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Abstract. A topological space X is called C-Tychonoff if there exist a one-to-one function f from
X onto a Tychonoff space Y such that the restriction f|K : K −→ f(K) is a homeomorphism
for each compact subspace K ⊆ X. We discuss this property and illustrate the relationships
between C-Tychonoffness and some other properties like submetrizability, local compactness, L-
Tychonoffness, C-normality, C-regularity, epinormality, σ-compactness, pseudocompactness and
zero-dimensional.
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1. Introduction

We define a new topological property called C-Tychonoff. Unlike C-normality[2], we
prove that C-Tychonoffness is a topological property which is multiplicative and hered-
itary. We show that C-Tychonoff and C-normal are independent. Also we investigate
the function witnesses the C-Tychonoffness when it is continuous and when it is not. We
introduce the notion of L-Tychonoffness. Throughout this paper, we denoted of the set of
positive integers by N, and an order pair by 〈x, y〉. An ordinal γ is the set of all ordinal α,
with α < γ, we denoted the first infinite ordinal by ω0 and the first uncountable ordinal
by ω1. A T3 space is a T1 regular space, a Tychonoff (T3 1

2
) space is a T1 completely regular

space, and a T4 space is a T1 normal space. For a subset B of a space X, intB denote
the interior of B and B denote the closure of B. A space X is locally compact if for each
y ∈ X and each open neighborhood U of y there exists an open neighborhood V of y such
that y ∈ V ⊆ V ⊆ U and V is compact, we do not assume T2 in the definition of local
compactness.
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2. C-Tychonoffness

Definition 1. A topological space X is called C-Tychonoff if there exist a one-to-one
function f from X onto a Tychonoff space Y such that the restriction f|K : K −→ f(K)
is a homeomorphism for each compact subspace K ⊆ X.

Recall that a topological space (X ,τ ) is called submetrizable if there exists a metric
d on X such that the topology τ d on X generated by d is coarser than τ , i.e., τ d ⊆ τ ,
see [10].

Theorem 1. Every submetrizable space is C-Tychonoff.

Proof. Let τ ′ be a metrizable topology on X such that τ ′ ⊆τ . Then (X ,τ ′ ) is Ty-
chonoff and the identity function idX : (X ,τ ) −→ (X ,τ ′ ) is a bijective and continuous.
If K is any compact subspace of (X ,τ ), then idX(K) is Hausdorff being a subspace of the
metrizable space (X ,τ ′ ), and the restriction of the identity function on K onto idX(K)
is a homeomorphism by [8, 3.1.13].

Since any Hausdorff locally compact space is Tychonoff, then we have the following
theorem.

Theorem 2. Every Hausdorff locally compact space is C-Tychonoff.

The converse of Theorem 1 is not true in general. For example, the Tychonoff Plank
((ω1 + 1)× (ω0 + 1)) \ {〈ω1, ω0〉} is C-Tychonoff being Hausdorff locally compact, but it is
not submetrizabl, because if it was, then (ω1 + 1)×{0} ⊆ ((ω1 + 1)× (ω0 + 1))\{〈ω1, ω0〉}
is submetrizabl, because submetrizablity is hereditary, but ((ω1 + 1) × {0} ∼= ω1 + 1 and
ω1 + 1 is not submetrizabl.
The converse of Theorem 2 is not true in general as the Dieudonné Plank [16] is Tychonoff,
hence C-Tychonoff but not locally compact. Hausdorffness is essential in Theorem 2. Here
is an example of a locally compact space which is neither C-Tychonoff nor Hausdorff.

Example 1. The particular point topology τ√2 on R, see [16], is not C-Tychonoff. It is

well-known that (R ,τ√2) is neither T1 nor Tychonoff. If B ⊆ R, then {{x,
√

2 } : x ∈ B}
is an open cover for B, thus a subset B of R is compact if and only if it is finite. To
show that (R ,τ√2) is not C-Tychonoff, suppose that (R ,τ√2) is C-Tychonoff. Let Z
be a Tychonoff space and f : R −→ Z be a bijective function such that the restriction
f|K : K −→ f(K) is a homeomorphism for each compact subspace K of (R ,τ√2). Take

K = {x,
√

2}, such that x 6=
√

2, hence K is a compact subspace of (R , τ√2). By

assumption f|K : K −→ f(K) = {f(x), f(
√

2)} is a homeomorphism. Because f(K) is
a finite subspace of Z and Z is T1, then f(K) is discrete subspace of Z. Therefore,we
obtain that f|K is not continuous and this a contradiction as f|K is a homeomorphism.
Thus (R ,τ√2) is not C-Tychonoff.
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By the definition, it is clear that a compact C-Tychonoff space must be Tychonoff see
Theorem 3 below. Obviously, any Tychonoff space is C-Tychonoff, just by taking Y = X
and f to be the identity function, but the converse is not true in general. For example, the
Half-Disc space [16] is C-Tychonoff which is not Tychonoff. It is C-Tychonoff because it is
submetrizable. C-Tychonoffness does not imply Tychonoffness even with first countability.
For example, Smirnov’s deleted sequence topology [16] is first countable and C-Tychonoff
being submetrizabl but not Tychonoff.

Theorem 3. If X is a compact non-Tychonoff space, then X cennot be C-Tychonoff.

We conclude that from the above theorem, R with the finite complement topology is
not C-Tychonoff.

Theorem 4. If X is a T1-space such that the only compact subspace are the finite sub-
space, then X is C-Tychonoff.

Proof. Let Y = X and consider Y with the discrete topology. Then the identity
function from X onto Y is a bijective function. If K is any compact subspace of (X ,τ ),
then by assumption K is a finite subspace. Because any finite set in a T1-space is discrete,
hence the restriction of the identity function on K onto K is a homeomorphism since both
of the domain and the codomain are discrete and have the same cardinality.

If X is C-Tychonoff and f : X −→ Y is a witness of the C-Tychonoffness of X, then
f may not be continuous. Here is an example.

Example 2. Consider R with the countable complement topology CC [16]. Since the only
compact subspace are the finite subspaces and (R , CC ) is T1, then the compact subspace
are discrete. Hence R with the discrete topology and the identity function will give the
C-Tychonoffness, see Theorem 4. Observe that the identity function in this case is not
continuous.

Recall that a space X is Fréchet if for any subset B of X and any x ∈ B there exist a
sequence (bn)n∈N of points of B such that bn −→ x, see [8].

Theorem 5. IfX is C-Tychonoff and Fréchet, then any function witnesses its C-Tychonoffness
is continuous.

Proof. Let X be C-Tychonoff and Fréchet. Let f : X −→ Y be a witness of the
C-Tychonoffness of X. Take B ⊆ X and pick y ∈ f(B). There is a unique x ∈ X such
that f(x) = y, thus x ∈ B. Since X is Fréchet, then there exists a sequence (bn) ⊆ B
such that bn −→ x. The sequence K = {x} ∪ {bn : n ∈ N} of X is compact since it is
a convergent sequence with its limit, thus f|K : K −→ f(K) is a homeomorphism. Let



S. AlZahrani / Eur. J. Pure Appl. Math, 11 (3) (2018), 882-892 885

W ⊆ Y be any open neighborhood of y. Then W ∩ f(K) is open in the subspace f(K)
containing y. Since f({bn : n ∈ N}) ⊆ f(K) ∩ f(B) and W ∩ f(K) 6= ∅, then we have
W ∩ f(B) 6= ∅. Hence y ∈ f(B) and f(B) ⊆ f(B). Thus f is continuous.

Since any first countable space is Fréchet [8], we conclude the following corollary:

Corollary 1. If X is C-Tychonoff first countable and f : X −→ Y witnessing the C-
Tychonoffness of X, then f is continuous.

Corollary 2. Any C-Tychonoff Fréchet space is Urysohn.

