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Abstract. A dynamical system is considered. This dynamical system is a flow of clusters with the
same length l on contours of unit length connected into open chain. A similar system, contours of
which are connected into closed chain, was considered earlier. It has been found that, in the case
of closed chain of contours, the dynamical system has a spectrum of velocity and mode periodicity
consisted of more than one component. In this paper, it has been shown that, in the case of open
chain, the spectrum of cluster velocity and mode periodicity contains only one component. The
conditions of self-organization and the dependence of cluster velocity on load l is developed.
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1. Introduction. Chains, clusters, local flows

We consider a system of N contours C1, . . . , CN (N ≥ 1). Each contour is a circle of
unit length. On each contour, from the Eastern pole counterclockwise, a coordinate system
is given. On the contour Ci, coordinates of points are xi ∈ [0, 1), i = 1, . . . , N. Contours
C1, . . . , CN form a graph (chain). The point of the contour Ci(0) with coordinate 0 is
identified with the point Ci+1(1/2), i = 1, . . . , N − 1. These points are called nodes of the
contour network. We denote by (Ci, Ci+1) the common node of contours Ci and Ci+1. A
fragment of a contour, which conserves the length and can move, is called a cluster. We
consider a system with one cluster of length l on each contour.

A state of the system is admissible if, for this state, no node is covered by more than
one cluster. In the general state, each cluster moves counterclockwise, uniformly with
velocity equal to 1. We shall call such movement local. Simultaneous movement of more
than one cluster through a node is forbidden. If cluster B comes to a node when the
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cluster A of neighboring contour moves through the node, then the cluster B stops, and
its movement does not continue while the cluster A covers the node. If two clusters come
to the node (Ci, Ci+1) simultaneously, then the cluster of contour Ci (cluster Cli) moves
through the node, and the cluster Cli+1 stops (left-priority conflict resolution rule), i.e.,
the cluster Cli+1 moves through the node first. The delay of the cluster A is the duration
of time interval such that, in this interval, the cluster A waits the node release.

The state of the system at the time t is a vector α(t) = (α1(t), . . . , αN (t)), where αi(t)
is the coordinate of the frontal point of cluster Cli, i = 1, . . . , N, Fig. 1. The back point
of cluster Cli is located in the point with coordinate αi(t) − l (substraction modulo 1),
i = 1, . . . , N.
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Figure 1: State (0, 0, 0.9, 0.8)

2. Formulation of problem. Spectra of flows on graphs

2.1. Wreaths of trajectories and spectra of velocities

The considered system is deterministic. The system behavior in the future is de-
termined fully by the state α(t0) at current time t0. Each admissible state generates a
trajectory α(t) in the space of admissible states. Two trajectories αA(t) and αB(t) can
coincide at the some moments tA and tB. A wreath is a batch of trajectories such that
any two trajectories join after a finite time interval. A pair of states on the wreath can be
classified as recurrent if the system comes after a finite time from any of these states to the
other state. A pair of states is called dependent if only from one of the states it is possible
to come to the other state. A pair of states is called independent if from none of these
states it is possible to come to the other state. Any recurrent pair of states form a cycle.
The space of admissible states is divided into non-intersecting sets, which are trajectories,
continuous modulo 1. These trajectories are piecewise linear functions with inclination 0
or 1. The system is in the the state of free movement at the time t0 if at any time t ≥ t0 all
clusters move without delays. Self-organization is the property of the dynamical system
such that the system comes to the state of free movement after a finite time interval from
any admissible initial state. It is interesting to study the average velocity of cluster on
each contour and the average velocity of all clusters of the system. The average velocity
of the cluster Ci is defined as the limit, if this limit exists,

vi = lim
T→∞

Si(T )

T
,
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where Si(T ) is the total distance such that the cluster passes this distance in the time
interval (0, T ), i = 1, . . . , N. The average value of clusters velocities is called the average
velocity of system clusters in time.

In general case, partial self-organization takes place, [1]–[4]. The system comes to the
state of free movement from some initial conditions. From the other admissible initial
conditions, the free movement is not reached and the movement is characterized by the
velocity less the 1. It is possible that the self-organization does not take place for any
initial states. The set of admissible velocity values, for fixed values of system parameters
and different initial states is called the spectrum of system velocities.

The following problems are interesting for research. Is the spectrum of velocities a
countable or continual set? Whether the trajectory of the process in the system state
space is repeated cyclicly, and therefore the average distance covered by clusters per time
unit, reaches a limit value, or the trajectory of the process in the system state space is
an attractor and the average distance covered by clusters per time unit tends to a limit
value? Whether the average velocity of each cluster is the same or the average velocities of
different clusters can be different? The same value of the average velocity can correspond
to the different cyclic trajectories in the system state space. How many possible cyclic
trajectories correspond to the fixed value of velocity?

Thus the study of systems, considered in [1]–[4], leads to the concept of the spectrum
of limit cyclic trajectories in the state space and the spectrum of velocities corresponding
to these trajectories.

2.2. Chain of discrete binary contours

A closed chain of contours was studied in [4]. Each contour has common points (nodes)
with two neighboring contours. There are two cells (the lower cell - cell 0, and the upper
cell - cell 1) and a particle on each contour. In every discrete moment, the particle is
located in upper (lower) cell and, if this is allowed, moves counterclockwise to the lower
(upper) cell, Fig. 2.

Figure 2: The binary vector 110010

Particles cannot move through the common node simultaneously. If the particle, lo-
cated to the right of the node, tries to move from the upper cell to the lower cell, and the
particle, located to the left of the node, tries to move from the lower cell to the upper cell,
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then there is a conflict. Assume that, in the case of conflict, the particle, located to the
left of the node, moves, and the particle, located to the right of the node, does not move.

2.2.1. Open chain of contours with binary states

It is obvious that, in the case of open chain of contours, Fig. 3, for any of 2N initial states
(all possible states are admissible in this case), no more than after time 2N all particles
will move without delays.

Figure 3: The state 110010 on an open chain

2.2.2. Closed chain with binary states

The following has been proved in [4].

(i) The dynamical system is equivalent to elementary cellular automaton CA 063 in
terms of Wolfram classification, [5]. States of the system are cyclic vectors with N
coordinates. The ith coordinate of vector equals 0 if the particle is in the cell 0, and
equals 1 if the particle is in the cell 1. At any discrete moment, the value of each
coordinate is changed except the case in which the value of this coordinate equals 1,
and the value of the neighboring coordinate on the left equals 0.

(ii) The space of states is divided into the set of recurrent states and the set of nonrecur-
rent states. A state is non-recurrent if and only if the vector of this state contains
at least one coordinate such that the value of this coordinate is equal to 1, and the
values of neighboring coordinates on the left and on the right are equal to 0.

(iii) The system can be in a non-recurrent state only at the initial moment.

(iv) Each recurrent state is repeated after no more than 2N steps, Fig. 4.

(v) The vector of state is shifted onto one position to the right for every two steps.

(vi) The quantity of sign changes in the state vector, divided by 2, is called the system
variation. The variation decreases if the system moves through a non-recurrent state
to a recurrent state, and does not change if the system is in the recurrent state.

(vii) If the system is in a recurrent state, then the variation is not more than [N/3] -
integer part of N/3.
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Figure 4: A cyclic trajectory in the state space

(viii) If the system is in a recurrent state at initial moment and the variation is equal to
k, then the average velocity of particles is equal to (N − k)/N, k = 0, 1, . . . , [N/3].

(ix) If the initial state is non-recurrent, then the average velocity of particles is equal to
(N−k)/N, where k is the value of variation at the next moment, k = 0, 1, . . . , [N/3].

(x) If k is an integer value and satisfies the condition

0 ≤ k ≤ [N/3],

then there exists an initial state such that the average velocity equals (N − k)/N.

(xi) For any initial condition, the value of average velocity satisfies the above conditions.

2.2.3. The open chain with two contours with discrete states

A two contour system with a common point (node) is studied in [1], [2]. There are fixed
quantities of cells and particles on each contour. Particles are located in cells and move
in accordance with a given rule. In particular, this system can be an open chain with two
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contours and one cluster of particles on each contour. If the contour length (the quantity
of cells on the contour) is the same for the contours, then the velocity of particles does not
depend on the initial state, i.e., if the system parameters are fixed, the spectrum of possible
states contains only one value. It is noted in [2], that the average velocity of clusters can
depend on initial state if the lengths of clusters are different.

2.2.4. Closed chain of three contours with continual clusters

A closed dynamical chain of contours is considered in [3]. A cluster of the same length
moves on each contour. This system is characterized by continuous state space and time.
Each contour has common nodes with two neighboring contours. It is found that, after
a finite moment the system is in a set of recurring states, and the average velocity of
clusters depends, in general, on the set in which the system is. In what set of recurring
states system will be, depends on the initial state. It has been found that the spectrum
of velocity values is finite. If the length of a cluster is more than a half, then, for any
quantity of contours, all clusters stop (collapse) after a finite time. Therefore, in this case,
the spectrum of velocities contains only the value 0. In the case of three clusters, it has
been proved that, if the length of cluster is not more than 1/6, then the system comes to
the state of free movement from any initial state, i.e., the spectrum of velocities contains
only the value 1. If the cluster length l satisfies the condition 1/6 < l < 1/2, then the
spectrum contains the value 1 and one value not equal to 1.

Hypotheses, characterizing the motion on the closed chain of contours, have been
formulated in [3]. If the quantity of contours is not less than 6, then the spectrum of
velocities can contain more than one value. It has been proved that, for any arbitrarily
small value, there exist values of the quantity of contours and the initial state such that
the system does not come to the states of free movement.

2.2.5. Open chain of contours with uniform load

In this paper, we consider a one-dimensional system of contours. This system differs from
the closed chain in that the leftmost (rightmost) contour has common node only with one
neighboring contour (open chain of contours). We have proved that for an open chain,
as for a closed chain, after a time interval, the same set of states is repeated with a
period. For the open chain, this set is determined by the quantity of contours and the
cluster length and does not depend on the initial states. Hence the spectrum of velocities
of clusters contains only one value if the quantity of contours and the cluster length are
fixed. We have found a formula for the velocity of movement for fixed quantity of contours
and cluster length. Though contours differ in their location on the open chain, they move
with the same average velocity, i.e, the velocity of the cluster does not depend on the
distances to the ends of the chains.

The value

v =
v1 + · · ·+ vN

N
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is called the average velocity of movement in the network. It is obvious that the lower
bound of the average velocity on the time interval T is more than 0 for any l, 0 < l < 1.

Proposition 1. At every moment t, at least one cluster moves with velocity 1.

Proof. If all clusters do not move at the moment t, then coordinates of their frontal
points are equal to 0 or 1/2, and, in this pair, the left cluster moves. The first coordinate
of the vector of the initial state is equal 0, and the last coordinate of the vector of the
initial state is equal 1/2. Then there exists a pair 0, 1/2.

3. Formulation of maim results

Let us formulate main results that will be proved in this paper.

Theorem 1. If

l ≤ 1

2
,

then there is one point of the spectrum of the system

v = 1.

The system reaches the state of free movement after a finite time interval.

Theorem 2. If

l ≥ 1

2
,

then there is one point of the spectrum

v =
1

2(N − 1)l −N + 2
,

and, from a finite moment, a cyclic trajectory in the state space is repeated. The trajectory
does not depend on the initial state. The point (0, . . . , 0) belongs to this trajectory.

4. Potential of delays and its properties

4.1. Definitions of delay potential and one-sided potential of delay

By definition, put

di(t) =

{
1
2 + αi(t), 0 ≤ αi(t) <

1
2 ,

αi(t)− 1
2 ,

1
2 ≤ αi(t) < 1.

Now we introduce the following concept.
The measure of time inside the segment t ∈ [0, 1] is called the potential of delays in the

node (Ci, Ci+1) if, during this time, clusters Cli, Cli+1 move through this node, provided
that clusters can move through the node simultaneously.
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Suppose that simultaneous movement of clusters through the node is possible.
By Hi,i+1 we denote the potential of delays in the node (Ci, Ci+1)
It is readily seen that, dependent on values l, αi, di+1, one of the following three

available alternatives is realized.

(i) Clusters Cli, Cli+1 move through the node simultaneously on one time segment
belonging to the segment [0, 1].

(ii) Clusters Cli, Cli+1 move through the node simultaneously on two time segments
belonging to [0, 1]. The first of these segments begins when one of these two clusters
begins to move through the node. The second segment begins when the other cluster
begins to move through the node.

