On Generalizations of phi-2-Absorbing Primary Submodules

Pairote Yiarayong, Manoj Siripitukdet


Let $\phi: S(M) \rightarrow S(M) \cup \left\lbrace \emptyset\right\rbrace $ be a function where $S(M)$ is the set of all submodules of $M$. In this paper, we extend the concept of $\phi$-$2$-absorbing primary submodules to the context of $\phi$-$2$-absorbing semi-primary submodules. A proper submodule $N$ of $M$ is called a $\phi$-$2$-absorbing semi-primary submodule, if for each $m \in M$ and $a_{1}, a_{2}\in R$ with $a_{1}a_{2}m \in N - \phi(N)$, then $a_{1}a_{2}\in \sqrt{(N : M)}$ or  $a_{1}m \in N$ or $a^{n}_{2}m\in N$, for some positive integer $n$. Those are extended from $2$-absorbing primary, weakly $2$-absorbing primary, almost $2$-absorbing primary, $\phi_{n}$-$2$-absorbing primary, $\omega$-$2$-absorbing primary and $\phi$-$2$-absorbing primary submodules, respectively. Some characterizations of $2$-absorbing semi-primary, $\phi_{n}$-$2$-absorbing semi-primary and $\phi$-$2$-absorbing semi-primary submodules are obtained. Moreover, we investigate relationships between $2$-absorbing semi-primary, $\phi_{n}$-$2$-absorbing semi-primary and $\phi$-primary submodules of modules over commutative rings. Finally, we obtain necessary and sufficient conditions of a $\phi$-$\phi$-$2$-absorbing semi-primary in order to be a $\phi$-$2$-absorbing semi-primary.


$2$-absorbing semi-primary submodule, $\phi_{\alpha}$-$2$-absorbing semi-primary submodule, $\phi$-$2$-absorbing primary submodule, $\phi$-primary ideal, $\phi$-$2$-absorbing ideal

Full Text: