EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 11, No. 2, 2018, 390-399
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

On the elementary solution for the partial differential operator \odot_{c}^{k} related to the wave equation

Sudprathai Bupasiri
Department of Mathematics, Sakon Nakhon Rajabhat University, Sakon Nakhon 47000, Thailand

Abstract. In this article, we study an elementary solution of the operator \odot_{c}^{k}, iterated k-times and is defined by

$$
\odot_{c}^{k}=\left(\left(\frac{1}{c^{2}} \sum_{i=1}^{p} \frac{\partial^{2}}{\partial x_{i}^{2}}+m^{2}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right)^{2}\right)^{k}
$$

where $p+q=n, k$ is a nonnegative integer, c is a positive real number, m is a nonnegative real number and n is the dimension of \mathbb{R}^{n}. In this work we study an elementary solution of the operator \odot_{c}^{k}. After that, we apply such an elementary solution to solve the solution of the equation $\odot_{c}^{k} u(x)=f(x)$, where f is generalized function and $u(x)$ is unknown function for $x \in \mathbb{R}^{n}$.
2010 Mathematics Subject Classifications: 46F10
Key Words and Phrases: Elementary solution, Dirac-delta distribution, Temper distribution

1. Introduction

Trione [10] has showed that the generalized function $R_{2 k, 1}^{H}(x)$ defined by (13) is the unique elementary solution of the operator \square_{1}^{k}, that is $\square_{1}^{k} R_{2 k, 1}^{H}(x)=\delta$ where $x \in \mathbb{R}^{n}$, with n-dimensional Euclidean space. Also, Tellez ([7], p.147-149) has proved that $R_{2 k, 1}^{H}(x)$ exists only if n is an odd with p odd and q even, or only n is an even with p odd and q odd. Later, Bupasiri [9] has showed that the solution of the convolution form $u(x)=$ $(-1)^{k} R_{2 k, c}^{e}(x) * R_{2 k, c}^{H}(x)$ is an elementary solution of the $\diamond_{c}^{k} u(x)=\delta$, where the operator \diamond_{c}^{k} is defined by

$$
\begin{equation*}
\diamond_{c}^{k}=\left(\frac{1}{c^{4}}\left(\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right)^{2}\right)^{k} \tag{1}
\end{equation*}
$$

where $p+q=n$ is the dimension of the Euclidean space \mathbb{R}^{n}, c is a positive real number and k is a nonnegative integer. Otherwise, the operator \diamond_{c}^{k} can be expressed in the form
$\diamond_{c}^{k}=\square_{c}^{k} \triangle_{c}^{k}=\triangle_{c}^{k} \square_{c}^{k}$, where \square_{c}^{k} is the operator related to the ultra-hyperbolic operator iterated k-times, defined by

$$
\begin{equation*}
\square_{c}^{k}=\left(\frac{1}{c^{2}}\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{p}^{2}}\right)-\frac{\partial^{2}}{\partial x_{p+1}^{2}}-\frac{\partial^{2}}{\partial x_{p+2}^{2}}-\cdots-\frac{\partial^{2}}{\partial x_{p+q}^{2}}\right)^{k} \tag{2}
\end{equation*}
$$

and \triangle_{c}^{k} is the operator related to the Laplace operator iterate k-times, defined by

$$
\begin{equation*}
\triangle_{c}^{k}=\left(\frac{1}{c^{2}}\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\cdots \frac{\partial^{2}}{\partial x_{p}^{2}}\right)+\frac{\partial^{2}}{\partial x_{p+1}^{2}}+\frac{\partial^{2}}{\partial x_{p+2}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{p+q}^{2}}\right)^{k} . \tag{3}
\end{equation*}
$$

Next, Tellez [8] has studied the convolution product of $W_{\alpha}(u, m) * W_{\beta}(u, m)$. Now in this paper, the operator \odot_{c}^{k} can be expressed in the form

$$
\begin{align*}
\bigcirc_{c}^{k} & =\left(\left(\frac{1}{c^{2}} \sum_{i=1}^{p} \frac{\partial^{2}}{\partial x_{i}^{2}}+m^{2}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right)^{2}\right)^{k} \\
& =\left(\left(\frac{1}{c^{2}} \sum_{i=1}^{p} \frac{\partial^{2}}{\partial x_{i}^{2}}-\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right)+m^{2}\right)^{k}\left(\frac{1}{c^{2}} \sum_{i=1}^{p} \frac{\partial^{2}}{\partial x_{i}^{2}}+\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}+m^{2}\right)^{k} . \tag{4}
\end{align*}
$$

Thus equation (4) can be written as

$$
\begin{equation*}
\odot_{c}^{k}=\left(\square_{c}+m^{2}\right)^{k}\left(\triangle_{c}+m^{2}\right)^{k}=\left(\triangle_{c}+m^{2}\right)^{k}\left(\square_{c}+m^{2}\right)^{k}, \tag{5}
\end{equation*}
$$

where $\left(\triangle_{c}+m^{2}\right)^{k}$ is the operator related to the Helmholtz operator iterated k-times which is denoted by

$$
\begin{equation*}
\left(\Delta_{c}+m^{2}\right)^{k}=\left(\frac{1}{c^{2}}\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\cdots \frac{\partial^{2}}{\partial x_{p}^{2}}\right)+\left(\frac{\partial^{2}}{\partial x_{p+1}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{p+q}^{2}}\right)+m^{2}\right)^{k} \tag{6}
\end{equation*}
$$

and $\left(\square_{c}+m^{2}\right)^{k}$ is the operator related to the Klein-Gordon operator iterated k-times which is denoted by

$$
\begin{equation*}
\left(\square_{c}+m^{2}\right)^{k}=\left(\frac{1}{c^{2}}\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{p}^{2}}\right)-\left(\frac{\partial^{2}}{\partial x_{p+1}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{p+q}^{2}}\right)+m^{2}\right)^{k} \tag{7}
\end{equation*}
$$

$p+q=n$ and from (4) with $q=0, c=1$ and $k=1$, we obtain

$$
\begin{equation*}
\odot_{1}=\left(\triangle_{p}+m^{2}\right)^{2} \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(\triangle_{p}+m^{2}\right)=\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{p}^{2}}+m^{2}\right) . \tag{9}
\end{equation*}
$$

By putting $p=1, m=0, c=1$ and $x_{1}=t($ time) in (7) then we obtain the wave operator

$$
\begin{equation*}
\square_{1}=\frac{\partial^{2}}{\partial x_{t}^{2}}-\sum_{j=1}^{n-1} \frac{\partial^{2}}{\partial x_{j}^{2}} \tag{10}
\end{equation*}
$$

and from (8) with $q=0, m=0, c=1$ and $k=1$, we obtain Laplace operator iterated 2 -times of p-dimension

$$
\begin{equation*}
\odot_{1}=\triangle_{p}^{2} \tag{11}
\end{equation*}
$$

In this paper, we study an elementary solution for the operator \odot_{c}^{k}, that is

$$
\odot_{c}^{k} G(x)=\delta
$$

where $G(x)$ is an elementary solution, δ is the Dirac - delta distribution, k is a nonnegative integer, c is a positive real number and m is a nonnegative real number.

We then also apply such an elementary solution to solve the solution of the equation $\odot_{c}^{k} u(x)=f(x)$, where $f(x)$ is a given generalized function and $u(x)$ is an unknown function for $x \in \mathbb{R}^{n}$.

