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Abstract. This study aims to combine the new deterministic minimum covariance determinant
(DetMCD) algorithm with linear discriminant analysis (LDA) and compare it with the fast mini-
mum covariance determinant (FastMCD), fast consistent high breakdown (FCH), and robust FCH
(RFCH) algorithms. LDA classifies new observations into one of the unknown groups and it is
widely used in multivariate statistical analysis. The LDA mean and covariance matrix parameters
are highly influenced by outliers. The DetMCD algorithm is highly robust and resistant to outliers
and it is constructed to overcome the outlier problem. Moreover, the DetMCD algorithm is used to
estimate location and scatter matrices. The DetMCD, FastMCD, FCH, and RFCH algorithms are
applied to estimate misclassification probability using robust LDA. All the algorithms are expected
to improve the LDA model for classification purposes in banks, such as bankruptcy and failures,
and to distinguish between Islamic and conventional banks. The performances of the estimators
are investigated through simulation and actual data..
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1. Introduction

Linear discriminant analysis (LDA) is widely used in multivariate statistical techniques
for data analysis. Rules that describe separation among groups are obtained through LDA.
Variables are assumed to be normally distributed with the equal covariance matrix

∑
.

LDA is highly sensitive to outlier observations. Hence, estimating LDA parameters using
the classical approach will affect the values of parameters. Robust estimators have been
proposed to limit the effects of outlier observations, and certain methods have been pre-
sented to overcome the outlier problem, such as the high breakdown criterion developed
by Hawkins and McLachlan [11]. Croux et al. [5] investigated the classification efficiencies
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of robust procedures with respect to the classical method. Rousseeuw [23] introduced the
minimum covariance determinant (MCD) estimator. Rousseeuw and Driessen [25] devel-
oped a new estimator called fast minimum covariance determinant (FastMCD), which is
a highly robust estimator for observing outliers, to fill the gap in contaminated datasets.
Todorov [27] constructed the robust Wilks lambda, which is uninfluenced by contaminated
data, based on FastMCD to avoid the outlier problem. FastMCD has been applied to LDA
(He and Fung [12]; Hubert and van Driessen [14]) and to different aspects of science (Hu-
bert et al. [16]). FastMCD is also used in many multivariate techniques, such as the
principle component analysis (Croux and Haesbroeck [7]; Hubert et al. [17]), factor anal-
ysis (Pison et al. [22]), classifications, and clustering techniques. In a multivariate time
series, Croux et al. [6] proposed the robust exponential smoothing of a multivariate time
series to enhance the robustness of estimates for contaminated data. Different techniques
and approaches use features of MCD to improve the robustness of parameter estimation.
Hubert and Rousseeuw [15] presented a robust regression method for continuous situations
and binary regression. Croux and Dehon [4] used robust canonical correlation. Hubert
and Branden [13] introduced robustified versions of the SIMPLS algorithm. A robust
multivariate calibration model was used by Hubert and Verboven [19], and a robust er-
ror in variable regression was used by Fekri and Ruiz-Gazen [9]. The MCD algorithm
was used for a genetic algorithm by Wiegand et al. [29]). Hubert et al. [18] used a
new estimator deterministic algorithm for robust location and scatter, called determinis-
tic minimum covariance determinant (DetMCD), and compared it with two estimators,
namely, FastMCD and orthogonalized GnanadesikanKettenring (OGK), of Maronna and
Zamar [20]. The new estimator uses the same iteration as FastMCD but does not draw
random subsets, whereas FastMCD draws random subsets of size p + 1 and is required
to draw several times to obtain at least one subset that is free from outliers. DetMCD
exhibited better performance and was faster than the other two estimators in estimat-
ing location and scatter matrices. Olive and Hawkins [21] proposed an easy method for
computing

√
n consistent outlier resistant estimators that can be used for inference and

adopted numerous applications, including outlier detection and diagnostics, to determine
whether data distribution is elliptically contoured. Olive and Ye [30] used three robust
estimators of multivariate location and dispersion and then applied one of these estima-
tors to create a robust method for canonical correlation analysis. One of these methods is
the fast consistent high breakdown (FCH) estimator, which is fast, consistent, and highly
resistant to outliers. The current work aims to combine DetMCD with LDA and compare
it with the FastMCD, FCH, and robust FCH (RFCH) algorithms through simulation and
actual data. Three approaches, namely, pooled covariance (PCOV), POBS, and minimum
within-group covariance determinant (MWCD), are applied to improve the initial covari-
ance estimate

∑
0 for all the estimators used in this study. The performance of this LDA

is evaluated based on these estimators. Our analysis indicates that DetMCD performs
better than the other estimators for the raw and reweighted versions.
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2. LDA

Our proposed datasets of actual and generated data p variables measured in n observa-
tions may be summarized as the n× p matrix X = (xij), where xij denotes the expression
level of p variables in observations i = 1, 2, . . . , nj that are sampled from l different popu-
lations π1, π2, . . . , πl.

In the LDA setting, membership probability is estimated for each observation with
respect to the population.

The data are sampled from l populations, and each population has nj observations, j =

1, 2, . . . , l.
∑l

j=1 nj = n observations can be denoted by {xij = j = 1, 2, . . . , l, i = 1, 2, . . . , n}.

LDA has µj , Σj , and pj . µj is the mean, Σj is the covariance matrix, and pj is
the membership probability for each population πj . LDA assumes a common covariance
matrix Σ; all the parameters are unknown in practice and must be estimated from the
sample data. In general, LDA parameters are estimated empirically, which leads to inac-
curate values because LDA is highly influenced by outliers. All the parameters must be
estimated based on robust estimators to overcome the outlier problem, thereby requiring
high-performance robust estimators.

The robust LDA (RLDA) rule is expressed as follows:

Allocate x to πj if
_
d
RL

k (x) >
_
d
RL

j (x) for j = 1, 2, . . . , g, j 6= k with

_
d
RL

j (x) = µtjΣ
−1x− 1

2
µtjΣ

−1µj + ln(pj), (1)

where Σ is the common covariance matrix with mean µj and prior probability pj . For the
estimates of the membership probability pj in Eq. (1), we discuss two well-known choices.
Either pj is considered constant over all populations, thereby yielding pj = 1/L for each
j, or it is estimated as the relative frequencies of the observations in each group, thereby
yielding pj = nj/n.

If ñj denotes the number of non-outliers in group j and ñ =
∑l

j=1 ñj , then the mem-
bership probability is robustly estimated as follows:

_
P
RL

j =
ñj
ñ
. (2)

As previously mentioned, the LDA parameters are unknown and have to be estimated.
All the estimators will be used to estimate the LDA parameters to apply LDA to the
estimation of the misclassification probability.
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3. DetMCD estimator

The DetMCD algorithm starts by standardizing data to obtain the standardized Z.
Each variable Xj will be subtracted from the median and divided by the Qn scale estimator
(Rousseeuw and Croux [24]). This standardization enables the equivariance of algorithm
location and scale. The standardized dataset is denoted by the n× p matrix Z with row
zti (i = 1, 2, . . . , n) and column zj (j = 1, 2, . . . , p).

Six initial estimates of µk(z) and Σk(z), where (k = 1, 2, . . . , 6), represent the mean
and covariance matrix, respectively, of Z. Each Sk estimator computes the covariance or
correlations of matrix Z.

4. Six initial scatter estimators

(i) S1 is computed by the hyperbolic tangent of each column of Z, Yj = tanh(Zj)
for j = 1, . . . , p. This bounded function reduces the effect of large coordinate-
wise outliers. Then, the classical correlation matrix of Y is computed to obtain
S1 = corr(Y ).

(ii) S2 is computed by determining Rj , the rank of each column Zj . Then, S2 = corr(R),
which is the Spearman correlation matrix of Z.

(iii) S3 is the normal score computed from Rj ; that is, Tj = φ−1((Rj − 1/3)/(n+ 1/3)),
where φ(·) is the normal cumulative distribution function. Then, S3 = corr(T ).