Proof. Let (X , τ ) be any C-Tychonoff Fréchet space. We may assume that X has
more than one element. Pick a Tychonoff space (Y , τ ′ ) and a bijection function f : (X ,
τ ) −→ (Y , τ ′ ) such that f|A : A −→ f(A) is a homeomorphism for each compact
subspace A of X. Since X is Fréchet, then f is continuous. Define a topology τ ? on X
as follows: τ ? = { f−1(U) : U ∈ τ ′ }. It clear that τ ? is a topology on X coarser that
τ such that f : (X , τ ? ) −→ (Y , τ ′ ) is continuous. If W ∈ τ ?, then W is of the form
W = f−1(U) where U ∈ τ ′. So, f(W ) = f(f−1(U)) = U which gives that f is open,
hence homeomorphism. Thus (X , τ ? ) is Tychonoff. Pick distinct a, b ∈ X. Using T2 of
(X , τ ? ), choose G,H ∈ τ ? such that a ∈ G, b ∈ H, and G ∩H = ∅. Using regularity of

(X , τ ? ), choose U, V ∈ τ ? such that a ∈ U ⊆ U τ
?

⊆ G and b ∈ V ⊆ V τ? ⊆ H. We have

that U, V ∈ τ and since B
τ ⊆ B

τ?
for any B ⊆ X, we get U

τ ∩ V τ
= ∅. Therefore, (X ,

τ ) is Urysohn.

So, we conclude that any first countable C-Tychonoff space is Hausdorff.

Recall that a space X is a k-space if X is T2 and it is a quotient image of a locally
compact space [8]. By the theorem: “ a function f from a k-space X into a space Y is
continuous if and only if f|Z : Z −→ Y is continuous for each compact subspace Z of X”,
[8, 3.3.21]. We conclude the following:

Corollary 3. If X is a C-Tychonoff k-space and f : X −→ Y witnessing the C-
Tychonoffness of X, then f is continuous.

Recall that a topological space X is called C-normal if there exist a one-to-one func-
tion f from X onto a normal space Y such that the restriction f|K : K −→ f(K) is a
homeomorphism for each compact subspace K ⊆ X[2].

Theorem 6. Every C-Tychonoff Fréchet Lindelöf space is C-normal.
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Proof. Let X be any C-Tychonoff Fréchet Lindelöf space. Pick a Tychonoff space
Y and a bijective function f : X −→ Y such that the restriction f|K : K −→ f(K) is
a homeomorphism for each compact subspace K ⊆ X. By Theorem 5, f is continuous.
Since the continuous image of a Lindelöf space is Lindelöf [8, 3.8.7], we conclude that Y
is Lindelöf, hence normal as any regular Lindelöf space is normal [8, 3.8.2]. Therefore, X
is C-normal.

C-normality and C-Tychonoffness are independent from each other. Here is an example
of a C-normal which is not C-Tychonoff.

Example 3. Consider R with its right ray topology R [16]. So, R = {∅,R} ∪ { (x,∞) :
x ∈ R }. Since any two non-empty closed sets must intersect, then (R , R ) is normal,
hence C-normal [2]. Now, suppose that (R , R ) is C-Tychonoff. Pick a Tychonoff space
Y and a bijective function f : R −→ Y such that the restriction f|K : K −→ f(K) is a
homeomorphism for each compact subspace K ⊆ R. It is well-known that a subspace K of
(R , R ) is compact if and only if K has a minimal element. Thus [2,∞) is compact, hence
f|[2,∞)

: [2,∞) −→ f([2,∞)) ⊂ Y is a homeomorphism. i.e. f([2,∞)) as a subspace of

(R , R ) is regular which is a contradiction as [2, 3] is closed in [2,∞) and 5 6∈ [2, 3] and any
non-empty open sets in [2,∞) must intersect. Therefore, (R , R ) cannot be C-Tychonoff.

Here is an example of a C-Tychonoff space which is not C-normal.

Example 4. Consider the infinite Tychonoff product space G = Dω1 =
∏
α∈ω1

D, where
D = {0, 1} considered with the discrete topology. Let H be the subspace of G consisting
of all points of G with at most countably many non-zero coordinates. Put M = G ×H.
Raushan Buzyakova proved thatM cannot be mapped onto a normal space Z by a bijective
continuous function [7]. Using Buzyakova’s result and the fact that M is a k-space, we
conclude that M is a Tychonoff space which is not C-normal [13]. Since M is Tychonoff,
then it is C-Tychonoff.

Theorem 7. C-Tychonoffness is a topological property.