2. Preliminaries

Definition 1. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a point of the n - dimensional space \mathbb{R}^{n},

$$
\begin{equation*}
u=c^{2}\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{p}^{2}\right)-x_{p+1}^{2}-x_{p+2}^{2}-\cdots-x_{p+q}^{2} \tag{12}
\end{equation*}
$$

where c is a positive real number, $p+q=n$. Define $\Gamma_{+}=\left\{x \in \mathbb{R}^{n}: x_{1}>0\right.$ and $\left.u>0\right\}$ which designates the interior of the forward cone and $\bar{\Gamma}_{+}$designates its closure and the following functions introduce by Nozaki ([12], p.72) that

$$
R_{\alpha, c}^{H}(x)= \begin{cases}\frac{u^{\frac{\alpha-n}{2}}}{K_{n}(\alpha)} & \text { if } x \in \Gamma_{+} \tag{13}\\ 0 & \text { if } x \notin \Gamma_{+},\end{cases}
$$

$R_{\alpha, 1}^{H}(x)$ is called the ultra-hyperbolic kernel of Marcel Riesz. Here α is a complex parameter and n the dimension of the space. The constant $K_{n}(\alpha)$ is defined by

$$
\begin{equation*}
K_{n}(\alpha)=\frac{\pi^{\frac{n-1}{2}} \Gamma\left(\frac{2+\alpha-n}{2}\right) \Gamma\left(\frac{1-\alpha}{2}\right) \Gamma(\alpha)}{\Gamma\left(\frac{2+\alpha-p}{2}\right) \Gamma\left(\frac{p-\alpha}{2}\right)} \tag{14}
\end{equation*}
$$

and p is the number of positive terms of

$$
u=c^{2}\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{p}^{2}\right)-x_{p+1}^{2}-x_{p+2}^{2}-\cdots-x_{p+q}^{2}, \quad p+q=n
$$

and let supp $R_{\alpha, c}^{H}(x) \subset \bar{\Gamma}_{+}$. Now $R_{\alpha, c}^{H}(x)$ is an ordinary function if $R e(\alpha, c) \geq n$ and is a distribution of α if $R e(\alpha, c)<n$.

Now, if $p=1$ then (13) reduces to the function $M_{\alpha, c}(u)$ say, and defined by

$$
M_{\alpha, c}(u)= \begin{cases}\frac{u \frac{\alpha-n}{2}}{H_{n}(\alpha)} & \text { if } x \in \Gamma_{+} \tag{15}\\ 0 & \text { if } x \notin \Gamma_{+},\end{cases}
$$

where $u=c^{2} x_{1}^{2}-x_{2}^{2}-\cdots-x_{n}^{2}$ and $H_{n}(\alpha)=\pi^{\frac{(n-1)}{2}} 2^{\alpha-1} \Gamma\left(\frac{\alpha-n+2}{2}\right)$. The function $M_{\alpha, 1}(u)$ is called the hyperbolic kernel of Marcel Riesz.

Definition 2. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and

$$
\begin{equation*}
v=c^{2}\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{p}^{2}\right)+x_{p+1}^{2}+x_{p+2}^{2}+\cdots+x_{p+q}^{2}, \quad p+q=n . \tag{16}
\end{equation*}
$$

For any complex number β, we define the function

$$
\begin{equation*}
R_{\beta, c}^{e}(v)=2^{-\beta} \pi^{-n / 2} \Gamma\left(\frac{n-\beta}{2}\right) \frac{v^{(\beta-n) / 2}}{\Gamma(\beta / 2)} . \tag{17}
\end{equation*}
$$

The function $R_{\beta, 1}^{e}(v)$ is called the elliptic kernel of Marcel Riesz. It is an ordinary function if $\operatorname{Re}(\beta, c) \geq n$ and a distribution of β if $\operatorname{Re}(\beta, c)<n$.

Lemma 1. Given the equation $\triangle_{c}^{k} u(x)=\delta$ for $x \in \mathbb{R}^{n}$, where \triangle_{c}^{k} is the operator related to the Laplace operator iterated k-times defined by (3). Then $u(x)=(-1)^{k} R_{2 k, c}^{e}(v)$ is an elementary solution of the operator \triangle_{c}^{k}, with $\beta=2 k$.