(iii) Clusters Cli, Cli+1 cannot move through the node simultaneously on the time seg-
ment [0, 1].

We shall give the following definition.
We assume again that simultaneous movement of clusters Cli and Cli+1 through the

node on the time segment [0, 1] is possible. The duration of time segment the potential
of the cluster Cli delay concerning the cluster Cli+1 if these clusters move through the
node simultaneously during this segment such that, at the initial moment of this interval,
the cluster Cli comes to the node, and the cluster Cli+1 moves through the node, if there
exists such time segment of non-zero duration. We denote the potential of the cluster Cli
delay concerning the cluster Cli+1 by hi,i+1. If such time interval does not exist, then we
suppose hi,i+1 = 0.

Similarly, the duration of time segment is called the potential of the cluster Cli delay
concerning the cluster Cli+1 if these clusters move through the node simultaneously during
this segment such that, at the initial moment of this interval, either the cluster Cli+1 comes
to the node, and the cluster Cli+1 moves through the node, or clusters Cli, Cli+1 come
to the node simultaneously, if there exists such time segment of non-zero duration. We
denote the potential of the cluster Ci+1 delay concerning the cluster Ci by hi+1,i. If such
time interval does not exist, then we suppose hi+1,i = 0.

Now we shall give a formal definition of the delay potential and one-sided potentials.
Suppose, at the moment t = 0, coordinates of frontal points of clusters Cli, Cli+1 are

αi(0) = αi and di+1 = di+1(0). Assume that clusters move free and can pass through the
node (Cli, Cli+1) simultaneously.

If
0 ≤ αi < l, (1)

then the cluster Cli covers the node (Ci, Ci+1) on time segments [0, l−αi] and [1−αi, 1].
If

l ≤ αi < 1, (2)

then the cluster Cli covers the node (Ci, Ci+1) on time segment [1− αi, 1− αi + l].
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If
0 ≤ di+1 < l, (3)

then the cluster Cli covers the node (Ci, Ci+1) on time segments [0, l−di+1] and [1−di+1, 1].
If

l ≤ di+1 < 1, (4)

then the cluster Cli covers the node (Ci, Ci+1) on the segments [1− di+1, 1− di+1 + l].
If (1) and (4) and conditions

di+1 − αi > 1− l, (5)

di+1 − αi ≥ l (6)

are fulfilled, then clusters Cli and Cli+1 cover the node simultaneously on the segment
[1− di+1, l − αi]. In this case,

Hi,i+1 = l + di+1 − αi − 1.

hi,i+1 = 0, hi+1,i = l + di+1 − αi − 1, i = 1, . . . , N − 1.

If conditions (1), (4), (5) are fulfilled, and the condition (6) is not fulfilled (this case is
possible only if l > 1

2), then clusters Cli, Cli+1 cover the node (Ci, Ci+1) simultaneously
on time segment [1− di+1, l − αi] and [1− αi, 1− di+1 + l]. In this case,

Hi,i+1 = 2l − 1,

hi,i+1 = l − di+1 + αi, hi+1,i = l − αi + di+1 − 1.

If conditions (1), (4), (6) are fulfilled, and the condition (5) is not fulfilled (this case
is possible only if l ≤ 1

2), then clusters Cli, Cli+1 cannot move through the node simulta-
neously. In this case,

Hi,i+1 = 0,

hi,i+1 = hi+1,i = 0.

If conditions (1), (4) are fulfilled, and conditions (5), (6) are not fulfilled, then clusters
Cli, Cli+1 move through the node (Ci, Ci+1) on time segment [1−αi, 1− di+1 + l]. In this
case,

Hi,i+1 = l − di+1 + αi,

hi,i+1 = l − di+1 + αi, hi+1,i = 0.

If conditions (2), (3) and
αi − di+1 > 1− l (7)
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αi − di+1 ≥ l, (8)

are fulfilled, then clusters Cli, Cli+1 cover the node on the segment [1 − αi, l − di+1]. In
this case,

Hi,i+1 = l + αi − di+1 − 1,

hi+1,i = 0, hi,i+1 = l + αi − di+1 − 1.

