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Abstract. In this article, a new approach is proposed to solve partial differential equation.

This method is based on generalized Taylor’s formula. The solution of partial differential

equations can be expanded using MAPLE. Doing some simple mathematical operations on

these equations, we can get a closed form series solution or approximate solution quickly.

PDE problems with constant and variable coefficients are solved by the present method. With

this method, we can reach same results simpler way than other analytical or approximate

methods.
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1. Introduction

Study about partial differential algebraic equation were done by Marszalek. Marsza-

lek studied analysis of the partial differential algebraic equations [1]. Lucht ve Strehmel

[2, 3] studied numerical solution and indexes of the linear partial differential equa-

tions with constant coefficients. A study about characteristics analysis and differential

index of the partial differential algebraic equations were given by Martinson and Bar-

ton [5, 6]. Debrabant and Strehmel investigated convergence of the Runge-Kutta

Method for linear partial differential algebnraic equations [4].

Chen and Ho [7] proposed methods to Solving partial differential equations by

two-dimensional differential transform method. The method was applied to the

partial differential equation [8–10].Second-order linear Partial differential equations

problems were solved by Yang, Liu and Bai [11]. Chebyshev polynomial solutions of

second-order linear partial differential equations [12].

In this paper, we propose, by making full use of the properties of power series, a

generral scheme for solving the second-order partial differential equation

a(x , y)
∂ 2u

∂ x2
+ b(x , y)

∂ 2u

∂ x∂ y
+ c(x , y)

∂ 2u

∂ y2
+ d(x , y)

∂ u

∂ x

+e(x , y)
∂ u

∂ y
+ f (x , y)u+ g(x , y) = 0 (1.1)

with the initial conditions

u(x , 0) = p(x),
∂

∂ y
u(x , 0) = q(xπ) (1.2)

Finally, three PDE problems are solved by the present method, and the calculated

results are compared very well with those obtained by other analytical or approximate

methods.
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2. Preliminary Knowledge

The basic theory of power series is stated below. In what follows, we assume that

for each function involved in our study, all its derivatives are existent and continuous

in the region of interest.

The Taylor series may also be generalized to functions of more than one variable

with

T (x1, ..., xd) =

∞
∑

n1=0

...

∞
∑

nd=0

∂ n

∂ x
n1

d

...
∂ nd

∂ x nd
d

f (a1, ..., ad)

n1,...,nd

(x1− a1)
n1 ...(xd − ad)

nd (2.1)

For example, for a function that depends on two variables, x and y, the Taylor series

to second order about the point (a, b) is:

f (x , y) = f (a, b) + fx(a, b)(x − a) + f y(a, b)(y − b)

=
1

2!

�

fx x(a, b)(x − a)2 + 2 fx y(a, b)(x − a)(y − b) + f y y(a, b)(y − b)2
�

+ . . . (2.2)

where the subscripts denote the respective partial derivatives.

Definition 1. The coefficient of variables of a function w(x , y) is defined as

W (k, h) =
1

k!h!

�

∂ k+hw(x , y)

∂ x k∂ yh

�

x=0
y=0

, (2.3)

where it is be noted that upper case symbol W (k, h) is used to denote the coeffi-

cients of variables in (2.2) which represented by a corresponding lower case symbol

w(x , y).

Definition 2. The inverse of W (k, h) is defined as

w(x , y) =

∞
∑

k=0

∞
∑

h=0

W (k, h)x k yh. (2.4)

From Equations (2.3) and (2.4), we obtain
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w(x , y) =

∞
∑

k=0

∞
∑

h=0

x k yh

k!h!

�

∂ k+hw(x , y)

∂ x k∂ yh

�

x=0
y=0

(2.5)

Theorem 1. If w(x , y) = u(x , y)± v(x , y), then W (k, h) = U(k, h)± V (k, h).

Proof. By definition 1 we have

U(k, h) =
1

k!h!

�

∂ k+h

∂ x k∂ yh
u(x , y)

�

x=0
y=0

(2.6)

V (k, h) =
1

k!h!

�

∂ k+h

∂ x k∂ yh
v(x , y)

�

x=0
y=0

(2.7)

W (k, h) =
1

k!h!

�

∂ k+h

∂ x k∂ yh
u(x , y)± v(x , y)

�

x=0
y=0

(2.8)

Using equations (2.6)-(2.8), we have

W (k, h) = U(k, h)± V (k, h) (2.9)

Theorem 2. If w(x , y) = λu(x , y), then W (k, h) = λU(k, h).

Proof. By definition 1 we have

U(k, h) =
1

k!h!

�

∂ k+h

∂ x k∂ yh
u(x , y)

�

x=0
y=0

(2.10)

W (k, h) =
1

k!h!

