EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 11, No. 3, 2018, 869-875
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

A common best proximity point theorem for ϕ-dominated pair

Mahdi Iranmanesh ${ }^{1}$, Ali Ganjbakhsh Sanatee ${ }^{1, *}$
${ }^{1}$ Department of Pure Mathematics, Shahrood University of Technology, Shahrood, Iran

Abstract

In the present research, an interesting common best proximity point theorem for pairs of non-self-mappings is presented. It satisfies a weakly contraction-like condition, thereby producing common optimal approximate solutions of certain simultaneous fixed point equations.

2010 Mathematics Subject Classifications: 47H09, 47H10
Key Words and Phrases: Common best proximity point, ϕ-dominated pair, ϕ-contraction, fixed point

1. Introduction

Fixed point theory is indispensable $T x=x$ for self-mappings T on subsets of metric space or normed space. Let A and B be non-empty subsets of metric space (X, d) and let $T: A \longrightarrow B$ be non-self mapping. If the equation $T x=x$ does not possess solution, then $d(x, T x)>0$. In this case, it is important that we find an element $x \in A$ such that $d(x, T x)$ is minimum in some sense. For example, the best approximation problem and best proximity problem are investigated in this regard (see [2] and [5]). An element $x \in A$ is said to be a best proximity point of T if $d(x, T x)=d(A, B)$ where

$$
d(A, B)=\inf \{d(x, y): x \in A, y \in B\}
$$

It is easy to check that if T is self-mapping the best proximity problem reduces to fixed point problem. There are several various of contractions that guarantee the existence of a best proximity point (see [2], [5], and [11]).
Suppose that A and B be nonempty subsets of metric space (X, d). Let $T: A \longrightarrow B$ and $S: A \longrightarrow B$ be nonself mapping. Let considering the fact S and T are nonselfmappings, it is possible that the equations $T x=x$ and $S x=x$ have a common solution, considered as a common fixed point of the mappings T and S. When the equations have no common solution, one thinks to find an element x that is in near proximity to

[^0]$T x$ and $S x$ in the sense that $d(x, T x)$ and $d(x, S x)$ are minimal. In fact, one investigates the existence of such optimal approximate solutions, known as common best proximity points, to the equations $S x=x$ and $T x=x$. Further, one can comprehend that the real valued functions $x \longrightarrow d(x, T x)$ and $x \longrightarrow d(x, S x)$ approximate the value of the error of proximate solution of the equations $T x=x$ and $S x=x$. In view of the fact that $d(A, B) \leq d(x, T x)$ and $d(A, B) \leq d(x, S x)$, a common best proximity point theorem determines global minimum of both functions $x \longrightarrow d(x, T x)$ and $x \longrightarrow d(x, S x)$ by limiting a common approximate solution of the equations $T x=x$ and $S x=x$ to attain the requirement that $d(x, S x)=d(A, B)$ and $d(x, T x)=d(A, B)$.
Common best proximity point problem was studied by many mathematicians (see [7], [8] and [11]).

2. Preliminary Concepts

Definition 1. An element $x \in X$ is said to be common best proximity point of the non-self-mappings $S: A \longrightarrow B$ and $T: A \longrightarrow B$ if it satisfies the condition that

$$
d(x, S x)=d(x, T x)=d(A, B) .
$$

Definition 2. [4] A function $\phi:[0,+\infty) \longrightarrow[0,+\infty)$ is called a comparison if it satisfies the following conditions:

- ϕ is increasing,
- the sequence $\left(\phi^{n}(t)\right)_{n \in \mathbb{N}}$ converges to 0 as $n \rightarrow+\infty$, for all $t \in[0,+\infty)$.

We recall that a self-mapping T on a metric space (X, d) is said to be ϕ-contraction if

$$
d(T(x), T(y)) \leq \phi(d(x, y))
$$

for any $x, y \in X$; where ϕ is comparison function.
Remark 1. If ϕ is comparison function then

- $\phi(t)<t$ for any $t \in(0,+\infty)$,
- $\phi(t)=0$ if and only if $t=0$.

