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Abstract. Some well known results on ordered semigroups are examined in case of ordered hyper-
semigroups. Following the paper in Semigroup Forum 44 (1992), 341–346, we prove the following:
The ideals of an ordered hypergroupoid H are idempotent if and only if for any two ideals A and
B of H, we have A ∩B = (A ∗B]. Let now H be an ordered hypersemigroup. Then, the ideals of
H are idempotent if and only if H is semisimple. The ideals of H are weakly prime if and only if
they are idempotent and they form a chain. The ideals of H are prime if and only if they form a
chain and H is intra-regular. The paper serves as an example to show how we pass from ordered
semigroups to ordered hypersemigroups.
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1. Introduction and prerequisites

In our paper in Semigroup Forum 44 (1992) 341–346 [4] we characterized the ordered
semigroup S in which the ideals are idempotent in terms of the ideals of S and we proved
that this type of ordered semigroups are the semisimple ordered semigroups. We also
proved that the ideals of an ordered semigroup S are weakly prime if and only if they are
idempotent and they form a chain. And that the ideals of an ordered semigroup S are
prime if and only if they form a chain and S is intra-regular. In the present paper we show
the way we pass from ordered semigroups to ordered hypersemigroups. For convenience,
we will give some definitions–notations already given in [8–10].

An hypergroupoid is a nonempty set H endowed with an hyperoperation
◦ : H ×H → P∗(H) | (a, b)→ a ◦ b on H and an operation
∗ : P∗(H) × P∗(H) → P∗(H) | (A,B) → A ∗ B on P∗(H) (induced by the operation

of H) such that A ∗ B =
⋃

(a,b)∈A×B
(a ◦ b) for every A,B ∈ P∗(H). As the operation “∗”

depends on the hyperoperation “◦”, an hypergroupoid H is denoted by (H, ◦). Clearly,
A ⊆ B implies A∗C ⊆ B ∗C and C ∗A ⊆ C ∗B for any A,B,C ∈ P∗(H) and H ∗H ⊆ H.
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As in ordered semigroups, for a subset A of an hypergroupoid H, we denote by (A] the
subset of H defined by

(A] := {t ∈ H | t ≤ a for some a ∈ A},

and we have the following: A ⊆ (A]; if A ⊆ B, then (A] ⊆ (B]; (H] = H; ((A]] = (A]. For
an hypergroupoid H, the following two properties, being obvious, play an essential role in
the investigation:

(1) If x ∈ A ∗B, then x ∈ a ◦ b for some a ∈ A, b ∈ B.
(2) If a ∈ A and b ∈ B, then a ◦ b ⊆ A ∗B.
If H is an hypergroupoid and Ai, B ∈ P∗(H), i ∈ I, then we have the following:
(1) (

⋃
i∈I

Ai) ∗B =
⋃
i∈I

(Ai ∗B).

(2) B ∗ (
⋃
i∈I

Ai) =
⋃
i∈I

(B ∗Ai).

An hypergroupoid satisfying the relation {x}∗ (y ◦z) = (x◦y)∗{z} for any x, y, z ∈ H
is called hypersemigroup. Identifying the singleton {x} by the element x and the {z} by
z we can write, for short, x ∗ (y ◦ z) = (x ◦ y) ∗ z. For every x, y ∈ H, we can easily
show that {x} ∗ {y} = x ◦ y, so instead of writing {x} ∗ (y ◦ z) = (x ◦ y) ∗ {z} we can

also write {x} ∗
(
{y} ∗ {z}

)
=
(
{x} ∗ {y}

)
∗ {z}. If (H, ◦) is an hypersemigroup, then

the operation “∗” on P∗(H) is associative, that is (P∗(H), ∗) is a semigroup. So in an
expression of the form A1 ∗ A2 ∗ · · · ∗ An, where A1, A2, · · ·, An are nonempty subsets of
H and n ∈ N = {1, 2, · · ·, n} (the set of natural numbers), we can put parentheses in any
expression beginning with some Ai and ending in some Aj (i, j ∈ N). If “≤” is an order
relation on an hypergroupoid H, we denote by “�” the relation on P∗(H) defined by

�:= {(A,B) | ∀ a ∈ A ∃ b ∈ B such that a ≤ b}.

