Lie Algebras with BCL Algebras
DOI:
https://doi.org/10.29020/nybg.ejpam.v11i2.3219Keywords:
Lie algebras, $BCL$ algebras, abelian Lie algebrasAbstract
The subject matter of this work is hoping for a new relationship between the Lie algebras and the algebra of logic, which will constitute an important part of our study of "pure'' algebra theory. $BCL$ algebras as a class of logical algebras is can be generated by a Lie algebra. The opposite is also true that when special conditions occur. The aim of this paper is to prove several theorems on Lie algebras with $BCL$ algebras. I introduce the notion of a "pseudo-association'' which I propose as the adjoint notion of $BCL$ algebra in the abelian group.Downloads
Published
2018-04-27
Issue
Section
Algebraic Geometry
License
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.
How to Cite
Lie Algebras with BCL Algebras. (2018). European Journal of Pure and Applied Mathematics, 11(2), 444-448. https://doi.org/10.29020/nybg.ejpam.v11i2.3219