(iv) S4 is the scatter estimator computed based on the spatial sign covariance matrix (Vi-
suri et al. [28]) and is defined as ki = zi/ ‖zi‖ for all i. Then, S4 = (1/n)

∑n
i=1 kik

T
i .

(v) S5 is the first step of the BACON algorithm (Billor et al. [2]). The {n/2} stan-
dardized observation zi has the smallest norm and is used to compute the mean and
covariance matrix.

(vi) A scatter estimate is the raw version of the OGK estimator. For m(·), s(·), and the
median, Qn is used for simplicity.

After standardizing the data and obtaining c, three steps are completed to obtain the
covariance and mean of DetMCD.

(i) The matrix E of the eigenvectors of Sk is computed and B = ZE is applied.

(ii) The center of Z is estimated using Σk(Z) = ELET , where L = diag(Q2
n(B1), . . . , Q2

n(Bp)).

(iii) The covariance of Z is estimated using sphere data, the coordinate-wise median is

applied and transformed back, µk(Z) = Σ
1/2
k (med(ZΣ

1/2
k )).
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For all the six estimates Sk, (µk(Z),Σk(Z)) is used to compute the statistical distance, as
follows:

dik = d(µk(Z),Σk(Z)). (3)

For the initial estimate k, h◦ = [n/2] observations are taken with the smallest dik. Then,
the statistical distances d∗ik for h◦ observations are computed. All h observations xi are
calculated with the smallest d∗ik for all the six estimates. The final step is the application
of the concentration step (C-step) until convergence. The estimate with the smallest
determinant is called the raw DetMCD. The final DetMCD is obtained by applying the
reweighted FastMCD algorithm.
As previously mentioned, RLDA is constructed based on the DetMCD algorithm. RLDA
is derived by inputting the location and scatter matrices obtained based on the DetMCD
algorithm into LDA, as follows:

_
d
DetMCD

j (x) = µtjΣ
−1x− 1

2
µtjΣ

−1µj + ln(pj). (4)

Outliers in the data are flagged to robustify the location and scatter matrices. The ro-
bust distance for each observation xij is computed from the group πj to estimate the
membership probability, as follows:

RDDetMCD
ij =

√
(xij − µ̂j)tΣ−1(xij − µ̂j). (5)

Then, xij is considered the outlier observation if and only if

RDij >
√
χ2
p,0.975. (6)

Finally, the membership probability
_
P
DetMCD

j can be obtained using Formula (8) after
applying the DetMCD estimator that is defined as follows:

_
P
DetMCD

j =
ñj
ñ
. (7)

5. FastMCD

The main feature of the FastMCD algorithm is the C-step, where det(Σnew) det(Σold)
with equality if det(Σnew) = det(Σold) (Rousseeuw and Driessen [25]). The application
of the C-step will yield the sequence of determinants, which must converge in a finite
number of steps. The final iteration cannot be guaranteed to be the minimum value of
the MCD objective function. The FastMCD algorithm applied two C-steps to each initial
subset, and only ten subsets with the smallest determinant for C-step are taken until initial
convergence. Three approaches will be used with the FastMCD algorithm to estimate the
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mean and covariance matrix.
The same approach applied to the DetMCD algorithm to obtain RLDA, and pRj is applied
to the FastMCD algorithm, which is defined as follows:

_
d
FastMCD

j (x) = µtjΣ
−1x− 1

2
µtjΣ

−1µj + ln(pj). (8)

The membership probability pj of the robust distance is defined as follows:

RDFastMCD
ij =

√
(xij − µ̂j)tΣ−1(xij − µ̂j). (9)

If xij is used to consider the outliers in Formula (6), then the membership probability of
the FastMCD estimator is expressed as follows:

_
P
FastMCD

j =
ñj
ñ
. (10)

6. FCH

The most practical estimators are used as a sequence of n trial fits called initial es-
timator, (µ1,Σ1), (µ2,Σ2), . . . , (µn,Σn). The initial estimator (µi,Σi) that minimizes the
evaluation criterion will be used in the final estimator. The initial estimator obtained by
the generated trial fits is called start. Then, the C-step technique will be applied.