So, for A,B ∈ P∗(H), we write A � B if for every a ∈ A there exists b ∈ B such that
a ≤ b. This is a reflexive and transitive relation on P∗(H), that is a preorder on P∗(H).
The concept of the ordered groupoid [1] can be naturally transferred to an hypergroupoid
as follows: An hypergroupoid (H, ◦) is called an ordered hypergroupoid if there is an order
relation “≤” on H satisfying the property a ≤ b implies a ◦ c � b ◦ c and c ◦ a � c ◦ b
for every c ∈ H (cf. also [11]) and it is denoted by (H, ◦,≤). The concept of right (left)
ideals of ordered groupoids introduced by Kehayopulu in [2], can be naturally transferred
to hypergroupoids as follows: If (H, ◦,≤) is an ordered hypergroupoid, a nonempty subset
A of H is called a right (resp. left) ideal of H if (1) A ∗ H ⊆ A (resp. H ∗ A ⊆ A) and
(2) if a ∈ A and H 3 b ≤ a, then b ∈ A, that is if (A] = A. A subset of H which is
both a right and left ideal of H is called an ideal of H. Recall that we have A ∗H ⊆ A
(resp. H ∗ A ⊆ A) if and only if a ◦ h ⊆ A (resp. h ◦ a ⊆ A) for every a ∈ A and every
h ∈ H. A nonempty subset A of an ordered hypergroupoid H is called a subgroupoid of
H if A ∗ A ⊆ A, equivalently if for every a, b ∈ A we have a ◦ b ⊆ A. Clearly, every right
(left) ideal of an ordered groupoid H is a subgroupoid of H.
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2. Main results

Proposition 1. Let (H, ◦,≤) be an ordered hypergroupoid, a ≤ b and c ≤ d. Then we
have a ◦ c � b ◦ d.
Proof. Since a ≤ b and c ∈ H, we have a ◦ c � b ◦ c. Since c ≤ d and b ∈ H, we have
b ◦ c � b ◦ d. Since the relation “�” is transitive on P∗(H), we have a ◦ c � b ◦ d. �

Proposition 2. Let (H, ◦,≤) be an ordered hypergroupoid and A,B,C nonempty subsets
of H such that A � B. Then we have A ∗ C ⊆ (B ∗ C] and C ∗A ⊆ (C ∗B].

Proof. Let x ∈ A ∗ C. Then x ∈ a ◦ c for some a ∈ A, c ∈ C. Since A � B and a ∈ A,
there exists b ∈ B such that a ≤ b. Since a ≤ b, we have a ◦ c � b ◦ c. Since x ∈ a ◦ c, there
exists y ∈ b ◦ c such that x ≤ y. We have x ≤ y ∈ b ◦ c = {b} ∗ {c} ⊆ B ∗C, so x ∈ (B ∗C].
Similarly C ∗A ⊆ (C ∗B]. �

Definition 3. Let H be an hypergroupoid or an ordered hypergroupoid. A nonempty
subset T of H is called prime (subset) of H if the following assertion is satisfied:

If A,B ∈ P∗(H) such that A ∗B ⊆ T, then A ⊆ T or B ⊆ T.

It is called weakly prime if we have the following:

If A,B are ideals of H such that A ∗B ⊆ T, then A ⊆ T or B ⊆ T.

Proposition 4. Let H be an hypergroupoid or an ordered hypergroupoid. A nonempty
subset T of H is a prime subset of H if and only if

a, b ∈ H such that a ◦ b ⊆ T implies a ∈ T or b ∈ T.

Proof. =⇒. Let a, b ∈ H, a ◦ b ⊆ T . Since {a}, {b} ∈ P∗(H), {a} ∗ {b} = a ◦ b ⊆ T and
T is prime, we have {a} ⊆ T or {b} ⊆ T . Then a ∈ T or b ∈ T .
⇐=. Let A,B ∈ P∗(H) such that A ∗ B ⊆ T and let A 6⊆ T and b ∈ B. Take an

element a ∈ A such that a 6∈ T . Since a ◦ b ⊆ A ∗B ⊆ T , by hypothesis, we have a ∈ T or
b ∈ T . Since a 6∈ T , we have b ∈ T . �

Definition 5. Let H be an hypergroupoid or an ordered hypergroupoid. A nonempty
subset T of H is called semiprime if

for any A ∈ P∗(H) such that A ∗A ⊆ T, we have A ⊆ T.

Clearly, the prime subsets are both weakly prime and semiprime.

Proposition 6. Let H be an hypergroupoid or an ordered hypergroupoid. A nonempty
subset T of H is semiprime if and only if

for any a ∈ H such that a ◦ a ⊆ T, we have a ∈ T.

Proof. =⇒. Let a ∈ H such that a◦a ⊆ T . Since {a} ∈ P∗(H) and {a}∗{a} = a◦a ⊆ T ,
by hypothesis, we have {a} ⊆ T , then a ∈ T .
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⇐=. Let A ∈ P∗(H) such that A ∗ A ⊆ T and a ∈ A. Since a ◦ a ⊆ A ∗ A ⊆ T , by
hypothesis, we have a ∈ T . Thus A is a subset of T , and T is semiprime. �

Proposition 7. Let (H, ◦,≤) be an ordered hypergroupoid. If A and B are ideals of H,
then the intersection A ∩B is an ideal of H as well.