If conditions (2), (3), (7) are fulfilled, and the condition (8), is not fulfilled (this is
possible only if l > 1

2), then clusters Cli, Cli+1 cover the node (Ci, Ci+1) on time segments
[1− αi, l − di+1] [1− di+1, 1− αi + l]. In this case,

Hi,i+1 = 2l − 1,

hi,i+1 = l − di+1 + αi − 1, hi+1,i = l − αi + di+1.

If conditions (2), (3), (8) are fulfilled, and condition (7) is not fulfilled (this is possible
only if l ≤ 1

2), then clusters cannot cover the node simultaneously. In this case,

Hi,i+1 = 0,

hi,i+1 = hi+1,i = 0.

If conditions (2), (3) are fulfilled, and conditions (7), (8) are not fulfilled, then clusters
Cli, Cli+1 cover the node (Ci, Ci+1) on time segment [1− di+1, 1− αi + l]. In this case,

Hi,i+1 = l − αi + di+1,

hi,i+1 = 0, hi+1,i = l − αi + di+1.

Suppose conditions (2), (4) and one of the equalities

αi ≥ di+1 + l

and
di+1 ≥ αi + l

are fulfilled. Then the clusters Cli and Cli+1 cannot move through the node simultane-
ously. In this case,

Hi,i+1 = 0,

hi,i+1 = hi+1,i = 0.

If conditions (2), (4) and
αi < di+1 < αi + l

are fulfilled, then clusters move through the node (Ci, Ci+1) simultaneously on the time
segment (1− αi, 1− di+1 + l). In this case,

Hi,i+1 = αi − di+1 − l,
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hi,i+1 = αi − di+1 − l, hi+1,i = 0.

If conditions (2), (4) and
di+1 ≤ αi < di+1 + l

are fulfilled, then clusters Cli and Cli+1 move through the node simultaneously on time
segment [1− di+1, 1− αi + l]. In this case,

Hi,i+1 = di+1 − αi − l,

hi,i+1 = 0, hi+1,i = di+1 − αi − l.
If the conditions (1), (3) are fulfilled simultaneously, then the state is not admissible.

4.2. Definition of system potential of delays

The sum of potentials of delays in the nodes

H(t) =
N−1∑
i=1

Hi,i+1(t) (9)

is called the potential of delays of the system.

4.3. Properties of delay potential in node and one-sided potentials

Suppose, at time t0, the potential of delay of the cluster Cli concerning the cluster
Cli+1 positive, hi,i+1 > 0. Then a delay of the cluster Cli at the node (Ci, Ci+1) begins at
the time t = 1 − αi(t0) if there were no delays earlier, i = 2, . . . , N. The duration of this
delay is hi,i+1.

Similarly, if hi+1,i > 0, then a delay of the cluster Cli+1 begins at the time t =
1 − di+1(t0) if there were no delays earlier, i = 2, . . . , N. The duration of this delay is
hi+1,i.

Proposition 2. (i) It is true for any t ≥ t0

Hij(t) = hij(t) + hji(t), (10)

H(t) =
N−1∑
i=1

(hi,i+1(t) + hi+1,i(t)). (11)

(ii) If l ≤ 1
2 , then at least one of the values hi,i+1(t) and hi+1,i(t) equals 0 for any t ≥ 0,

i = 1, . . . , N − 1.

Proof. Equation (10) follows from definitions of delay potential in a node and one-sided
potential of delays. All versions of relations between system parameters are considered.

Equation (11) follows from (9) and (10).
The second statement of Proposition 2 is also proved on the basis of definition. Propo-

sition 2 has been proved.
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4.4. Properties of the system delay potential

Let us prove properties of the system delay potential.

Proposition 3. If H(t) = 0, then the system is in the state of free movement at time t.

Proof. If H(t) = 0, then Hi−1,i(t) = 0, i = 1, . . . , N. Proposition 3 follows from the
definition and invariance of the clusters intersection measure with respect to the same
shift.

Proposition 4. If there is a delay in the node (Ci−1, Ci), then Hi−1,i(t) does not increase
at t ≥ t0. If, in addition l ≤ 1

2 , then Hi−1,i(t) decreases strictly in a neighborhood of t ≥ t0.

Proof. Proposition 4 follows from the definitions of delay potential in node and one-
sided potentials.

Proposition 5. The potential of delays is non-increasing function of time for any value
of l, 0 < l < 1.

Proof. Suppose l ≤ 1
2 , and the function H(t) increases at time t. It is possible only

if at least one term on the right side of (11) increases. Assume that the term hi0,i0+1(t)
increases. The term can increase only with velocity 1. This term can increase only if the
cluster Cli0 moves and the cluster Cli0+1 does not move. If the cluster Cli0+1 is at the
node (Ci0 , Ci0+1), then the term hi0,i0+1(t) equals 0 and does not increase. Therefore the
cluster Cli0+1 does not move and is located at the node (Ci0+1, Ci0+2). The cluster Ci0+2

moves through the node. Hence, hi0+1,i0+2(t) decreases with velocity 1 at time t. Similarly,
it is proved that, if, at the moment t0, hi0,i0−1(t0) increases, then hi0−1,i0−2(t0) decreases
at this moment. Therefore each increasing term on the right side of (11) correspond to
a term, decreasing with the same velocity, and different terms corresponds to different
decreasing terms. Thus Proposition 5 is true in the case of l ≤ 1

2 .
Assume that l > 1

2 . We shall prove that, in this case, the potential of delays does not
increase in any node, and therefore the system potential H(t) does not also increase. If
at the time t clusters Cli0 , Cli0+1 move or both the clusters do not move, then the delay
potential in the node (Ci0 , Ci0+1) does not change at the time t, i0 = 1, . . . , N − 1. The
potential of delays can change at moment t. The delay potential can change at the moment
t only if one of two clusters move.

Assume that the cluster Cli0 moves, and the cluster Cli0+1 does not move (the case
in that only the cluster Cli0+1 moves can be considered similarly). Then the coordinate
of the frontal coordinate of the cluster Ci0+1 is equal to 1

2 and 0. Suppose the coordinate
of frontal point of the cluster Cli0+1 is equal to 1

2 . Since the cluster Cli0+1 does not move
the value αi0(t0) satisfies the condition 0 ≤ αi0(t0) ≤ l. Without loss of generality we
assume that t0 = 0 and αi0(t0) = αi0,0. If both the clusters move, then the cluster Cli0
move through the node (Ci0 , Ci0+1) on time segments (0, l − αi0,0) and (1− αi0,0, 1), and
the cluster Cli0+1 move through the node on the segment (0, l). Hence the clusters Cli0 ,
Cli0+1 move through the common node simultaneously on the segment (0, l − αi0,0) and,
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if αi0,0 > 1− l, on the segment (1−αi0,0, l) too. From this follows that the delay potential
does not increase with respect to αi0,0, and therefore the delay potential does not increase
with respect to time.

Proposition 6. Suppose l ≤ 1
2 . If a delay of cluster C1 or cluster ClN takes place in the

time interval (t, t+ a), then H(t+ a) = H(t)− a.

Proof.
Assume that the cluster ClN does not move in the time interval (t, t+ a). The case in

that the cluster Cl1 does not move can be considered similarly. We have

hN,N−1(t+ a) = hN,N−1(t)− a, hN−1,N (t+ a) = hN−1,N (t) = 0. (12)

In accordance with Proposition 5 the value of H does not increase if the system comes
from the state

(α1(t), . . . , αN (t))

to the state
(α1(t+ a), . . . , αN (t+ a)).

Suppose the value of H does not change, i.e., H(t+ a) = H(t). Then, in accordance with
(12),

N−2∑
i=1

(hi,i+1(t+ a) + hi+1,i(t+ a)) >
N−2∑
i=1

(hi,i+1(t) + hi+1,i(t)). (13)

Using (13), we obtain that, for a system with N − 1 contours such that it differs from
the system under consideration by the absence of the contour CN , the potential of delays
increases if this system comes from the state

(α1(t), . . . , αN−1(t))

to the state
(α1(t+ a), . . . , αN−1(t+ a)).

However, in accordance with Proposition 5, the potential of delays cannot increase. The
contradiction proves that, if the cluster CLN does not move in the time interval (t, t+ a),
then the potential of delays increases in this interval with the unit velocity. In the case of
the cluster Cl1 movement, Proposition 5 is proved similarly.