Proof. Let X be a C-Tychonoff space and X ∼= Y . Let Z be a Tychonoff space and let
f : X −→ Z be a bijective function such that the restriction f|K : K −→ f(K) is a home-
omorphism for each compact subspace K ⊆ X. Let h : Y −→ X be a homeomorphism.
Then Z and f ◦ h : Y −→ Z satisfies the requirement.

Theorem 8. C-Tychonoffness is an additive property.
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Proof. Let Xs be a C-Tychonoff space for each s ∈ S. We prove that their sum ⊕s∈SXs

is C-Tychonoff. For each s ∈ S, pick a Tychonoff space Ys and a bijective function fs :
Xs −→ Ys such that fs|Ks

: Ks −→ fs(Ks) is a homeomorphism for each compact subspace

Ks of Xs. Because Ys is Tychonoff for each s ∈ S, then the sum ⊕s∈SYs is Tychonoff,
[8, 2.2.7]. Consider the function sum [8, 2.2.E] f = ⊕s∈Sfs : ⊕s∈SXs −→ ⊕s∈SYs defined
by f(x) = fs(x) if x ∈ Xs, s ∈ S. A subspace K ⊆ ⊕α∈ΛXα is compact if and only
if the set S0 = {s ∈ S : K ∩ Xs 6= ∅} is finite and K ∩ Xs is compact in Xs for each
s ∈ S0. If K ⊆ ⊕s∈SXs is compact. then (⊕s∈Sfs)|K is a homeomorphism since fs|K∩Xs

is

a homeomorphism for each s ∈ S0.

Theorem 9. C-Tychonoffness is a multiplicative property.

Proof. Let Xs be a C-Tychonoff space for each s ∈ S. Pick a Tychonoff space Ys and
a bijective function fs : Xs −→ Ys such that fs|Ks

: Ks −→ fs(Ks) is a homeomorphism

for each compact subspace Ks of Xs. Since Ys is Tychonoff for each s ∈ S, then the
Cartesian product

∏
s∈S Ys is Tychonoff [8, 2.3.11]. Define f :

∏
s∈S Xs −→

∏
s∈S Ys

by f((xs : s ∈ S)) = (fs(xs) : s ∈ S) for each s ∈ S, then f is bijective. Let K ⊆∏
s∈S Xs be any compact subspace and let ps be the usual projection, then ps(K) ⊆ Xs

is compact. Now, K ⊆
∏
s∈S ps(K) = K? is compact, by the Tychonoff theorem. Hence

f|K? =
∏
s∈S fs |ps(K)

is a homeomorphism. Thus f|K is a homeomorphism, because the
restriction of a homeomorphism is a homeomorphism.

Theorem 10. C-Tychonoffness is a hereditary property.

Proof. Let A be any non empty subspace of C-Tychonoff space X. Pick a bijective
function f from X onto a Tychonoff space Y such that f|K : K −→ f(K) is a homeomor-
phism for each compact subspace K ⊆ X. Let B = f(A) ⊆ Y . Then B is Tychonoff being
a subspace of a Tychonoff space Y . Now, we have f|A : A −→ B is a bijective function.
Since any compact subspace of A is compact in X and f|A |K

= f|K , we conclude that A is

C-Tychonoff.

Frome Theorem 9 and Theorem 10, we conclude the following corollary.

Corollary 4.
∏
s∈S Xs is C-Tychonoff if and only if Xs is C-Tychonoff ∀s ∈ S.

3. L-Tychonoffness and Other Properties

We introduce another new topological property called L-Tychonoff .
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Definition 2. A topological space X is called L-Tychonoff if there exist a one-to-one
function f from X onto a Tychonoff space Y such that the restriction f|L : L −→ f(L) is
a homeomorphism for each Lindelöf subspace L ⊆ X.

By the definition it is clear that a Lindelöf L-Tychonoff space must be Tychonoff. Since
any compact space is Lindelöf, then any L-Tychonoff space is C-Tychonoff. The converse
is not true in general. Obviously, no Lindelöf non-Tychonoff space is L-Tychonoff. So,
no countable complement topology on uncountable set X is L-Tychonoff, but it is C-
Tychonoff, see Example 2. An example of an L-Tychonoff space which is not Tychonoff.

