpha_{1}-\alpha_{2}\right)^{r_{2} \ldots} \\
& \quad\left(\alpha_{1}-\alpha_{n}\right)^{r_{n}}, \tag{17}
\end{align*}
$$

where $\alpha_{1}=\max \left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. And now inverting (17) we have that

$$
f(T)=\left(\Gamma\left(g_{1}++g_{n}\right)\right)^{-1} \Pi_{i=1}^{n} \alpha_{j}^{g_{j}}\left(\alpha_{1}\right)^{g_{1}+\ldots+g_{n}} \exp \left\{-\alpha_{1} t\right\} t^{\left(g_{1}+\ldots+g_{n}-1\right)}
$$

A. K. Gupta, D. G. Kabe / Eur. J. Pure Appl. Math, 10 (4) (2017), 614-619

$$
\begin{equation*}
\varphi\left(g_{2}, \ldots, g_{n} ; g_{1}+\ldots+g_{n} ;\left(\alpha_{1}-\alpha_{2}\right) t, \ldots,\left(\alpha_{1}-\alpha_{n}\right) t\right) \tag{18}
\end{equation*}
$$

Here, $\varphi=\sum_{r_{2}=0}^{\infty} \cdots \sum_{r_{n}=0}^{\infty} \frac{\Gamma\left(g_{2}+r_{2}\right) \ldots \Gamma\left(g_{n}+r_{n}\right)\left(\alpha_{1}-\alpha_{2}\right)^{r_{2}}\left(\alpha_{1}-\alpha_{n}\right)^{r_{n}}}{\Gamma\left(g_{1}+\ldots+g_{n}+r_{2}+\ldots+r_{n}\right) r_{2}!\ldots r_{n}!}$

$$
\begin{equation*}
={ }_{1} F_{1}\left(g_{2}+\ldots+g_{n} ; g_{1}+\ldots+g_{n} ;\left((n-1) \alpha_{1}-\alpha_{2}-\ldots-\alpha_{n}\right) t\right) \tag{19}
\end{equation*}
$$

To prove (19) we proceed as follows. The sum of the two noncentral $p \times p$ Wishart matrices A and B , with n and q df , and noncentrality parameters Δ and Ω, is again noncentral Wishart with $(\mathrm{n}+\mathrm{q}) \mathrm{df}$, and $(\Delta+\Omega)$ as noncentrality parameter. With $2 \mathrm{~g}=(\mathrm{p}+1)$, we write this result as

$$
\begin{gather*}
k \int \exp \{-\operatorname{tr}(A+B)\}|A|^{n-g}|B|^{q-g}{ }_{0} F_{1}(n ; \Delta A)_{0} F_{1}(q ; \Omega B) d A d B \\
=\exp \{-\operatorname{tr} D\}|D|^{n-g}{ }_{0} F_{1}(n+q ;(\Delta+\Omega) D) \tag{20}\\
{ }_{0} F_{1}(n ; \Delta A)_{0} F_{1}(q ; \Omega B)={ }_{0} F_{1}(n+q ;(\Delta+\Omega)(A+B)) \tag{21}
\end{gather*}
$$

Now Mathai [8, p. 339, Theorem 5.5] defines

$$
\begin{align*}
& \varphi\left(b_{1}, b_{2} ; c ; X_{1}, X_{2}\right) \\
& =\int\left|U_{1}\right|^{d_{1}-g}\left|U_{2}\right|^{d_{2}-g}\left|I-U_{1}-U_{2}\right|^{c-d_{1}-d_{2}-g}{ }_{1} F_{1}\left(b_{1} ; d_{1} ; X_{1} U_{1}\right)_{1} F_{1}\left(b_{2} ; d_{2} ; X_{2} U_{2}\right) d U_{1} d U_{2} \\
& =\int\left|U_{1}\right|^{d_{1}-g}\left|U_{2}\right|^{d_{2}-g}\left|I-U_{1}-U_{2}\right|^{c-d_{1}-d_{2}-g} \exp \left\{-\operatorname{tr}\left(Z_{1}+Z_{2}\right)\right\} \\
& \quad\left|Z_{1}\right|^{b_{1}-g}\left|Z_{2}\right|^{b_{2}-g}{ }_{0} F_{1}\left(d_{1} ; X_{1} U_{1} Z_{1}\right)_{0} F_{1}\left(d_{2} ; X_{2} U_{2} Z_{2}\right) d Z_{1} d Z_{2} d U_{1} d U_{2} \\
& =\int\left|U_{1}\right|^{d_{1}-g}\left|U_{2}\right|^{d_{2}-g}\left|I-U_{1}-U_{2}\right|^{c-d_{1}-d_{2}-g} \exp \left\{-\operatorname{tr}\left(Z_{1}+Z_{2}\right)\right\} \\
& \quad\left|Z_{1}\right|^{b_{1}-g}\left|Z_{2}\right|^{b_{2}-g}{ }_{0} F_{1}\left(d_{1}+d_{2} ;\left(X_{1}+X_{2}\right)\left(U_{1}+U_{2}\right)\left(Z_{1}+Z_{2}\right)\right) d Z_{1} d Z_{2} d U_{1} d U_{2} \\
& =\int\left|U_{1}\right|^{d_{1}-g}\left|U_{2}\right|^{d_{2}-g}\left|I-U_{1}-U_{2}\right|^{c-d_{1}-d_{2}-g} \\
& \quad{ }_{1} F_{1}\left(b_{1}+b_{2} ; d_{1}+d_{2} ;\left(X_{1}+X_{2}\right)\left(U_{1}+U_{2}\right)\right) d U_{1} d U_{2} \\
& =k_{2} F_{2}\left(d_{1}+d_{2} ; b_{1}+b_{2} ; d_{1}+d_{2} ; c ; X_{1}+X_{2}\right) \\
& =k_{1}{ }_{1} F_{1}\left(b_{1}+b_{2} ; c ; X_{1}+X_{2}\right), \tag{22}
\end{align*}
$$

and hence (15) and (19) follow. All matrices in (22) are $p \times p$ positive definite matrices.

3. GQFMBD

The GQFMBD of the $p \times p$ matrix M defined by the integral

$$
\begin{equation*}
f(M)=\int_{R} g\left(T_{1}\right) g\left(T_{2}\right) d T_{1} d T_{2} \tag{23}
\end{equation*}
$$

$$
\begin{array}{r}
f\left(T_{1}, T_{2}\right)=|\Delta|^{p}\left(\delta_{1}\right)^{p n} \exp \left\{-\delta_{1} \operatorname{tr}\left(T_{1}+T_{2}\right)\right\}\left|T_{1}\right|^{\frac{1}{2}(n-p-1)}\left|T_{2}\right|^{\frac{1}{2}(q-p-1)} \\
{ }_{1} F_{1}\left(\frac{1}{2}(n-1) ; \frac{1}{2} n ; \delta T_{1}\right)_{1} F_{1}\left(\frac{1}{2}(q-1) ; \frac{1}{2} q ; \delta T_{2}\right) . \tag{24}
\end{array}
$$

Note that the matrix M has a doubly noncentral multivariate beta density derived by Gupta and Kabe [3] as follows.

$$
\begin{align*}
f\left(T_{1}, T_{2}\right)= & \left.k \exp \left\{-\delta_{1} \operatorname{tr}\left(T_{1}+T_{2}\right)\right\}\left|T_{1}\right|^{\frac{1}{2}(n-p-1)} \right\rvert\, T_{2}{ }^{\frac{1}{2}(q-p-1)} \\
& \int \exp \left\{-\operatorname{tr}\left(Z_{1}+Z_{2}\right)\right\}\left|Z_{1}\right|^{\frac{1}{2}(n-1)-g}\left|Z_{2}\right|^{\frac{1}{2}(q-1)-g} \\
& { }_{0} F_{1}\left(\frac{1}{2} n ; \delta T_{1}, Z_{1}\right){ }_{0} F_{1}\left(\frac{1}{2} q ; \delta T_{2}\right) d Z_{1} d Z_{2}, \tag{25}
\end{align*}
$$

and hence the doubly noncentral multivariate beta density of M is

$$
\begin{gather*}
f(M)=k \exp \left\{-\operatorname{tr}\left(T_{1}+T_{2}\right)\right\}\left|Z_{1}\right|^{\frac{1}{2}(n-1)-g}\left|Z_{2}\right|^{\frac{1}{2}(q-1)-g}|M|^{\frac{1}{2}(n-p-1)} \\
\\
|I-M|^{\frac{1}{2}(q-p-1)}{ }_{1} F_{1}\left(\frac{1}{2}(n+q) ; \frac{1}{2} n ; \delta M\left(Z_{1}+Z_{2}\right) d Z_{1} d Z_{2}\right. \\
=|\Delta|^{p}\left(\delta_{1}\right)^{\frac{1}{2}(n+q-2)}|M|^{\frac{1}{2}(n-p-1)}|I-M|^{\frac{1}{2}(q-p-1)}\left\{B_{p}\left(\frac{1}{2} n ; \frac{1}{2} q\right)\right\}^{-1} \tag{26}\\
{ }_{2} F_{1}\left(\frac{1}{2}(n+q-2) ; \frac{1}{2}(n+q) ; \frac{1}{2} n ; \delta \delta_{1}^{-p} M\right) .
\end{gather*}
$$

We now proceed to write the HC counterparts of (15) and (25), with $\delta=\left((n-1) \delta_{1}-\delta_{2}-\right.$ $-\delta_{n}$).