Proof. See [2].
Lemma 2. If $\square_{c}^{k} u(x)=\delta$ for $x \in \Gamma_{+}=\left\{x \in \mathbb{R}^{n}: x_{1}>0\right.$ and $\left.u>0\right\}$, where \square_{c}^{k} is the operator related to the ultra-hyperbolic operator iterated k-times defined by (2). Then $u(x)=R_{2 k, c}^{H}(u)$ is the unique elementary solution of the operator \square_{c}^{k}, with $\alpha=2 k$.

Proof. See [10].
Lemma 3. Given the equation $\left(\square_{c}+m^{2}\right)^{k} u(x)=\delta$ for $x \in \mathbb{R}^{n}$, where $\left(\square_{c}+m^{2}\right)^{k}$ is the operator related to the Klein-Gordon operator iterated k-times defined by equation (7), δ is the Dirac-delta distribution, k is a nonnegative integer and m is a nonnegative real number, then $u(x)=W_{2 k, c}(u, m)$ is an elementary solution of the operator $\left(\square_{c}+m^{2}\right)^{k}$, where

$$
\begin{equation*}
W_{2 k, c}(u, m)=\sum_{r=0}^{\infty}\binom{-k}{r} m^{2 r} R_{2 k+2 r, c}^{H}(u), \tag{18}
\end{equation*}
$$

$R_{2 k, c}^{H}(u)$ is defined by (13).
Proof. See [6].

Lemma 4. Let \square_{c} be the operator related to the ultra-hyperbolic operator, defined by (2) and δ is the Dirac delta distribution for $x \in \mathbb{R}^{n}$, then

$$
\left(\square_{c}+m^{2}\right)^{k} \delta=W_{-2 k, c}(u, m)
$$

where $W_{-2 k, c}(u, m)$ is the inverse of $W_{2 k, c}(u, m)$ in the convolution algebra.
Proof. Let

$$
V(x)=\left(\square_{c}+m^{2}\right)^{k} \delta
$$

convolving both sides by $W_{2 k, c}(u, m)$, then

$$
\begin{align*}
W_{2 k, c}(u, m) * V(x) & =W_{2 k, c}(u, m) *\left(\square_{c}+m^{2}\right)^{k} \delta \\
& =\left(\square_{c}+m^{2}\right)^{k} W_{2 k, c}(u, m) * \delta \\
& =\delta . \tag{19}
\end{align*}
$$

Since $W_{2 k, c}(u, m)$ is lie in S^{\prime}, where S^{\prime} is a space of tempered distribution, choose $S^{\prime} \subset D_{R}^{\prime}$, where D_{R}^{\prime} is the right-side distribution which is a subspace of D^{\prime} of distribution. Thus $W_{2 k, c}(u, m) \in D_{R}^{\prime}$, it follow that $W_{2 k, c}(u, m)$ is an element of convolution algebra, thus by ([1], p.150-151), we have that the equation (19) has a unique solution

$$
\begin{equation*}
V(x)=W_{-2 k, c}(u, m) * \delta=W_{-2 k, c}(u, m) \tag{20}
\end{equation*}
$$

That complete the proof.
Lemma 5. Given the equation $\left(\triangle_{c}+m^{2}\right)^{k} u(x)=\delta$ for $x \in \mathbb{R}^{n}$, where $\left(\triangle_{c}+m^{2}\right)^{k}$ is the operator related to the Helmholtz operator iterated k-times defined by equation (6), δ is the Dirac-delta distribution, k is a nonnegative integer, then $u(x)=Y_{2 k, c}(v, m)$ is an elementary solution of the operator $\left(\triangle_{c}+m^{2}\right)^{k}$, where

$$
\begin{equation*}
Y_{2 k, c}(v, m)=\sum_{r=0}^{\infty}\binom{-k}{r} m^{2 r}(-1)^{k+r} R_{2 k+2 r, c}^{e}(v) \tag{21}
\end{equation*}
$$

$R_{2 k, c}^{e}(v)$ is defined by (17).
Proof. See [6].