�

∂ k+h

∂ x k∂ yh
λw(x , y)

�

x=0
y=0

(2.11)

Using equations (2.10)-(2.11), we have

W (k, h) = λU(k, h). (2.12)
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3. Numerical Solution of Second-Order Partial Differential

Equations

This section aim at describing a numerical solution of partial differential equations

by power series. We write power series in the form

w(x , y) =W (0, 0) +W (1, 0)x +W (0, 1)y +W (1, 1)x y + ...+ ax m yn (3.1)

where W (0, 0), W (1, 0), W (0, 1), W (1, 1)... are known constants but is unknown con-

stant. Substituting (3.1) into (1.1), we can get the following:

W (m, n) = (µa+λ)x m yn−i = 0 (3.2)

where µ and λ are constant and is order of partial differential equation. From

(3.2), we have a constant. Substituting (3.2) into (3.1), we get solution arbitrary or-

der of partial differential equation. Repeating this procedure we can get the arbitrary

order power series of the solution for PDEs in (1.1).

4. Applications

Example 1.

The test problem consider the fallowing partial differential equation [7],

∂ 2u(x .t)

∂ t2
− c2
∂ 2u(x .t)

∂ x2
= 0 (4.1)

with initial condition

u(x , 0) = x3 (4.2)

∂ u(x , t)

∂ t
= x . (4.3)
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Using equation (2.4), and initial condition equation (4.2),we obtain

U(i, 0) = 0, i = 0, 1, 2, 4, ..., m,

U(3, 0) = 1. (4.4)

Using equation (2.4), and initial condition equation (4.3),we obtain

U(i, 1) = 0, i = 0, 2, ..., n,

U(1, 1) = 1. (4.5)

Substituting equations (4.4)-(4.5) into equations (2.4), we have

u1(x , t) = x t + x3+ ax t2 (4.6)

Substituting equations (4.6) into equations (4.1), and by recursive method,the

results corresponding to m→∞, n→∞ are listed as follows

U(1, 2) = 3c2 (4.7)

and the others are zero.

We obtain the closed form series solution as follows.

u(x , t) = x t + x3+ 3c2 x t2 (4.8)

By analitik method [7] ,a closed form solution is obtained as follows.

uˆ(x , t) = x t + x3+ 3c2 x t2 (4.9)

From last two equations, we have u(x , t) = uˆ(x , t).

Example 2. We now consider the problem [12]
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ut t = ux x + 6 (4.10)

With initial condition

u(x , 0) = x2,

ut(x , 0) = 4x . (4.11)

Using equation (2.4), and initial condition equation (4.11),we obtain

U(i, 0) = 0, i = 0, 1, 3, 4, ..., m,

U(2, 0) = 1 (4.12)

Using equation (2.4), and initial condition equation (4.12),we obtain

U(i, 1) = 0, i = 0, 2, ..., n,

U(1, 1) = 4 (4.13)

Substituting equations (4.12)-(4.13) into equations (2.4), we have

u1(x , t) = 4x t + x2+ at2 (4.14)

Substituting equations(4.14) into equations (4.10), we get

the results corresponding to m→∞, n→∞ are listed as follows

U(0, 2) = 4 (4.15)

and the others are zero.
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Substituting all U(k, h) into equation (2.4),we obtain the closed form series solu-

tion as follows.

u(x , t) = 4x t + x2+ 4t2 (4.16)

Again, we have obtained the exact solution of the initial value problem stated

previously.

Example 3. [7]

∂ 2u(x .t)

∂ t2
−
∂ 2u(x .t)

∂ x2
− x2u(x , t) = x (4.17)

with initial condition

u(x , 0) = 0,

∂ u(x , 0)

∂ t
= 0. (4.18)

Using equation (2.4) and initial conditions(4.18) , we have

U(i, 0) = 0, i = 0, 1, 2, ..., m. (4.19)

U(i, 1) = 0, i = 0, 1, 2, ..., n. (4.20)

the results corresponding to m→∞, n→∞ are listed as follows

U(1, 2) =
1

2
,

U(3, 4) =
1

24
,

U(1, 6) =
1

120

and the others are zero.
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Substituting all U(k, h) into equation(2.4) ,we obtain

u(x , t) =
x t2

2
+

x3 t4

24
+

x t6

120
. (4.21)

In this case, we have obtained the exact solution of the targeted equation with the

specified initial conditions

5. Conclusion

Analytic solutions of the second-order linear partial differential equations with

variable coefficients are usually difficult. In many cases, it is required toapproxi-

mate solutions. For this purpose, power series method can be proposed.In this study,

the usefulness power series method presented for the approximate solution of the

second-order linear partial differential equations is discussed. Also, the method can

be applied to the non-homogeneous (Example 2) and homogeneous (Examples 1 )

cases. This method is very simple an effective for most of linear partial differential

equations.
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