We let (µ0,i,Σ0,i) be the ith start and all n Mahalanobis distances Di(µ0,i,Σ0,i). The
classical estimator (µ1,i,Σ1,i) is computed from cn ≈ n/2 cases that correspond to the
smallest distance. We continue the iteration for k steps, thereby resulting in the follow-
ing sequence: (µ0,j ,Σ0,j)(µ1,j ,Σ1,j), (µ2,j ,Σ2,j), . . . , (µk,j ,Σn,k). The values of cn and k
depend on the C-step estimator. The value of k in the FastMCD estimator is 500, with
randomly drawn elemental sets of p+ 1 cases as the start. The initial estimator with the
smallest determinant is used for the final estimator. Hawkins and Olive [10] have a similar
estimator.
The FCH estimator uses two estimators. The first estimator is the DGK estimator (De-
vlin, Gnanadesikan, and Kettenring [8]), which uses the classical estimator as the start.
The second estimator is the median ball (MB) estimator, where the classical estimator is
computed from cases with Di(MED(X), Ip) ≤MED(Di(MED(X), Ip)) as the start, and
MED(X) is the coordinate-wise median. In case the DGK location estimator obtains a
greater Euclidean distance from MED(X) than half of the data, then FCH will apply the
median ball estimator. We let (µ0,Σ0) be the initial estimator used. Then, the estimator

(µ,Σ) takes µ0 = µ and Σ =
MED(D2

i (µ0,Σ0))

χ2
p,0.5

Σ0, where χ2
p,0.5 is the 50th percentile of the

chi-square distribution with p degrees of freedom.
The RLDA model is obtained using the FCH estimator in the raw and reweighted versions
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and is expressed as follows:

_
d
FCH

j (x) = µtjΣ
−1x− 1

2
µtjΣ

−1µj + ln(pj). (11)

The membership probability pRj of the robust distance is defined as follows:

RDFCH
ij =

√
(xij − µ̂j)tΣ−1(xij − µ̂j). (12)

If xij is used to consider the outliers in Formula (6), then the membership probability of
the FCH estimator is expressed as follows:

_
P
FCH

j =
ñj
ñ
. (13)

7. Simulation study

In this section, different algorithms are applied to estimate the LDA parameters using
small and medium datasets. The simulation is similar to that of He and Fung [12].
All the estimators are used in the raw and reweighted versions to obtain the initial mean
and covariance matrix, that is, µ0 and Σ0, respectively. This estimator will yield a discrim-
inate rule based on robust dRLj (x, µ0,Σ0). Then, the reweighted version will be obtained
based on the robust distances (Rousseeuw and van Zomeren [26]), as follows:

RDij =

√
(xij − µ̂j,0)tΣ−1

0 (xij − µ̂j,0). (14)

For each observation in group j,

wij =

{
1 if RDij ≤

√
χ2
p,0.975

0 otherwise
. (15)

Three approaches presented by Hubert and van Driessen [14] are adopted to estimate
the means and common covariance matrices for all the groups with raw and reweighted
versions. The same approaches have been used to compare the robust and classical LDA
(Alrawashdeh et al. [1]). These approaches are also applied to the estimators of the
FastMCD, DetMCD, and FCH algorithms.

The first approach is direct and has been applied by Chork and Rousseeuw [3], where
µj and Σj are obtained by pooling the covariance matrix Σj,Algorithm as follows:

_
ΣPCOV =

Σl
j=1nj

_
ΣjAlgorithm∑l
j=1 nj

. (16)
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This approach will be denoted by PCOV for the raw version and PCOV-W for the
reweighted version.