Lemma 6. Let \triangle_{c} be the operator related to the Laplace operator, defined by (3) and δ is the Dirac delta distribution for $x \in \mathbb{R}^{n}$, then

$$
\left(\triangle_{c}+m^{2}\right)^{k} \delta=Y_{-2 k, c}(v, m)
$$

where $Y_{-2 k, c}(v, m)$ is the inverse of $Y_{2 k, c}(v, m)$ in the convolution algebra.
Proof. The proof of this lemma similar lemma 4.

Lemma 7. The convolution $W_{2 k, c}(u, m) * Y_{2 k, c}(v, m)$ exists and is a tempered distribution where $W_{2 k, c}(u, m)$ and $Y_{2 k, c}(v, m)$ be defined by (18) and (21), respectively.

Proof. From (18) and (21), we have

$$
\begin{aligned}
W_{2 k, c}(u, m) * Y_{2 k, c}(v, m)= & \left(\sum_{r=0}^{\infty}\binom{-k}{r} m^{2 r} R_{2 k+2 r, c}^{H}(u)\right) \\
& *\left(\sum_{r=0}^{\infty}\binom{-k}{r} m^{2 r}(-1)^{k+r} R_{2 k+2 r, c}^{e}(v)\right) \\
= & \sum_{r=0}^{\infty} \sum_{s=0}^{\infty}\binom{-k}{r}\binom{-k}{s} m^{2 r+2 s}(-1)^{k+r} R_{2 k+2 r, c}^{e}(v) * R_{2 k+2 s, c}^{H}(u) .
\end{aligned}
$$

Since the function $R_{2 k+2 r, c}^{e}(v)$ and $R_{2 k+2 s, c}^{H}(u)$ are tempered distributions, see $([3], \mathrm{p} .34$, [5], p. 302 and [4], p.97) and the convolution of functions

$$
(-1)^{k+r} R_{2 k+2 r, c}^{H}(u) * R_{2 k+2 s, c}^{e}(v)
$$

exists and is also a tempered distribution, see ([11], p.152). Thus, $W_{2 k, c}(u, m) * Y_{2 k, c}(v, m)$ exists and also is a tempered distribution.

3. Main results

Theorem 1. Given the equation

$$
\begin{equation*}
\odot_{c}^{k} G(x)=\delta \tag{22}
\end{equation*}
$$

for $x \in \mathbb{R}^{n}$, where \odot_{c}^{k} is the operator related to the Helmhotz operator and Klein-Gordon operator iterated k-times defined by (4), then

$$
\begin{equation*}
G(x)=W_{2 k, c}(u, m) * Y_{2 k, c}(v, m) \tag{23}
\end{equation*}
$$

is an elementary solution of (22), where $W_{2 k, c}(u, m)$ and $Y_{2 k, c}(v, m)$ are defined by (18) and (21), respectively, k is a nonnegative integer and m is a nonnegative real number. Moreover, from (23) we obtain

$$
\begin{equation*}
W_{-2 k, c}(u, m) * G(x)=Y_{2 k, c}(v, m) \tag{24}
\end{equation*}
$$

as the elementary solution of the operator $\left(\triangle_{c}+m^{2}\right)^{k}$ related to the Helmholtz operator iterated k-times defined by (6) and in particular, for $q=0$ and $c=1$ then \bigcirc_{c}^{k} reduces to the Helmhotz operator $\left(\triangle_{p}+m^{2}\right)^{2 k}$ of p-dimension iterated $2 k$-times and is defined by (9), where

$$
\triangle_{p}=\frac{1}{c^{2}}\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{p}^{2}}\right)
$$

thus (22) becomes

$$
\begin{equation*}
\left(\triangle_{p}+m^{2}\right)^{2 k} G(x)=\delta \tag{25}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
G(x)=Y_{4 k, 1}(v, m) \tag{26}
\end{equation*}
$$

is an elementary solution of (25) and from (23). Moreover,

$$
\begin{equation*}
Y_{-2 k, c}(u, m) * G(x)=W_{2 k, c}(u, m) \tag{27}
\end{equation*}
$$

is an elementary solution of operator related to the Klein-Gordon operator. In particular, we obtain