Proposition 7. Suppose l < 1
2 , and, at time t0, a delay of the cluster ClN−1 at the node

(CN−1, CN−2) ends (or a delay of the cluster Cl2 at the node (C2, C3) ends), and, at
the moment t1 > t0, another delay of this cluster begins. The latter delay ends, at the
moment t = t1 + a, and the total duration of the cluster ClN−1 (the delay of the cluster
Cl2) in the time interval (t0, t1) (denote this duration by b) is not more than 1− 2l. Then
H(t1 + a) ≤ H(t0)−min(a+ b, 1− 2l).
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Proof. We have
αN (t0) = αN−1(t0) + l

(modulo 1). While the total delay of the cluster ClN−1, after the moment t0, is not more
than 1 − 2l, the cluster ClN−1 can be delayed at the node (CN−2, CN−1), and clusters
Cl1, . . . , ClN−1 behave in such a way that if the contour CN is absent. Taking into account
Proposition 6, we get Proposition 6 in the case of cluster ClN−1. Similarly, the proposition
is proved in the case of the cluster Cl2.

Remark 1. Although the potential of delays is non-increasing function in time, the quan-
tity of non-moving particles is not in general non-increasing function in time.

5. Criterion for the system to enter the state of free movement

Theorem 3. If

l <
1

2
, (14)

then the system comes to the state of free movement after a finite time interval from any
initial state.

If

l >
1

2
, (15)

then the system does not come to the state of free movement after a finite time interval
from any initial state.

Proof. If (17) is fulfilled, then, in accordance with Theorem 4 (Section 6), the average
velocity of clusters is not equal to 1, and therefore the system does not come to the state
of free movement.

We shall prove by induction on N that (14) is sufficient for self-organization. The
statement is true for N = 1.

Suppose that the statement is true for N = K − 1, K ≥ 2. Consider the case l < 1
2 .

The system comes to the state of free movement after a finite time. From Propositions 3–7
follows that either the potential of delays becomes equal to 0 and the system comes to
the state of free movement or the total delay of the cluster ClK−1, on all infinite time
interval from a moment, does not exceed 1 − 2l, and, from this moment, the presence
of the cluster ClK does not affect behavior of the system. Hence, in accordance with
induction statement, the system comes to the state of free movement after a finite time
interval. Thus Theorem 3 is true in the case l < 1

2 . Theorem 3 has been proved.

6. Behavior of system in case l > 1
2

Theorem 4. Let (15) be fulfilled. Then, from a finite time, the system passes, in the
system state space, the same cyclic trajectory, containing the state (0, 0, . . . , 0), and the
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system states are repeated with the period

T = 2(N − 1)l −N + 2. (16)

After a moment such that at this moment periodic movement begins, the potential of
delays equals

H(t) = 2(N − 1)l −N + 1. (17)

The average velocity equals

v1 = · · · = vN =
1

2(N − 1)l −N + 2
. (18)

Proof. If (16) is fulfilled, the clusters Cl1 Cl2 cannot move through the node (C1, C2)
without delays. Indeed, if both the clusters move through the node (C1, C2) without
delays, then each of clusters Cl1, Cl2 covers the node during l time units. Therefore the
inequality 2l ≤ 1 is fulfilled. However this contradicts (17).

If, at the moment t0, a delay of the cluster Cl2, then there exists a moment t1 ≥ t0
such that

α1(t1) = l, α2(t1) =
1

2
. (19)

If a delay of the cluster Cl1 begins at the moment t0, then, at the moment of the end
of this delay, the system comes to the state such that α1(t1) = 0, α2(t1) = 1

2 + l. After 1− l
time units after the end of this delay, a delay of the cluster Cl2 begins. At the moment of
the end of the latter delay, the system comes to the state such that (19) is fulfilled.

Hence, from any initial state, the system comes to a state such that (19) is fulfilled.
Let the system is at the time t1 in the state(

l,
1

2
, α3(t1), . . . , αN (t1)

)
.