Example 5. Consider ω2, the successor cardinal number of the cardinal number ω1. Let
X = ω2 ∪ {i, j} where {i, j} ∩ ω2 = ∅, so i 6∈ ω2 and j 6∈ ω2. Generate a topology on
X as follows: Each α ∈ ω2 is isolated. A basic open neighborhood of i is of the form
U = {i} ∪ (ω2 \ E) where E ⊂ ω2 with |E| = ω1. Similarly, a basic open neighborhood
of j is of the form V = {j} ∪ (ω2 \ F ) where F ⊂ ω2 with |F | = ω1. Then X is not T2

as i and j cannot be separated by disjoint open sets. X is not Lindelöf as the open cover
{{i} ∪ (ω2 \ ω1), {j} ∪ (ω2 \ ω1), {α} : α ∈ ω1} of X has no countable subcover. Also, if C
is any countable subspace of X, then C is discrete as a subspace because if i ∈ C, then
U = {i}∪ (ω2 \ (ω1 ∪ (C \ {j}))) is an open neighborhood of i in X such that U ∩C = {i}.
Similarly, if j ∈ C. It is clear that if C is countable, then C is Lindelöf. Assume that C is
uncountable. Then |C| ≥ ω1. Suppose that {i, j} ⊂ C. Partition C into three partitions
C1, C2, and C3 such that i ∈ C1 with |C1| = ω1, j ∈ C2 with |C2| = ω1, and |C3| ≥ ω1. The
open cover {{i}∪(ω2\((C1∪C2)\{i, j})), {j}∪(ω2\((C1∪C2)\{i, j}))), {α} : α ∈ C1∪C2}
of C has no countable subcover. If C contains either i or j, we do the same idea but for
just two partitions. Thus a subspace C of X is Lindelöf if and only if C is countable.
Thus X is L-Tychonoff which is not Tychonoff.

A function f : X −→ Y witnessing the L-Tychonoffness of X need not be continuous.
But it will be if X is of countable tightness. Recall that a space X is of countable tightness
if for each subset B of X and each x ∈ B, there exists a countable subset B0 of B such
that x ∈ B0 [8].

Theorem 11. If X is L-Tychonoff and of countable tightness and f : X −→ Y is a
witness of the L-Tychonoffness of X, then f is continuous.

Proof. Let A be any non-empty subset of X. Let y ∈ f(A ) be arbitrary. Let x ∈ X
be the unique element such thatf(x) = y. Then x ∈ A. Pick a countable subset A0 ⊆ A
such that x ∈ A0. Let B = {x} ∪ A0; then B is a Lindelöf subspace of X and hence
f|B : B −→ f(B) is a homeomorphism. Now, let V ⊆ Y be any open neighborhood of y;
then V ∩ f(B) is open in the subspace f(B) containing y. Thus f−1(V )∩B is open in the
subspace B containing x. Thus (f−1(V ) ∩B) ∩A0 6= ∅. So (f−1(V ) ∩B) ∩A 6= ∅. Hence
∅ 6= f((f−1(V ) ∩ B) ∩ A) ⊆ f(f−1(V ) ∩ A) = V ∩ f(A). Thus y ∈ f(A). Therefore, f is
continuous.
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Recall that if (xn)n∈N is a sequence in a topological space X, then the convergency set
of (xn) is defined by C(xn) = {x ∈ X : xn −→ x} and a topological space X is sequential
if for any A ⊆ X we have that A is closed if and only if C(xn) ⊆ A for any sequence
(xn) ⊆ A, see [8]. We have the following implications, see [8, 1.6.14, 1.7.13].

First countability ⇒ Fréchet ⇒ Sequential ⇒ Countable tightness.

Corollary 5. If X is L-Tychonoff and first countable (Fréchet, Sequential ) and f : X −→
Y is a witness of the L-Tychonoffness of X, then f is continuous.

Theorem 12. L-Tychonoffness is a topological property.

Theorem 13. L-Tychonoffness is an additive property.

Theorem 14. L-Tychonoffness is a multiplicative property.

Theorem 15. L-Tychonoffness is a hereditary property.