$$
(-1)^{k} R_{-2,1}^{e}(v) * G(x)=M_{2,1}(u)
$$

is an elementary solution of the wave operator defined by (10) where $u=t^{2}-x_{1}^{2}-x_{2}^{2}-$ $\cdots-x_{n-1}^{2}$. Also, for $m=0, q=0$ and $c=1$ then (25) becomes

$$
\begin{equation*}
\triangle_{p}^{2 k} G(x)=\delta \tag{28}
\end{equation*}
$$

where $\triangle_{p}^{2 k}$ is the Laplacian of p-dimension iterated $2 k$-times. We have

$$
G(x)=R_{4 k, 1}^{e}(v)
$$

is an elementary solution of (28) where

$$
v=c^{2}\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{p}^{2}\right)
$$

Proof. From (5) and (22) we have

$$
\odot_{c}^{k} G(x)=\left(\left(\square_{c}+m^{2}\right)^{k}\left(\triangle_{c}+m^{2}\right)^{k}\right) G(x)=\delta
$$

Convolving both sides of the above equation by the convolution $W_{2 k, c}(u, m) * Y_{2 k, c}(v, m)$ and the properties of convolution with derivatives, we obtain

$$
\begin{align*}
& \left(\square_{c}+m^{2}\right)^{k} W_{2 k, c}(u, m) *\left(\triangle_{c}+m^{2}\right)^{k} Y_{2 k, c}(v, m) * G(x) \\
& \quad=W_{2 k, c}(u, m) * Y_{2 k, c}(v, m) * \delta \tag{29}
\end{align*}
$$

Thus

$$
\begin{equation*}
G(x)=\delta * \delta * G(x)=W_{2 k, c}(u, m) * Y_{2 k, c}(v, m) \tag{30}
\end{equation*}
$$

by Lemma 3 and 5. Now from (23) and by Lemma 3 and Lemma 4 and properties of inverses in the convolution algebra, we obtain

$$
W_{-2 k, c}(u, m) * G(x)=\delta * Y_{2 k, c}(v, m)=Y_{2 k, c}(v, m)
$$

is an elementary solution of operator related to the Helmhotz operator iterated k-times defined by (6). In particular, for $q=0$ and $c=1$ then (22) becomes

$$
\begin{equation*}
\left(\triangle_{p}+m^{2}\right)^{2 k} G(x)=\delta \tag{31}
\end{equation*}
$$

where $\left(\triangle_{p}+m^{2}\right)^{2 k}$ is the Helmholtz operator of p-dimension, iterated $2 k$-times and is defined by (9). By Lemma 5 , we have

$$
\begin{equation*}
G(x)=Y_{4 k, 1}(v, m) \tag{32}
\end{equation*}
$$

is an elementary solution of (31). Moreover, from (23) and by Lemma 6 and Lemma 5 and properties of inverses in the convolution algebra, we obtain

$$
Y_{-2 k, c}(u, m) * G(x)=W_{2 k, c}(u, m) * \delta=W_{2 k, c}(u, m)
$$

is an elementary solution of operator related to the Klein-Gordon operator. In particular, by putting $p=1, q=n-1, k=1, x_{1}=t, c=1$ and $m=0$ in (23) and (27), $W_{2,1}(u, m=$ $0)=R_{2,1}^{H}(u)$ reduces to $M_{2,1}(u)$ where $M_{2,1}(u)$ is defined by (15) with $\alpha=2$. Thus we obtain

$$
(-1)^{k} R_{-2,1}^{e}(v) * G(x)=M_{2,1}(u)
$$

is an elementary solution of the wave operator defined by (10) where $u=t^{2}-x_{1}^{2}-x_{2}^{2}-$ $\cdots-x_{n-1}^{2}$. Also, for $m=0, c=1$ and $q=0$ then (25) becomes

$$
\begin{equation*}
\triangle_{p}^{2 k} G(x)=\delta \tag{33}
\end{equation*}
$$

where $\triangle_{p}^{2 k}$ is the Laplacian of p-dimension iterated $2 k$-times. By Lemma 1 , we have

$$
G(x)=(-1)^{2 k} R_{4 k, 1}^{e}(v)=R_{4 k, 1}^{e}(v)
$$

is an elementary solution of (33) where

$$
v=c^{2}\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{p}^{2}\right) .
$$