For the second approach, the concept is based on pooling the observations instead of the
group covariance matrices. This approach was proposed by He and Fung [12], who used an
S-estimator, and adopted by Hubert and van Driessen [14]. The number of groups in the
simulation and that for other groups will follow the same pattern to simplify the notation
of the three groups. In the three samples A = (a11, a21, . . . , an1,1), B = (b12, b22, . . . , bn2,2),
and C = (c13, c23, . . . , cn3,3), µA, µB, and µC are the location estimators of the populations
in the reweighted FastMCD. The pooled and shifted observations are expressed as follows:

Z = (z1, z2, . . . , zn) = (a11−µA, a21−µA, . . . , an1,1−µA, b12−µB, b22−µB, . . . , bn2,2−µB

, c13 − µC , c23 − µC , . . . , cn3,3 − µC).

The covariance matrix Σz is estimated as the reweighted FastMCD of the scatter matrix
of z. The location µz is estimated by the MCD estimator. µz is used to upgrade the

locations of µj to obtain
_
µa= µa + µz,

_
µb= µb + µz, and

_
µc= µc + µz. The observations

in this approach are pooled instead of the covariance matrices. Hence, RLDA is denoted
by POBS for the raw version and POBS-W for the reweighted version.
The third method is a combination of the two previous methods. This method aims to de-
rive a fast approximation of the MWCD criterion (Hawkins and McLachlan [11]). Instead
of performing the same adjustment for each group, h is identified from all observations
with set size n, where the covariance matrix ΣH of h has a minimal determinant. Then,
the covariance matrix of H (h out of n) is obtained. The approach for the three groups is
as follows.

(i) The canters of the groups are estimated.

(ii) The observations are shifted and pooled to obtain z’s that are the same as those in
the second approach using the FastMCD estimator.

(iii) Let H be h out of n based on the minimized FastMCD estimator.

(iv) The subset H is partitioned into HA, HB, and HC , which contain observations from
A, B, and C, respectively.

(v) The mean of all the groups is estimated as µA, µB, and µC .

In this approach, RLDA is denoted based on the MWCD for the raw version or MWCD-
W for the reweighted version.
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8. Simulation result

Through the simulation study, we compare the performances of the three approaches
in estimating the initial values for the mean and covariance matrix and then apply the
obtained values to FastMCD, DetMCD, and FHC to obtain the misclassification proba-
bilities. We use the raw and reweighted versions for all the algorithms. The RLDA rule is
applied using settings similar to those in the study of He and Fung [12]:

A⇒ π1 : 400N3(0, I)
π2 : 400N3(1, I)

B ⇒ π1 : 400N3(0, I) + 50N3(5, (1/0.252)I)
π2 : 400N3(1, I) + 50N3(−4, (1/0.252)I)

C ⇒ π1 : 80N3(0, I) + 20N3((1, (1/0.252)I)
π2 : 80N3(1, I) + 20N3((−1, (1/0.252)I)

D ⇒ π1 : 200N3(0, I) + 25N3((1, (1/0.075)I)
π2 : 200N3(1, I) + 25N3((−1, (1/0.075)I)

E ⇒ π1 : 300N3(0, I) + 10N3(5, 0.252I)
π2 : 150N3(1, I) + 5N3(−10, 0.252I)

,

where I is the 3D identity matrix, the groups labeled as A, B, C, D and E, each group has to
different cases π1 andπ2. The membership probability is calculated based on Formula (8)
for l in consideration of the two algorithms. The classification rule (Eq. (1)) is robustified
as the Fisher discriminant rule, which expressed as follows:

x ∈ π1if(
_
µ1 −

_
µ2)tΣ−1(x− (

_
µ1 −

_
µ2)/2) > 0 (17)

and x ∈ π2 otherwise.

Figure 1 presents only the first 100 observations from the groups of Case C. The figure
shows the scatter of data in Case C, in which both groups have outliers. The effects of the
outliers on data homogeneity and on the parameters of the discriminate rules that will be
used to estimate values are clearly shown. Graphs C1 and C2 show a cut and abnormal
spread for the observations.