Proof. First of all, since A is a right ideal and B a left ideal of H, we have A ∩ B 6= ∅.
Indeed: Take an element a ∈ A and an element b ∈ B (A,B 6= ∅). Then a◦ b ⊆ A∗H ⊆ A
and a ◦ b ⊆ B ∗H ⊆ B, so a ◦ b ⊆ A ∩ B. As a ◦ b is a nonempty set, the set A ∩ B is a
nonempty subset of H. In addition, (A∩B)∗H ⊆ A∗H ⊆ A and (A∩B)∗H ⊆ B∗H ⊆ B,
thus (A ∩ B) ∗H ⊆ A ∩ B. If now x ∈ A ∩ B and H 3 y ≤ x then, since y ≤ x ∈ A we
have y ∈ A and, since y ≤ x ∈ B we have y ∈ B, so y ∈ A ∩ B. Thus A ∩ B is a right
ideal of H. Similarly, A ∩B is a left ideal of H and so it is an ideal of H. �

Definition 8. A nonempty subset A of an ordered hypergroupoid (H, ◦,≤) is called
idempotent if A = (A ∗A].

Theorem 9. Let (H, ◦,≤) be an ordered hypergroupoid. The ideals of H are idempotent
if and only if for any two ideals A and B of H, we have

A ∩B = (A ∗B].

Proof. =⇒. Let A, B be ideals of H. By Proposition 7, A ∩ B is an ideal of H. By
hypothesis, we have

A ∩B =
(

(A ∩B) ∗ (A ∩B)
]
⊆ (A ∗B]

⊆ (A ∗H] ∩ (H ∗B] ⊆ (A] ∩ (B] = A ∩B.

Thus we have A ∩B = (A ∗B].
⇐=. Let A be an ideal of H. By hypothesis, we have A = A ∩ A = (A ∗ A], so A is

idempotent. �

Proposition 10. [10; Lemma 2.8] Let (H, ◦,≤) be an ordered hypergroupoid and A,B ∈
P∗(H). Then we have (A] ∗ (B] ⊆ (A ∗B].

Proposition 11. Let (H, ◦,≤) be an ordered hypergroupoid and A,B ∈ P∗(H). Then we
have

(A ∗B] =
(

(A] ∗ (B]
]

=
(

(A] ∗B
]

=
(
A ∗ (B]

]
.

Proof. Let us prove the equality
(

(A] ∗ (B]
]

=
(

(A] ∗B
]
. The rest of the proposition can

be proved in a similar way. First of all, the sets (A] and (B] are nonempty subsets of H as

A and B are so. Since B ⊆ (B], we have (A]∗B ⊆ (A]∗ (B], then
(

(A]∗B
]
⊆
(

(A]∗ (B]
]
.

Let now t ∈
(

(A] ∗ (B]
]
. Then t ≤ u for some u ∈ (A] ∗ (B]. We have u ∈ x ◦ y for some

x ∈ (A], y ∈ (B]. Then x ≤ a for some a ∈ A and y ≤ b for some b ∈ B. By Proposition
1, we have x ◦ y � a ◦ b. Since u ∈ x ◦ y, we have u ≤ v for some v ∈ a ◦ b. Then we have

t ≤ v ∈ a ◦ b, then t ∈ (a ◦ b] ⊆ (A ∗B] ⊆
(

(A] ∗B
]
. �
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Proposition 12. Let (H, ◦,≤) be an ordered hypersemigroup and A,B,C nonempty sub-
sets of H. Then we have (

A ∗ (B] ∗ C
]

= (A ∗B ∗ C].

Proof. By Proposition 11, we have(
A ∗ (B] ∗ C

]
=

((
A ∗ (B]

)
∗ C
]

=
(

(A ∗B] ∗ C
]

=
(

(A ∗B) ∗ C
]

= (A ∗B ∗ C].

An independent proof is as follows: Let t ∈
(
A ∗ (B] ∗ C

]
. Then t ≤ x for some x ∈

A ∗ (B] ∗ C, x ∈ y ◦ z for some y ∈ A ∗ (B], z ∈ C, y ∈ u ◦ v for some u ∈ A, v ∈ (B] and
v ≤ b for some b ∈ B. Then we have

t ≤ x ∈ y ◦ z = {y} ∗ {z} ⊆ (u ◦ v) ∗ {z}.

Since v ≤ b, by Proposition 1, we have u ◦ v � u ◦ b. Then, by Proposition 2, we have

(u ◦ v) ∗ {z} ⊆
(

(u ◦ b) ∗ {z}
]
. Hence we obtain

t ≤ x ∈
(

(u ◦ b) ∗ {z}
]

=
(
{u} ∗ {b} ∗ {z}

]
⊆ (A ∗B ∗ C],

and then t ∈
(

(A ∗ B ∗ C]
]

= (A ∗ B ∗ C], so
(
A ∗ (B] ∗ C

]
⊆ (A ∗ B ∗ C]. On the other

hand, since B ⊆ (B], we have (A ∗B ∗ C] ⊆
(
A ∗ (B] ∗ C

]
. �

Let H be an hypersemigroup. For a nonempty subset A of H we denote by I(A) the
ideal of H generated by A. For A = {a} (a ∈ H), we write I(a) instead of I({a}).
Proposition 13. Let (H, ◦,≤) be an ordered hypersemigroup and A a nonempty subset
of H. Then we have

I(A) =
(
A ∪ (H ∗A) ∪ (A ∗H) ∪ (H ∗A ∗H)

]
.

Proof. We set T :=
(
A ∪ (H ∗ A) ∪ (A ∗ H) ∪ (H ∗ A ∗ H)

]
. The set T is a nonempty

subset of H containing A. Moreover, T is an ideal of H. In fact:

T ∗H =
(
A ∪ (H ∗A) ∪ (A ∗H) ∪ (H ∗A ∗H)

]
∗H

=
(
A ∪ (H ∗A) ∪ (A ∗H) ∪ (H ∗A ∗H)

]
∗ (H]

⊆

((
A ∪ (H ∗A) ∪ (A ∗H) ∪ (H ∗A ∗H)

)
∗H

]
(by Proposition 10)

=
(

(A ∗H) ∪ (H ∗A ∗H) ∪ (A ∗H ∗H) ∪ (H ∗A ∗H ∗H)
]
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=
(

(A ∗H) ∪ (H ∗A ∗H)
]
⊆ T ;

also (T ] = T . Similarly T is a left ideal of H. Let now K be an ideal of H such that
K ⊇ A. Then T ⊆ K. Indeed, we have

T =
(
A ∪ (H ∗A) ∪ (A ∗H) ∪ (H ∗A ∗H)

]
⊆

(
K ∪ (H ∗K) ∪ (K ∗H) ∪ (H ∗K ∗H)

]
= (K] = K.

�

Proposition 14. Let (H, ◦,≤) be an ordered hypersemigroup. If A is a left ideal and B
is a right ideal of H, then the set (A ∗B] is an ideal of H.

Proof. Since A and B are nonempty subsets of H, the set A∗B is also a nonempty subset
of H and so is (A ∗B]. In addition,

H ∗ (A ∗B] = (H] ∗ (A ∗B] ⊆
(
H ∗ (A ∗B)

]
(by Proposition 10)

=
(

(H ∗A) ∗B
]
⊆ (A ∗B],

similarly (A ∗B] ∗H ⊆ (A ∗B]. Let now x ∈ (A ∗B] and H 3 y ≤ x. We have x ≤ u for
some u ∈ A ∗B. Since H 3 y ≤ u ∈ A ∗B, we have y ∈ (A ∗B]. Thus (A ∗B] is an ideal
of H. �

Corollary 15. If H is an ordered hypersemigroup and A, B ideals of H, then the set
(A ∗B] is an ideal of H.

This is the concept of semisimple ordered semigroups introduced by Kehayopulu in
[7]: An ordered semigroup (S, ·,≤) is called semisimple if for every a ∈ S there exist
x, y, z ∈ S such that a ≤ xayaz. This is equivalent to saying that a ∈ (SaSaS] for every
a ∈ S or A ⊆ (SASAS] for any A ⊆ S. This concept can be naturally transferred to
ordered hypersemigroups by the following definition.

Definition 16. An ordered hypersemigroup (H, ◦,≤) is called semisimple if for every
a ∈ H there exist x, y, z ∈ H such that {a} � (x ◦ a) ∗ (y ◦ a) ∗ {z}.
That is, for every a ∈ H there exist x, y, z, t ∈ H such that t ∈ (x ◦ a) ∗ (y ◦ a) ∗ {z} and
a ≤ t.
Clearly,

(x ◦ a) ∗ (y ◦ a) ∗ {z} = {x} ∗ (a ◦ y) ∗ (a ◦ z) = (x ◦ a) ∗ {y} ∗ (a ◦ z)

= {x} ∗ {a} ∗ {y} ∗ {a} ∗ {z}.

Proposition 17. Let (H, ◦,≤) be an ordered hypersemigroup. The following are equiva-
lent:

(1) H is semisimple.
(2) a ∈ (H ∗ {a} ∗H ∗ {a} ∗H] for every a ∈ H.
(3) A ⊆ (H ∗A ∗H ∗A ∗H] for every nonempty subset A of H.
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Proof. (1) =⇒ (2). Let a ∈ H. Since H is semisimple, there exist x, y, z, t ∈ H such that
a ≤ t ∈ {x}∗{a}∗{y}∗{a}∗{z} ⊆ H∗{a}∗H∗{a}∗H, so we have a ∈ (H∗{a}∗H∗{a}∗H].