Lemma 1. [4] Let (X, d) be a metric space and let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in X such that $d\left(x_{n+1}, x_{n}\right) \rightarrow 0$. If $\left(x_{n}\right)_{n \in \mathbb{N}}$ is not Cauchy sequence then there exists $\epsilon>0$ and sequences $(n(k))$ and $(m(k))$ of positive integers such that the following sequences tend to ϵ as $k \rightarrow+\infty$:

$$
\begin{aligned}
& d\left(x_{m(k)}, x_{n(k)}\right), \quad d\left(x_{m(k)}, x_{n(k)+1}\right), \quad d\left(x_{m(k)-1}, x_{n(k)}\right), \\
& d\left(x_{m(k)-1}, x_{n(k)+1}\right), \quad d\left(x_{m(k)+1}, x_{n(k)+1}\right), \quad d\left(x_{m(k)+1}, x_{n(k)}\right) .
\end{aligned}
$$

Definition 3. Let $S: A \longrightarrow B, T: A \longrightarrow B$ and $F: B \longrightarrow A$ be given. F is said to commute with the pair (S, T) if $S F T=T F S$.

Definition 4. Let $S: A \longrightarrow B, T: A \longrightarrow B, F: B \longrightarrow A$ and $G: B \longrightarrow A$ be mappings. The pair (F, S) is said to be ϕ-dominated by the pair (G, T) if for any $x \in A$ and $y \in B$ it satisfies the condition that

$$
d(F S x, F S y) \leq \phi(d(G T x, G T y))
$$

where ϕ is comparison function.

3. Main Results

From here throughout this paper, X denotes a complete metric space and A and B are its nonempty subsets.

Now, we are ready to present our main result.
Theorem 1. Let A and B be closed. Moreover, assume that $S: A \longrightarrow B, T: A \longrightarrow B$, $F: B \longrightarrow A$ and $G: B \longrightarrow A$ are continuous functions satisfying the following conditions:
(1) FS commutes with $G T$ and $S F$ commutes with $T G$.
(2) (F, S) is ϕ-dominated by (G, T) and (S, F) is ψ-dominated by (T, G), where ϕ and ψ are comparison functions.
(3) $F S(A) \subset G T(A)$ and $S F(B) \subset T G(B)$.
(4) S and T commute with the pair (F, G), and F and G commute with the pair (S, T).
(5) There is a non-negative number $\alpha<1$ such that for all $x \in A$

$$
d(S x, F S x) \leq \alpha d(T x, G T x)+(1-\alpha) d(A, B) .
$$

Then, there exists $u \in A$ and $v \in B$ such that
$d(u, S u)=d(u, T u)=d(A, B)$
$d(v, F v)=d(v, G v)=d(A, B)$
$d(u, v)=d(A, B)$.
If (I, S) is ϕ-dominated by (I, T), where I is the identity mapping on B, then

$$
2 d(A, B)+\phi\left(2 d(A, B)+d\left(a, a^{\prime}\right)\right)-d\left(a, a^{\prime}\right) \geq 0
$$

whevever a^{\prime} is another common best proximity point of S and T.
Proof. Let x_{0} be an element in A. Since $F S(A) \subset G T(A)$, there exists an element $x_{1} \in A$ such that $F S\left(x_{0}\right)=G T\left(x_{1}\right)$. Again by $F S(A) \subset G T(A)$, we can choose an element $x_{2} \in A$ such that $F S\left(x_{1}\right)=G T\left(x_{2}\right)$. By continuing this process, we can construct a sequence $\left(x_{n}\right)$ such that $F S\left(x_{n}\right)=G T\left(x_{n+1}\right)$. By condition (2) there exists continuous non-decreasing function $\phi:[0,+\infty) \longrightarrow[0,+\infty)$, with $\lim _{n \Rightarrow \infty} \phi_{n}(t)=0$ for all $t \in$ $[0,+\infty)$, such that

$$
d\left(F S x_{n}, F S x_{n+1}\right) \leq \phi\left(d\left(G T x_{n}, G T x_{n+1}\right)\right) .
$$

Since $F S\left(x_{n}\right)=G T\left(x_{n+1}\right)$ so,

$$
\begin{aligned}
d\left(F S x_{n}, F S x_{n+1}\right) & \leq \phi\left(d\left(G T x_{n}, G T x_{n+1}\right)\right)=\phi\left(d\left(F S x_{n-1}, F S x_{n}\right)\right) \\
& \leq \phi^{2}\left(d\left(G T x_{n-1}, G T x_{n}\right)\right)=\phi^{2}\left(d\left(F S x_{n-2}, G T x_{n-1}\right)\right) \\
& \leq \phi^{3}\left(d\left(F S x_{n-3}, F S x_{n-2}\right)\right) \\
& \leq \ldots \leq \phi^{n}\left(d\left(F S x_{0}, F S x_{1}\right)\right) .
\end{aligned}
$$

Hence,

$$
d\left(F S x_{n}, F S x_{n+1}\right) \leq \phi^{n}\left(d\left(F S x_{0}, F S x_{1}\right)\right)
$$

taking $n \longrightarrow+\infty$ we have

$$
\lim _{n \rightarrow+\infty} d\left(F S x_{n}, F S x_{n+1}\right)=0 .
$$

Clime: $\left(F S x_{n}\right)$ is a cauchy sequence.
Let $\left(F S x_{n}\right)$ is not Cauchy. Then there exists $\epsilon>0$ and two sequences $(n(k))$ and $(m(k))$ of positive integers such that

$$
\begin{equation*}
n(k)>m(k)>k, d\left(F S x_{m(k)}, F S x_{n(k)-1}\right)<\epsilon \text { and } d\left(F S x_{m(k)}, F S x_{n(k)}\right) \geq \epsilon \tag{1}
\end{equation*}
$$

Using condition (2) and the fact that ϕ is a comparison function we obtain that
$d\left(F S x_{m(k)+1}, F S x_{n(k)}\right) \leq \phi\left(d\left(G T x_{m(k)+1}, G T x_{n(k)}\right)\right)=\phi\left(d\left(F S x_{m(k)}, F S x_{n(k)-1)}\right) \leq \phi(\epsilon)<\epsilon\right.$.
Taking $n \longrightarrow+\infty$ in (2) we get

$$
\epsilon=\lim _{k \rightarrow+\infty} d\left(F S x_{m(k)+1}, F S x_{n(k)}\right) \leq \phi(\epsilon)<\epsilon .
$$

This is a contradiction. Hence $\left(F S x_{n}\right)$ is Cauchy sequence. Obviosly, $\left(G T x_{n}\right)$ is also Cauchy. Because of the completeness of the space, there exists an element $x \in A$ such that $F S x_{n} \longrightarrow x$. By continuity of $F S$ and $G T$;

$$
\begin{aligned}
& (G T)(F S) x_{n} \longrightarrow G T x \\
& (F S)(G T) x_{n} \longrightarrow F S x .
\end{aligned}
$$

By condition (1), it follows that $G T x=F S x$. Put $a=G T x=F S x$. Then, by condition (1) and (2),

$$
\begin{aligned}
d(F S a, a) & =d(F S a, F S x) \\
& \leq \phi(d(G T a, G T x))=\phi(d(G T(F S x), a)) \\
& =\phi(d(F S(G T x), a))=\phi(d(F S a, a)) .
\end{aligned}
$$

Since ϕ is comparison by Remark 1 we get

$$
d(F S a, a)=0 \Longrightarrow F S a=a .
$$

Further, $G T a=(G T)(F S x)=(F S)(G T x)=F S a=a$. A similar argument can be given to assert that there exists an element $b \in B$ such that $S F b=T G b=b$. Also, since T commutes with the pair $(F, G), G T F b=F T G b=F b$. So,

$$
d(a, F b)=d(F S a, F S(F b)) \leq \phi(d(G T a, G T(F b)))=\phi(d(a, F b))
$$

Since ϕ is a comparison by Remark 1, it follows that $F b=a$. By the same argument we can show that $G b=a, S a=b$ and $T a=b$. Consequently, by condition (5) there exists $\alpha \in[0,1)$ such that

$$
d(a, b)=d(S a, F S a) \leq \alpha d(T a, G T a)+(1-\alpha) d(A, B)=\alpha d(a, b)+(1-\alpha) d(a, b)
$$

So $d(a, b) \leq d(A, B)$ and hence

$$
d(a, b)=d(A, B)
$$

Therefore,

$$
\begin{aligned}
& d(a, S a)=d(a, T a)=d(a, b)=d(A, B) \\
& d(b, F b)=d(b, G b)=d(a, b)=d(A, B)
\end{aligned}
$$

If (I, S) is ϕ-dominated by (I, T) and a^{\prime} is another common best proximity point of S and T, then

$$
\begin{aligned}
d\left(a, a^{\prime}\right) & \leq d(a, S a)+d\left(S a, S a^{\prime}\right)+d\left(a^{\prime}, S a^{\prime}\right) \\
& \leq 2 d(A, B)+\phi\left(d\left(T a, T a^{\prime}\right)\right) \\
& \leq 2 d(A, B)+\phi\left(2 d(A, B)+d\left(a, a^{\prime}\right)\right)
\end{aligned}
$$

and hence

$$
2 d(A, B)+\phi\left(2 d(A, B)+d\left(a, a^{\prime}\right)\right)-d\left(a, a^{\prime}\right) \geq 0
$$

Example 1. Consider the space of real numbers with the Euclidean meteric. Let $A=$ $[3,+\infty)$ and $B=(-\infty,-3]$ Suppose that $S, T: A \rightarrow B, F, G: B \rightarrow A$ and $\phi, \psi:$ $[0,+\infty) \rightarrow[0,+\infty)$ are defined by

$$
\begin{gathered}
S(x)=-3 ; \quad T(x)=-x ; \quad F(y)= \begin{cases}3 & y \in \mathbb{Z} \\
4 & y \in \mathbb{R} \backslash \mathbb{Z}\end{cases} \\
; G(y)=-y \quad \text { and } \quad \phi(x)=\psi(x)=\frac{x}{1+x}
\end{gathered}
$$

It is easy to check that $d(A, B)=6$ and the mapping S, T, F and G are satisfied the conditions in Theorem 1 and

$$
\begin{gathered}
d(3, S(3))=d(3, T(3))=d(A, B) \\
d(-3, F(-3))=d(-3, G(-3))=d(A, B) \\
d(3,-3)=d(A, B)
\end{gathered}
$$

If S and T are self-mappings on X and F and G are identity mappings on X, then Theorem 1 yields the following common fixed point theorem for pairs of commuting selfmappings.

Corollary 1. Let X be a complete metric space. Moreover, assume that $S: X \longrightarrow X$, $T: X \longrightarrow X$ are continuous functions satisfying the following conditions:
(1) S commutes with T.
(2) There exists comparison function ϕ such that

$$
d(S x, S y) \leq \phi(d(T x, T y)) \quad \text { for all } x, y \in X
$$

(3) $S(X) \subset T(X)$.

Then the pair (S, T) has a unique common fixed point.

References

[1] M. A. Al-Thagafi, N. Shahzad, Convergence and existence results for best proximity points, Nonlinear Analysis: Theory, Methods \& Applications, 70 (10), 3665-3671, 2009.
[2] A. Abkar, M. Gabeleh, Best proximity points for asymptotic cyclic contraction mappings, Nonlinear Analysis: Theory, Methods \& Applications, 74, 7261-7268, 2011.
[3] A. Ninsri, W. Sintunavarat, Toward a generalized contractive condition in partial metric spaces with the existence results of fixed points and best proximity points, Journal of Fixed Point Theory and Applications, 20, 2018.
[4] S. Radenović, A note on fixed point theory for cyclic ϕ-contractions, Fixed Point Theory and Applications, 2015.
[5] S. Sadiq Basha, Best proximity point theorems, Journal of Approximation Theory, 163, 1772-1781, 2011.
[6] H. Isik, M. S. Sezen, C. Vetro, φ-best proximity point theorems and applications to variational inequality problems, Journal of Fixed Point Theory and Applications, 19, 3177-3189, 2017.
[7] S. Sadiq Basha, N. Shahzad, Common best proximity point theorems: Global minimization of some real-valued multi-objective functions, Journal of Fixed Point Theory and Applications, 18 (3), 587-600, 2016.
[8] S. Sadiq Basha, N. Shazad, R. Jeyaraj, Common best proximity point: Global optimizations of multi-objective functions, Applied Mathematics Letters, 24, 883-886, 2011.
[9] S. Sadiq Basha, P. Veeramani, Best proximity pair theorems for multi functions with open fibres, Journal of Approximation Theory, 103, 119-129, 2000.
[10] V. Sankar Raj, P. Veeramani, Best proximity pair theorems for relatively nonexpansive mappings, Applied General Topology, 10 (1), 21-28, 2009.
[11] N. Shahzad, S. Sadiq Basha and R. Jeyaraj, Common best proximity points: Global optimal solutions, Journal of Optimization Theory and Applications, 148, 69-78, 2011.

[^0]: *Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v11i3.3286
 Email addresses: m.iranmanesh2012@gmail.com (M. Iranmanesh), alisanatee62@gmail.com (A. Ganjbakhsh Sanatee)