This study aims to compare DetMCD with FastMCD and FCH using three approaches,
that is, PCOV, POBS, and MWCD, for all algorithms at the raw and reweighted versions.
As shown in Table 1 and Table 2, the DetMCD estimator clearly increases the efficiency
of the discriminate rules in estimating the error rate of classification. Moreover, DetMCD
performs better than the FastMCD and FCH estimators for the raw and reweighted ver-
sions. DetMCD for the raw and reweighted versions are more accurate in estimating the
misclassification probabilities of data compared with the other two estimators. The second
part of this comparative study will use the three approaches for the three estimators. The
PCOV approach obtains the best estimated values for MP under the raw version, whereas
the POBS approach achieves the best result for the reweighted version. DetMCD increases
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Figure 1: Observations Number Group of C1 and C2

the efficiency of the discriminate estimates compared with the other two estimators. In
the two versions, the DetMCD algorithm obtains more accurate values for MP.

The DetMCD estimator values are more accurate and less than 10% for all the cases
in the simulation. The data in Case A contain an uncontaminated dataset and the esti-
mated values are comparable for both versions performance groups, except the MWCD
for FastMCD and RFCH. The datasets for Cases B, C, D, and E are generated from con-
taminated datasets with different percentages of outliers for each case and group. Groups
A and B are generated with the same number of observations. Case B is generated with
25% outlier observations. The outliers influence the estimator rules, where the estimated
values of case B are 0.0751 and 0.0559 for the raw and reweighted versions, respectively,

Table 1: Mean µ for the misclassification probabilities of the RLDA rules for 500 replications based on the
DetMCD, FastMCD, and FCH algorithms for the raw version

Algorithm FastMCD DetMCD FCH

Version Raw Raw Raw

Approach PCOV POBS MWCD PCOV POBS MWCD PCOV POBS MWCD

Group A 0.1967 0.1951 0.2662 0.0103 0.0211 0.0915 0.2151 0.1764 0.2235

Group B 0.3145 0.3135 0.1314 0.0883 0.0751 0.1214 0.2945 0.3167 0.1736

Group C 0.3651 0.3626 0.493 0.0998 0.102 0.1155 0.3476 0.3678 0.3987

Group D 0.2785 0.2767 0.512 0.0963 0.0998 0.1089 0.3164 0.3023 0.4728

Group E 0.2965 0.2944 0.3678 0.0247 0.0499 0.1169 0.2993 0.3284 0.3786
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Table 2: Mean µ for the misclassification probabilities of the RLDA rules for 500 replications based on the
DetMCD, FastMCD, and FCH algorithms for the reweighted version

Algorithm FastMCD DetMCD RFCH

Version Reweighted Reweighted Reweighted

Approach PCOV-
W

POBS-
W

MWCD-
W

PCOV-
W

POBS-
W

MWCD-
W

PCOV-
W

POBS-
W

MWCD-
W

Group A 0.1954 0.1956 0.3937 0.0197 0.0089 0.0923 0.2084 0.1934 0.3826

Group B 0.3188 0.3192 0.3227 0.0751 0.0559 0.1246 0.3385 0.3248 0.3354

Group C 0.3703 0.3713 0.5351 0.0835 0.076 0.1185 0.4073 0.3943 0.5324

Group D 0.2805 0.2812 0.5405 0.082 0.0782 0.1073 0.2854 0.2793 0.5523

Group E 0.2907 0.2908 0.3699 0.0237 0.0232 0.1202 0.3054 0.3094 0.3893

based on DetMCD. The estimated values for Cases A, B, C, D, and E are comparable,
except for Case A, which is determined to have the best value of 0.0089 for the reweighted
version using the POBS approach. From all the contaminated datasets and cases, E is the
most accurate because it is close to the uncontaminated dataset in Case A, with a differ-
ence of approximately 0.0144 and 0.0143 for the raw and reweighted versions, respectively.
By contrast, the MWCD approach performs poorly with the DetMCD algorithm, whereas
the other two approaches perform better in both versions. The results of FCH exhibit
better performance in Case A, which indicates better performance at the uncontaminated
dataset in the raw version, but FastMCD was better at the reweighted version for all
the approaches. By contrast, the performances of the PCOV and POBS approaches are
approximately close to each other at the FastMCD and FCH estimators for the raw and
reweighted versions, but MWCD performs poorly compared with the other approaches.