(2) =⇒ (3). Let A ∈ P∗(H) and a ∈ A. By (2), we have

a ∈ (H ∗ {a} ∗H ∗ {a} ∗H] ⊆ (H ∗A ∗H ∗A ∗H].

(3) =⇒ (1). Let a ∈ H. By (3), we have a ∈ {a} ⊆ (H ∗{a}∗H ∗{a}∗H]. Then a ≤ t

for some t ∈
(
H ∗ {a} ∗H

)
∗ {a} ∗H, t ∈ u ◦ v for some u ∈ H ∗ {a} ∗H, v ∈ {a} ∗H,

u ∈ w ◦ y for some w ∈ H ∗ {a}, y ∈ H, w ∈ x ◦ a for some x ∈ H and v ∈ a ◦ z for some
z ∈ H. Thus we have

t ∈ u ◦ v = {u} ∗ {v} ⊆ (w ◦ y) ∗ {v} = {w} ∗ {y} ∗ {v}
⊆ (x ◦ a) ∗ {y} ∗ (a ◦ z), where x, y, z ∈ H

and a ≤ t, so H is semisimple. �

Theorem 18. An ordered hypersemigroup (H, ◦,≤) is semisimple if and only if the ideals
of H are idempotent.

Proof. =⇒. Let A be an ideal of H. If x ∈ A then, since H is semisimple, we have

x ∈ (H ∗ {x} ∗H ∗ {x} ∗H]. Then x ≤ t for some t ∈
(
H ∗ {x} ∗H

)
∗
(
{x} ∗H

)
. Then

t ∈ a ◦ b for some a ∈ H ∗ {x} ∗H, b ∈ {x} ∗H.

Since a ∈ H ∗ {x} ∗H ⊆ (H ∗A) ∗H ⊆ A ∗H ⊆ A and b ∈ {x} ∗H ⊆ A ∗H ⊆ A, we have
a ◦ b ⊆ A ∗A. Since x ≤ t ∈ A ∗A, we have x ∈ (A ∗A]. Let now x ∈ (A ∗A]. Then x ≤ t
for some t ∈ A ∗ A. Since t ∈ A ∗ A, we have t ∈ a ◦ b for some a, b ∈ A. Since a, b ∈ A
and A is a subsemigroup of H, we have a ◦ b ⊆ A ∗ A ⊆ A. Since x ≤ t ∈ A and A is an
ideal of H, we have x ∈ A. Thus the ideals of H are idempotent.
⇐=. Let a ∈ H. By hypothesis, we have I(a) = (I(a) ∗ I(a)]. In the implication

(4) ⇒ (5) of Lemma 2 in [4], we replace the multiplication “·” by “∗”, the proof follows.
�

Theorem 19. Let (H, ◦,≤) be an ordered hypersemigroup. The ideals of H are weakly
prime if and only if they are idempotent and they form a chain.

Proof. =⇒. Let A be an ideal of H. Then A = (A ∗ A]. Indeed: By Corollary 15,
the set (A ∗ A] is an ideal of H. Since A ∗ A ⊆ (A ∗ A] and (A ∗ A] is weakly prime, we
have A ⊆ (A ∗ A] ⊆ (A ∗ H] ⊆ (A] = A, so A = (A ∗ A]. Let now A, B be ideals of H.
Then A ⊆ B or B ⊆ A. Indeed: By Corollary 15, the set (A ∗ B] is an ideal of H. Since
A ∗B ⊆ (A ∗B] and (A ∗B] is weakly prime, we have A ⊆ (A ∗B] ⊆ (H ∗B] ⊆ (B] = B
or B ⊆ (A ∗B] ⊆ (A ∗H] ⊆ (A] = A.
⇐=. Let T be an ideal of H and A,B ideals of H such that A ∗ B ⊆ T . Since the

ideals of H are idempotent, by Theorem 9, we have A ∩ B = (A ∗ B]. By hypothesis, we
have A ⊆ B or B ⊆ A. If A ⊆ B, then we have A = A∩B = (A∗B] ⊆ (T ] = T. If B ⊆ A,
then B = A ∩B = (A ∗B] ⊆ T , so T is weakly prime. �
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This is the notion of an intra-regular ordered semigroup introduced by Kehayopulu
in [5]: An ordered semigroup (S, ·,≤) is called intra-regular if for every a ∈ S there
exist x, y ∈ S such that a ≤ xa2y, that is if a ∈ (Sa2S] for every a ∈ S, equivalently
if A ⊆ (SA2S] for every A ⊆ S. This concept can be naturally transferred to ordered
hypersemigroups in the following definition.

Definition 20. An ordered hypersemigroup (H, ◦,≤) is called intra-regular if for every
a ∈ H there exist x, y ∈ H such that {a} � (x ◦ a) ∗ (a ◦ y), that is, for every a ∈ H there
exist x, y, t ∈ H such that t ∈ (x ◦ a) ∗ (a ◦ y) and a ≤ t.

