On Ideals and Commutativity of Prime Rings with Generalized Derivations

Mohammad Khalil Abu Nawas, Radwan M. Al-Omary


An additive mapping F: R → R is called a generalized derivation on R if there exists a derivation d: R → R such that F(xy) = xF(y) + d(x)y holds for all x,y ∈ R. It is called a generalized (α,β)−derivation on R if there exists an (α,β)−derivation d: R → R such that the equation F(xy) = F(x)α(y)+β(x)d(y) holds for all x,y ∈ R. In the present paper, we investigate commutativity of a prime ring R, which satisfies certain differential identities on left ideals of R. Moreover some results on commutativity of rings with involutions that satisfy certain identities are proved.


Left ideals, prime rings, centralizing, derivations, generalized derivations, commutativity.

Full Text: