On Generalizations of phi-2-Absorbing Primary Submodules
DOI:
https://doi.org/10.29020/nybg.ejpam.v11i1.3126Keywords:
$2$-absorbing semi-primary submodule, $\phi_{\alpha}$-$2$-absorbing semi-primary submodule, $\phi$-$2$-absorbing primary submodule, $\phi$-primary ideal, $\phi$-$2$-absorbing idealAbstract
Let $\phi: S(M) \rightarrow S(M) \cup \left\lbrace \emptyset\right\rbrace $ be a function where $S(M)$ is the set of all submodules of $M$. In this paper, we extend the concept of $\phi$-$2$-absorbing primary submodules to the context of $\phi$-$2$-absorbing semi-primary submodules. A proper submodule $N$ of $M$ is called a $\phi$-$2$-absorbing semi-primary submodule, if for each $m \in M$ and $a_{1}, a_{2}\in R$ with $a_{1}a_{2}m \in N - \phi(N)$, then $a_{1}a_{2}\in \sqrt{(N : M)}$ or $a_{1}m \in N$ or $a^{n}_{2}m\in N$, for some positive integer $n$. Those are extended from $2$-absorbing primary, weakly $2$-absorbing primary, almost $2$-absorbing primary, $\phi_{n}$-$2$-absorbing primary, $\omega$-$2$-absorbing primary and $\phi$-$2$-absorbing primary submodules, respectively. Some characterizations of $2$-absorbing semi-primary, $\phi_{n}$-$2$-absorbing semi-primary and $\phi$-$2$-absorbing semi-primary submodules are obtained. Moreover, we investigate relationships between $2$-absorbing semi-primary, $\phi_{n}$-$2$-absorbing semi-primary and $\phi$-primary submodules of modules over commutative rings. Finally, we obtain necessary and sufficient conditions of a $\phi$-$\phi$-$2$-absorbing semi-primary in order to be a $\phi$-$2$-absorbing semi-primary.Downloads
Published
2018-01-30
Issue
Section
Computer Science
License
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.
How to Cite
On Generalizations of phi-2-Absorbing Primary Submodules. (2018). European Journal of Pure and Applied Mathematics, 11(1), 35-50. https://doi.org/10.29020/nybg.ejpam.v11i1.3126