Since α2(t1) = l, i.e., the cluster Cl2 is at the node (C2, C3) at the time t1, then, taking
into account that l > 1

2 , we have that, at this moment, the cluster Cl2 covers the node
(C2, C3), the cluster Cl3 covers the node (C3, C4), etc. Similarly, the cluster Cli covers
the node (Ci, Ci+1) i = 4, . . . , N − 1, at time t1. For state to be admissible, it is necessary
that

l − 1

2
≤ αi(t1) ≤

1

2
, i = 3, . . . , N. (20)

In accordance with (20), the frontal point of the cluster Cli comes to the node (Ci, Ci+1),
not earlier than at the time t1 + 1

2 , and the cluster Cli+1 comes to the node (Ci, Ci+1) not
later than at the time T1 + 1

2 − l. On the other hand, the cluster Cli+1, beginning to pass
through the node (Ci, Ci+1) at the moment t2(i) such that αi+1 = 1

2 + l, releases the node
(Ci, Ci+1) later than the cluster Cli comes to this node, i = 1, . . . , N − 1. Stopping at the
node (Ci, Ci+1), the cluster Cli continues to hamper the movement of the cluster Cli−1.
Therefore there exists a moment t0 such that α1(t) = · · · = αN−1 = 0, αN ≥ 1

2 , and only
the cluster ClN moves at the time t0. Thus there exists a moment t = a such that
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α1(a) = · · · = αN−1(a) = 0. (21)

Since, only on the contour ClN , there is no node at the point 0, only the ClN moves in
the time interval

(
a, a+ l − 1

2

)
. Movement of the cluster ClN−1 resumes at the moment

t = a+ l− 1
2 . Movement of the cluster Cli resumes at the moment t2(i) = a+(N−i)(l− 1

2),
i = 1, 2, . . . , N − 1. All clusters, except the cluster Cl1, coming to the point 1

2 , stops
and waits for the node release. The cluster Cl1 comes to the point 1

2 last at the time
t = a+ 1

2 + (N − 1)
(
l − 1

2

)
. At this moment, the system is in the state

α0

(
a+

1

2
+ (N − 1)

(
l − 1

2

))
= α1

(
a+

1

2
+ (N − 1)

(
l − 1

2

))
= · · · =

= αN−1

(
a+

1

2
+ (N − 1)

(
l − 1

2

))
=

1

2
.

Hence, after the time t = a, all clusters pass half of the circle in time interval of dura-
tion 1

2 + (N − 1)
(
l − 1

2

)
. After new interval of the same duration, the system returns

to the state (21), at which the system was at the time t = a, and, in this interval
the movement of the clusters resumes in inverse order. Therefore the period is equal
to 2

(
1
2 + (N − 1)

(
l − 1

2

))
= 2(N − 1)l − N + 2, i.e., (16) is fulfilled. Duration of the

cluster Cli delay at the point 0 equals (N − 1 − i)
(
l − 1

2

)
, i = 1, . . . , N − 1, and total

delay of each cluster during the period is equal to (N − 1)(2l − 1) = 2(N − 1)l −N + 1.
Thus the average velocity of each cluster equals

v1 = · · · = vN = 1− 2(N − 1)l −N + 1

2(N − 1)l −N + 2
=

1

2(N − 1)l −N + 2
,

i.e., (18) is fulfilled.
It is proved by direct consideration that at the time t = a, and therefore, in accordance

with Proposition 5, at any time t ≥ a, the potential of delays is calculated by (17). This
completes the proof of Theorem 4.

Remark 2. In accordance with (18), if N is fixed, the average velocity of the cluster is
a continuous function on l, and this velocity tends to 1

N as l → 1. If l is fixed, then the
average velocity of clusters tends to 0 as N →∞.

7. Conclusion

A deterministic dynamical system is considered. This system is an open chain of N
contours, on which clusters of length l move in accordance with specified rules.

In [3], a similar system was considered. The supporter of the system is a closed chain
of contours. It has been found in [3] that the dynamical system has a spectrum of velocity
and mode periodicity consisted of more than one component.

In this paper, it has been shown that, in the case of open chain, the spectrum of cluster
velocity and mode periodicity contains only one component. If l < 1/2, then the system
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comes to the state of free movement after a finite time interval from any initial state.
If l < 1/2, then the average velocity of clusters is less than 1. The dependence of this
velocity on N and l has been found. Properties of delay potential function are studied.
These properties are used in proof of self-organization conditions.
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