Figure 2: 100 Replications for Det-MCD Estimator of Group B
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Table 3: Misclassification probability estimates for DetMCD, FastMCD, and FCH for the raw version RLDA
rules based on actual data (financial ratios for Islamic and conventional banks in Malaysia)

Algorithm FastMCD DetMCD FCH

Version Raw

Approach PCOV POBS MWCD PCOV POBS MWCD PCOV POBS MWCD

MP 0.214 0.1845 0.0352 0.0182 0.06 0.2227 0.217 0.1954 0.0932

Table 4: Misclassification probability estimates for DetMCD, FastMCD, and FCH for the reweighted version
RLDA rules based on actual data (financial ratios for Islamic and conventional banks in Malaysia)

Algorithm FastMCD DetMCD RFCH

Version Reweighted

Approach PCOV-
W

POBS-
W

MWCD-
W

PCOV-
W

POBS-
W

MWCD-
W

PCOV-
W

POBS-
W

MWCD-
W

MP 0.1914 0.1745 0.0302 0.0153 0.004 0.2246 0.1923 0.1976 0.0763

Figure 2 presents the replications for the first 100 times out of the 500 replications.
The figure describes the values of the misclassification probabilities of the discriminate
rules based on the DetMCD estimator. The disparity of the misclassification values is
shown, particularly for the raw version, where the difference between the minimum and
maximum values is considerable compared with that for the reweighted version. In terms
of the accuracy of the versions of the DetMCD estimator, the reweighted version is more
accurate and efficient than the raw version.

9. Example of actual data: Islamic and conventional banks in Malaysia

The financial ratios of Islamic and conventional banks in Malaysia are used as actual
data. A total of 271 observations from banks for the period of 2003–2011 are used, where
96 observations are from Islamic banks and 175 observations are from conventional banks.
The dataset has 23 financial ratios (variables). The data were collected from the Bankscope
database, which converts financial data according to common international standards to
facilitate comparisons. RLDA is applied using the three estimators. All the estimators
have been used with the three approaches described in the previous section. The results
are presented in Table 3 and Table 4 for the raw and reweighted versions, respectively.

Table 3 and Table 4 show the misclassification probabilities for the two types of banks
in Malaysia. The DetMCD estimator outperforms the FastMCD and FCH estimators by a
significant margin. DetMCD yields more accurate results for the actual data, as expected
in the simulation study. However, the reweighted version confirms the high performance in
MP estimation. When the three approaches are compared under the two algorithms, the
PCOV and POBS approaches perform better with DetMCD than the other estimators and
increase the accurate estimation of MP. MWCD performs better with FastMCD and FCH
than DetMCD and makes the discriminate rules more efficient and accurate in estimating
the misclassification probabilities of Islamic and conventional banks.
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10. Conclusion

In this study, we investigated the difference in efficiency among three estimators,
namely, DetMCD, FastMCD, and FCH, of location and scatter for RLDA, in which the
groups have a common covariance matrix. DetMCD, FCH, and FastMCD are compared
based on three approaches to estimate the common scatter matrix. Membership probabil-
ities in a robust structure are estimated by considering only observations of non-outliers.
Then, misclassification probabilities for the data are obtained and set into two groups of
datasets.
The results of the simulation clearly showed how the robust structure was better and
how the DetMCD algorithm for the robust and non-robust structures was better than the
FastMCD and FCH algorithms. For the robust structure, DetMCD performed better and
was unaffected by outliers. The DetMCD algorithm achieved high efficiency for RLDA
and was more accurate than the FastMCD and FCH algorithms. We applied the RLDA
rules on actual datasets based on the two algorithms.
The DetMCD algorithm performed well compared with the FastMCD and FCH algo-
rithms; RLDA with DetMCD achieved the highest efficiency. Thus, the DetMCD algo-
rithm increased the accuracy and performance of the LDA model, which indicates more
advantages to utilize the model with highly robust estimations. On the basis of the results
of the simulation and actual data, the DetMCD algorithm can be used with RLDA in
financial research to predict firm failure, bankruptcy, and company distress. It also has
applications in other fields, e.g., recognitions.
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