Instead of writing (x ◦ a) ∗ (a ◦ y), we can clearly write {x} ∗ (a ◦ a) ∗ {y} or {x} ∗ {a} ∗
{a} ∗ {y}.

In a similar way as in Proposition 17 we can prove the following proposition.

Proposition 21. Let (H, ◦,≤) be an ordered hypersemigroup. The following are equiva-
lent:

(1) H is intra-regular.
(2) a ∈ (H ∗ {a} ∗ {a} ∗H] for every a ∈ H.
(3) A ⊆ (H ∗A ∗A ∗H] for every nonempty subset A of H.

Proposition 22. If (H, ◦,≤) is an ordered hypersemigroup then, for every nonempty
subset A of H, the set (H ∗A ∗H] is an ideal of H.

Proof. The set (H ∗A ∗H] is a nonempty subset of H, and we have

(H ∗A ∗H] ∗H = (H ∗A ∗H] ∗ (H]

⊆
(

(H ∗A ∗H) ∗H
]

(by Proposition 10)

=
(
H ∗A ∗ (H ∗H)

]
= (H ∗A ∗H].

Similarly, H ∗ (H ∗ A ∗H] ⊆ (H ∗ A ∗H], we also have
(

(H ∗ A ∗H]
]

= (H ∗ A ∗H] (as

((X]] = (X] holds for any subset X of H).

Theorem 23. Let H be an ordered hypersemigroup. If the ideals of H are weakly prime
and semiprime, then they form a chain and H is intra-regular. “Conversely”, if the ideals
of H form a chain and H is intra-regular, then the ideals of H are prime.

Proof. Suppose the ideals of H are weakly prime and semiprime. Since they are weakly
prime, by Theorem 19, they form a chain. Let now a ∈ H. We have(

{a} ∗ {a}
)
∗
(
{a} ∗ {a}

)
⊆
(
H ∗ {a} ∗ {a} ∗H

]
,

where
(
H ∗ {a} ∗ {a} ∗H

]
is an ideal of H. Since the ideals of H are semiprime, we have

{a} ∗ {a} ⊆
(
H ∗ {a} ∗ {a} ∗H

]
, and a ∈ {a} ⊆

(
H ∗ {a} ∗ {a} ∗H

]
, so H is intra-regular.

For the converse statement, suppose the ideals of H form a chain and H is intra-
regular. Since H is intra-regular, the ideals of H are semiprime. In fact: Let T be an ideal



N. Kehayopulu / Eur. J. Pure Appl. Math, 11 (1) (2018), 10-22 18

of H and a ∈ H such that a ◦ a ⊆ T . Then

a ∈
(
H ∗ {a} ∗ {a} ∗H

]
=
(
H ∗ (a ◦ a) ∗H

]
⊆ (H ∗ T ∗H] ⊆ (T ] = T,

then a ∈ T , and T is semiprime. Since the ideals of H are semiprime, the following two
assertions are satisfied:

(1) I(A) = (H ∗A ∗H] for every A ∈ P∗(H). In fact:
We have (A∗A)∗(A∗A) ⊆ (H ∗A∗H], where (H ∗A∗H] is an ideal of H. Since (H ∗A∗H]
is semiprime, we have A ∗A ⊆ (H ∗A ∗H], and A ⊆ (H ∗A ∗H], so I(A) ⊆ (H ∗A ∗H].
On the other hand,

(H ∗A ∗H] ⊆
(
A ∪ (H ∗A) ∪ (A ∗H) ∪ (H ∗A ∗H)

]
= I(A),

and condition (1) holds.

(2) I(x ◦ y) = I(x) ∩ I(y) for every x, y ∈ H. In fact: Let x, y ∈ H. Since x ◦ y ⊆
I(x) ∗ H ⊆ I(x), we have I(x ◦ y) ⊆ I(x). Since x ◦ y ⊆ H ∗ I(y) ⊆ I(y), we have
I(x ◦ y) ⊆ I(y). Thus we get I(x ◦ y) ⊆ I(x) ∩ I(y). Let now t ∈ I(x) ∩ I(y). By (1), we

have t ∈
(
H ∗{x}∗H

]
and t ∈

(
H ∗{y}∗H

]
. Then we have t ≤ u for some u ∈ H ∗{x}∗H

and t ≤ v for some v ∈ H ∗ {y} ∗H. Since u ∈
(
H ∗ {x}

)
∗H, we have u ∈ v ◦ b for some

v ∈ H ∗ {x}, b ∈ H. Since v ∈ H ∗ {x}, we have v ∈ a ◦ x for some a ∈ H. Then we have

u ∈ v ◦ b = {v} ∗ {b} ⊆ (a ◦ x) ∗ {b} = {a} ∗ {x} ∗ {b}, where a, b ∈ H.

Similarly, since v ∈ H ∗ {y} ∗H, we have v ∈ {c} ∗ {y} ∗ {d} for some c, d ∈ H. Hence we
obtain

t ≤ u, where u ∈ {a} ∗ {x} ∗ {b} for some a, b ∈ H

and
t ≤ v, where v ∈ {c} ∗ {y} ∗ {d} for some c, d ∈ H.

Then, by Proposition 1, we have

t ◦ t � v ◦ u = {v} ∗ {u} ⊆ {c} ∗
(
{y} ∗ {d} ∗ {a} ∗ {x}

)
∗ {b}.

On the other hand,
{y} ∗ {d} ∗ {a} ∗ {x} ⊆ I(x ◦ y).

Indeed, we have(
{y} ∗ {d} ∗ {a} ∗ {x}

)
∗
(
{y} ∗ {d} ∗ {a} ∗ {x}

)
⊆ H ∗ {x} ∗ {y} ∗H

⊆
(
H ∗ (x ◦ y) ∗H

]
= I(x ◦ y) (by (1)) .
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Since I(x ◦ y) is semiprime, we have
(
{y} ∗ {d} ∗ {a} ∗ {x}

)
⊆ I(x ◦ y). Since I(x ◦ y) is

an ideal of H, we have

{c} ∗
(
{y} ∗ {d} ∗ {a} ∗ {x}

)
∗ {b} ⊆ H ∗ I(x ◦ y) ∗H ⊆ I(x ◦ y).

Then t ◦ t � v ◦ u ⊆ I(x ◦ y). Again since I(x ◦ y) is semiprime, we have t ∈ I(x ◦ y), and
condition (2) holds.

We are ready now to prove that the ideals of H are prime. For this purpose, suppose
T is an ideal of H and a, b ∈ H such that a ◦ b ⊆ T . Since the ideals of H form a chain,
we have I(a) ⊆ I(b) or I(b) ⊆ I(a). If I(a) ⊆ I(b) then, by (2), we have

a ∈ I(a) = I(a) ∩ I(b) = I(a ◦ b) ⊆ I(T ) = T,

so a ∈ T . If I(b) ⊆ I(a), again by (2), we have

b ∈ I(b) = I(a) ∩ I(b) = I(a ◦ b) ⊆ T,

so b ∈ T , thus T is prime. �

Corollary 24. Let H be an hypersemigroup. The following are equivalent:
(1) The ideals of H are prime.
(2) The ideals of H are weakly prime and semiprime.
(3) The ideals of H form a chain and H is intra-regular.

Remark 25. Here we give some examples of ordered hypersemigroups in which the
ideals are idempotent. Following the concept of regular ordered semigroups introduced by
Kehayopulu in [3], an ordered hypersemigroup (H, ◦,≤) is said to be regular if for every
a ∈ H there exists x ∈ H such that {a} � (a ◦ x) ∗ {a}(= {a} ∗ (x ◦ a) = {a} ∗ {x} ∗ {a}).
That is, for every a ∈ H there exist x, t ∈ H such that t ∈ (a ◦ x) ∗ {a} and a ≤ t. This is
equivalent to saying that a ∈ ({a} ∗H ∗ {a}] for every a ∈ H or A ⊆ (A ∗H ∗A] for every
A ∈ P∗(H). If H is a regular hypersemigroup, then the right ideals and the left ideals
of H are idempotent. In fact, let A be a right ideal of H. Since H is regular, we have
A ⊆ ((A ∗H) ∗A] ⊆ (A ∗A] ⊆ (A ∗H] ⊆ A, so (A ∗A] = A. If A is a left ideal of H, then
we have A ⊆ (A ∗ (H ∗ A)] ⊆ (A ∗ A] ⊆ (H ∗ A] ⊆ A, thus (A ∗ A] = A. Again following
the corresponding notions of ordered semigroups, an ordered hypersemigroup H is called
left regular [10] if for every a ∈ H there exists x ∈ H such that {a} � {x} ∗ (a ◦ a)(=
(x ◦ a) ∗ {a} = {x} ∗ {a} ∗ {a}). That is, for every a ∈ H there exist x, t ∈ H such that
t ∈ {x} ∗ (a ◦ a) and a ≤ t. This is equivalent to saying that a ∈ (H ∗ {a} ∗ {a}] for every
a ∈ H or A ⊆ (H ∗A ∗A] for every A ∈ P∗(H). The left regular ordered hypersemigroups
are intra-regular. Indeed, let A ∈ P∗(H). Then we have

A ⊆ (H ∗A ∗A] ⊆
(
H ∗ (H ∗A ∗A] ∗A

]
=

(
H ∗ (H ∗A ∗A) ∗A

]
(by Proposition 12)

=
(

(H ∗H) ∗A ∗A ∗A
]
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⊆ (H ∗A ∗A ∗H],

so H is intra-regular. In intra-regular ordered hypersemigroups the ideals are idempotent.
In fact: Let H be an intra-regular ordered hypersemigroup and A an ideal of H. Since
A ⊆ (H ∗A ∗A ∗H], we have