Theorem 16. If any countable subspace of a space X is discrete and the only Lindelöf
subspaces are the countable subspaces, then X is L-Tychonoff.

Proof. Let Y = X and consider Y with the discrete topology. Then the identity
function from X onto Y is a bijective function. If K is any Lindelöf subspace of X, then,
by assumption, K is countable and discrete, hence the restriction of the identity function
on K onto K is a homeomorphism.

Theorem 17. If X is C-Tychonoff space such that each Lindelöf subspace is contained
in a compact subspace, then X is L-Tychonoff.

Proof. Assume that X is C-Tychonoff and if L is any Lindelöf subspace of X, then
there exists a compact subspace K with L ⊆ K. Let f be a bijective function from X
onto a Tychonoff space Y such that the restriction f|C : C −→ f(C) is a homeomorphism
for each compact subspace C of X. Now, let L be any Lindelöf subspace of X. Pick a
compact subspace K of X where L ⊆ K, then f|K : K −→ f(K) is a homeomorphism,
thus f|L : L −→ f(L) is a homeomorphism as (f|K)|L = f|L .

Now, we study some relationships between C-Tychonoffness and some other properties.
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Recall that a topological space X is called C-regular if there exist a one-to-one function
f from X onto a regular space Y such that the restriction f|K : K −→ f(K) is a home-
omorphism for each compact subspace K ⊆ X [5]. Any C-Tychonoff space is C-regular
space, but the converse is not true in general. For example, any indiscrete space which
has more than one element is an example of C-regular space which is not C-Tychonoff by
Theorem 3.

Recall that a topological space (X , τ ) is called epinormal if there is a coarser topology
τ ′ on X such that (X , τ ′ ) is T4 [3]. By a similar proof as that of Theorem 1 above, we
can prove the following corollary:

Corollary 6. Any epinormal space is C-Tychonoff.

R with the countable complement topology CC [16], is an example of C-Tychonoff space
which is not epinormal because (R , CC ) is not T2 and any epinormal space is T2 [3].

Let X be any Hausdorff non-k-space. Let kX = X. Define a topology on kX as
follows: a subset of kX is open if and only if its intersection with any compact subspace
C of the space X is open in C. kX with this topology is Hausdorff and k-space such that
X and kX have the same compact subspace and the same topology on these subspace [6],
we conclude the following:

Theorem 18. If X is Hausdorff but not k-space, then X is C-Tychonoff if and only if
kX is C-Tychonoff.

C-Tychonoffness and σ-compactness are independent from each other. For example the
rational sequence space [16] is C-Tychonoff being Tychonoff, but not σ-compact. R with
the finite complement topology is not C-Tychonoff by Theorem 3, but it is σ-compact being
compact. Any pseudocompact is C-Tychonoff being Tychonoff, but the converse is not
true, for example Sorgenfrey line square topology [16], it is C-Tychonoff being Tychonoff
but not pseudocompact. Also any zero-dimensional space is C-Tychonoff, but the converse
is not true, for example Niemytzki’s tangent disc topology [16], it is C-Tychonoff being
Tychonoff but not zero-dimensional because it is connected.

Let X be any topological space. Let X ′ = X × {a}. Note that X ∩ X ′ = ∅. Let
A(X) = X ∪X ′. For simplicity, for an element x ∈ X, we will denote the element 〈x, a〉
in X ′ by x′ and for a subset E ⊆ X let E′ = {x′ : x ∈ E} = E × {a} ⊆ X ′. For
each x′ ∈ X ′, let B(x′) = {{x′}}. For each x ∈ X, let B(x) = {U ∪ (U ′ \ {x′}) : U
is open in X with x ∈ U }. Let τ denote the unique topology on A(X) which has
{B(x) : x ∈ X} ∪ {B(x′) : x′ ∈ X ′} as its neighborhood system. A(X) with this topology
is called the Alexandroff Duplicate of X. Similar proof as in [2], we get the following
theorem.
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Theorem 19. If X is C-Tychonoff, then its Alexandroff Duplicate A(X) is also C-
Tychonoff.

Also a similar proof as in [15], we get the following theorem.

Theorem 20. If X is L-Tychonoff, then its Alexandroff Duplicate A(X) is also L-
Tychonoff.
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