4. HCGFWD

The HCGFWD of (15) is

$$
\begin{equation*}
f(T)=|\Delta|^{2 p t} \exp \left\{-\delta_{1} \operatorname{tr} T\right\}|T|^{2 t(n-p+1)-1}\left\{\Gamma_{p}(2 n t)\right\}^{-1}\left(\delta_{1}\right)^{2 p t n}{ }_{1} F_{1}(2 t(n-1) ; 2 t n ; \delta T), \tag{27}
\end{equation*}
$$

and hence the density of the roots matrix $p \times p \wedge$ is

$$
\begin{align*}
& f(\wedge)=\mid \Delta \|^{2 p t} \exp \left\{-\delta_{1} \operatorname{tr} T\right\}|T|^{2 t(n-p+1)-1}\left\{\Gamma_{p}(2 n t)\right\}^{-1}\left(\delta_{1}\right)^{2 p t n} \\
&{ }_{1} F_{1}(2 t(n-1) ; 2 t n ; \delta T) \Pi_{i<j}^{p}\left(\lambda_{i}-\lambda_{j}\right)^{4 t} \tag{28}
\end{align*}
$$

and setting $(2 t=h)$ we find that

$$
\begin{align*}
\int \exp \left\{-\delta_{1} \operatorname{tr} \wedge\right\} \mid & \left.\wedge\right|^{g-1}{ }_{1} F_{1}((n-1) h ; n h ; \delta \wedge) \Pi_{i<j}^{p}\left(\lambda_{i}-\lambda_{j}\right)^{2 h} d \wedge \\
& =|\Delta|^{-p h}\left(\delta_{1}\right)^{p n h} \frac{\Gamma_{p}(g+h p-h)}{\Gamma(p+1)} \tag{29}
\end{align*}
$$

Note that in (28) the roots are ordered, but in Selberg-type they are unordered hence the factor $\Gamma(p+1)$ in (29).

5. HCGQFMBD

The HCGQFMBD of $p \times p M$ is

$$
\begin{gathered}
f(M)=|\Delta|^{4 p t}\left(\delta_{1}\right)^{2 p t(n-q+2)}\left\{B_{p}(2 n t ; 2 q t)\right\}^{-1}|M|^{2 t(n-p+1)-1}|I-M|^{2 t(q-p+1)-1} \\
{ }_{2} F_{1}\left(2 t(n+q-2) ; 2 t(n+q) ; 2 t n ; \delta_{1}^{-4 p t} \delta M\right), \\
f(\wedge)=\left\{B_{p}(2 n t ; 2 q t)\right\}^{-1}|\Delta|^{4 p t}\left(\delta_{1}\right)^{2 p t(n-q+2)}|\wedge|^{2 t(n-p+1)-1}|I-\wedge|^{2 t(q-p+1)-1} \\
{ }_{2} F_{1}\left(2 t(n+q-2) ; 2 t(n+q) ; 2 t n ; \delta_{1}^{-4 p t} \delta \wedge\right) \Pi_{i<j}^{p}\left(\lambda_{i}-\lambda_{j}\right)^{4 t}
\end{gathered}
$$

and hence setting $2 t=h$, we have that

$$
\begin{gather*}
\int|\wedge|^{g-1}|I-\wedge|^{t-1}{ }_{2} F_{1}\left(h(n+q-2) ; h(n+q) ; h n ; \delta\left(\delta_{1}\right)^{-2 h p} \wedge\right) \Pi_{i<j}^{p}\left(\lambda_{i}-\lambda_{j}\right)^{4 t} d \wedge \\
=\frac{B_{p}(g+h p-h ; t+h p-h)|\Delta|^{-2 h p}\left(\delta_{1}\right)^{-h p(n-q+2)}}{\Gamma(p+1)} \tag{30}
\end{gather*}
$$

Thus (29) and (30) are the Selberg-type integrals of our context.

References

[1] Askey, Richard and Richards, Donald. (1989) Selbergs second beta integral and an integral of Mehta, Probability, Statistics, and Mathematics. Academic Press, (Karlin Volume), New York.
[2] Gupta, A.K. and Kabe, D.G. (2005). On Selberg beta integrals Random Obr. And Stocastic Eqn 13, 11-16.
[3] Gupta, A.K. and Kabe, D.G. (2007). The doubly noncentral multivariate beta distribution. J. Appli. Stat. Sc. 1,21-25.
[4] Gupta, A.K. and Kabe, D.G. (2008). Selberg-type squared matrices gamma and beta integrals. Eu. J. Pure and Appli. Math. 1,197-201.
[5] Gupta, A.K. and Nagar, D.K. (2007). Matrix Variate Distributions
[6] Kabe, D.G. (1984). Classical statistical analysis based on a certain hypercomplex multivariate normal distribution. Metrika. 31, 63-76.
[7] Mathai, A.M., Hayakawa, T., Provost, S.B. (1995). Bilinear Forms and Zonal Polynomials. Springer-Verlag, New York.
[8] Mathai, A.M. (1997). Jacobians of Matrix Transformations and Functions of Matrix Arguments. World Scientific, London, England.

[^0]: *Corresponding author.