On the other hand, we can also find $G(x)$ from (23), since $q=0, c=1$ and $m=0$, we have $W_{2 k, 1}(u, m=0)=R_{2 k, 1}^{H}(u)$ reduces to $(-1)^{k} R_{2 k, 1}^{e}(v)$, where $v=c^{2}\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{p}^{2}\right)$. Thus, by (23) for $q=0, c=1$ and $m=0$, we obtain

$$
\begin{aligned}
G(x) & =(-1)^{k} R_{2 k, 1}^{e}(v) *(-1)^{k} R_{2 k, 1}^{e}(v) \\
& =(-1)^{2 k} R_{2 k+2 k, 1}^{e}(v) \\
& =R_{4 k, 1}^{e}(v) \quad \text { by W.F. Donoghue ([11],p 158). }
\end{aligned}
$$

That complete the proofs.
Theorem 2. Given the equation

$$
\begin{equation*}
\odot_{c}^{k} u(x)=f(x), \tag{34}
\end{equation*}
$$

where f is a given generalized function and $u(x)$ is an unknown function, we obtain

$$
u(x)=G(x) * f(x)
$$

is a solution of the equation (34), where $G(x)$ is an elementary solution for \odot_{c}^{k} operator.

Proof. Convolving both sides of (34) by $G(x)$, where $G(x)$ is an elementary solution of \odot_{c}^{k} in Theorem 1, we obtain

$$
G(x) * \odot_{c}^{k} u(x)=G(x) * f(x)
$$

or,

$$
\odot_{c}^{k} G(x) * u(x)=G(x) * f(x)
$$

applying the Theorem 1 , we have

$$
\delta * u(x)=G(x) * f(x) .
$$

Therefore,

$$
u(x)=G(x) * f(x) .
$$

Acknowledgements

The author would like to thank the referee for his suggestions which enhanced the presentation of the paper. The author was supported by Sakon Nakhon Rajabhat University

References

[1] A. H. Zemanian, Distribution theory and transform analysis, New York, McGraw-Hill, 1964.
[2] A. Kananthai, On the solutions of the n-dimensional diamond operator, Appl. Math. Comput. 88 (1997), 27-37.
[3] A. Kananthai, On the convolution equation related to the diamond kernel of Marcel Riesz, J. Comp. Appl. Math. 100 (1998), 33-39.
[4] A. Kananthai, On the convolution of the diamond kernel of Marcel Riesz, Appl. Math. Comput. 114 (2000), 95-101.
[5] A. Kananthai, On the convolution equation related to the N-dimensional ultrahyperbolic operator, J. Comp. Appl. Math. 115 (2000), 301-308.
[6] J. Tariboon, and A. Kananthai, On the Green function of the $\left(\oplus+m^{2}\right)$ operator, Integral Transform and Special Functions 18 (2007), 297-304.
[7] M. A. Tellez, The distributional hankel transform of Marcel Riesz's ultra-hyperbolic kernel, Studies in Applied Mathematics 93 (1994), 133-162.
[8] M. A. Tellez, The convolution product of $W_{\alpha}(u, m) * W_{\beta}(u, m)$, Mathematic 38 (195196) ,105-111.
[9] S. Bupasiri, On the solution of the n-dimentional operator related to the diamond operator, FJMS. 45 (2010), 69-80.
[10] S. E. Trione, On Marcel Riesz's ultra-hyperbolic kernel, Trabajos de Mathematica 116 (1987).
[11] W. F. Donoghue, Distribution and Fourier transform, New York, Academic Press, 1969.
[12] Y. Nozaki, On Reimann-Liouvlle integral of ultra-hyperbolic type, Kodai Mathemaical Seminar Report 6 (1964), 69-87.