(A ∗A] ⊆
(

(H ∗A ∗A ∗H] ∗A
]

=
(

(H ∗A ∗A ∗H) ∗A
]

(by Proposition 11)

⊆ (H ∗A] ⊆ (A] = A ⊆
(

(H ∗A) ∗ (A ∗H)
]
⊆ (A ∗A],

then (A ∗ A] = A, and A is idempotent. An ordered hypersemigroup H is said to be
right regular [10] if for every a ∈ H there exists x ∈ H such that {a} � (a ◦ a) ∗ {x}(=
{a} ∗ (a ◦ x) = {a} ∗ {a} ∗ {x}). This is equivalent to saying that a ∈ ({a} ∗ {a} ∗ H]
for every a ∈ H or A ⊆ (A ∗ A ∗ H] for every A ∈ P∗(H). The right regular ordered
hypersemigroups are also intra-regular. Thus, in left regular, right regular or intra-regular
ordered hypersemigroups the ideals are idempotent. �

It might be finally mentioned that in commutative ordered hypersemigroups the prime
and weakly prime ideals coincide –the proof is the same with the proof of the Proposition
in [4], we just have to replace the operation “·” of the semigroup by the hyperoperation
“◦” of the hypersemigroup.

We apply the theorems of the paper to the following two examples.

Example A. We consider the ordered hypersemigroup H := {a, b, c, d, f} defined by the
hyperoperation given in the table below and the order below.

◦ a b c d f

a {a} {a} {a} {a} {a}
b {a} {a, b} {a, b, c, f} {a, b} {a, b, c, f}
c {a} {a, b} {c} {a, b, c, f} {a, b, c, f}
d {a} {a, b} {a, b, c, f} {a, d} {a, b, c, f}
f {a} {a, b} {a, b, c, f} {a, b, c, f} {a, b, c, f}

≤:= {(a, a), (a, b), (a, d), (a, f), (b, b), (b, f), (c, c), (c, f), (d, d), (f, f)}.
We give the covering relation and the figure of H.

≺= {(a, b), (a, d), (b, f), (c, f)}.
f

c

b

a

d
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This is intra-regular and the ideals of H are the sets {a}, {a, b, c, f} and H (one can check
it) which clearly form a chain. Looking at the table, we immediately see that the ideals
of H are prime (that is, x, y ∈ H, x ◦ y ⊆ {a} implies x ∈ {a} or y ∈ {a}; x, y ∈ H,
x ◦ y ⊆ {a, b, c, f} implies x ∈ {a, b, c, f} or y ∈ {a, b, c, f}), which is also a consequence of
Theorem 23.

Example B. We consider the ordered hypersemigroup H := {a, b, c, d, f} defined by the
hyperoperation and the figure below:

◦ a b c d f

a {b, c} {a} {a} {a} {a}
b {a} {b, c} {b, c} {b, c} {b, c}
c {a} {b, c} {b, c} {b, c} {b, c}
d {a} {b, c} {b, d} {d, f} {d, f}
f {a} {b, c} {c} {d, f} {f}

c f

b d

a

One can check that the ideals of H are the sets {a, b, c} and H and that both are idem-
potent. One can check that for any ideals A,B of H, we have A ∩ B = (A ∗ B], which
is also a consequence of Theorem 9. One can check that H is semisimple, which is also
a consequence of Theorem 18. It is obvious that the ideals of H form a chain. So, by
Theorem 19, the ideals of H are weakly prime; its independent proof is the following: Let
A,B be ideals of H such that A ∗ B ⊆ {a, b, c}. We have A = {a, b, c} or A = H and
B = {a, b, c} or B = H. For A = B = {a, b, c}, the assumption is obvious. If A = {a, b, c}
and B = H, then A ∗ B =

⋃
x∈{a,b,c}
y∈{a,b,c,d,f}

x ◦ y = {a, b, c}, again the assumption is obvious.

If A = H and B = {a, b, c}, then A ∗ B = {a, b, c, d} * {a, b, c}, the case is impossible.
The case A = B = H is also impossible as H ∗H = H. Moreover, this is an intra-regular
hypersemigroup. Since the ideals of H form a chain and H is intra-regular, by Theorem
23, the ideals of H are prime (one can also check it independently). �

The Example A has been constructed using the Example 6 in [6] and the Example B
using the Example 1 in [5].

Note that we never work directly on an hypersemigroup (ordered hypersemigroup). If
we want to obtain a result on an hypersemigroup (ordered hypersemigroup), then we have
to prove it first for a semigroup (ordered semigroup) and transfer its proof to hypersemi-
group (ordered hypersemigroup). An interesting information concerning the hypersemi-
groups (without order) will be given in a forthcoming paper.
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