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1. Introduction

The importance of inequalities cannot be underestimated as they play central role in
mathematical analysis. In the 21st century, the AGM inequality has received much atten-
tion and has been applied in the areas of statistics and engineering. The AGM inequality
was first introduced by Lagrange (as cited in [1]). Since then the AGM inequality has
used to establish the relationships between the areas and perimeters of geometrical plane
figures, the so-called isoperimetric inequalities, for example, see authors in [2, 3]. However,
a substantial progress has been made to increase the understanding of the AGM inequality
by the researchers across the globe. In [4], the author proved the AGM inequality using
the heuristic method. The author in [5] observed that the mutatis mutandis’ method for
proving the AGM inequality was similar to the result obtained by Jacobsthal and Rado, for
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example, see [6]. In [7], the author proved the AGM inequality through Taylor’s theorem
about x = 1

2 by setting the function f(x) equals to the Heinz mean. Thus,

f(x) =
axb1−x + a1−xbx

2
, ∀ 0 ≤ x ≤ 1 and f ∈ C2[0, 1].

In a similar development, another refinement of the AGM inequality was given by the
authors in [8]. They obtained their result through Taylor’s theorem about x = 1

2 , by
setting

f(x) =
ax + a1−x

2
, ∀ 0 ≤ x ≤ 1 and f ∈ Ck(0,∞).

Notwithstanding, in [9], the authors proved the AGM inequality with the use of second
derivative test by setting

f(x) =
(x− a)2

a(x+ max{x, a})
+ lnx, ∀ a > 0 and f ∈ C2(0,∞).

Some researchers have applied AGM inequality to solve matrix algebra. For example,
see authors in [10, 11]. The author in [12] extended the AGM inequality to include the
harmonic mean called AGHM inequality.

In this paper, the AGM inequality is proved through the first product inequality in
a closed interval [0, 2], then through the second product inequality in a half open ended
interval [2,∞) and finally, through the binomial inequalities of rational numbers.

Definition 1. Let A be a linear vector space defined over the real number field R. A
scalar-valued function p : A×A→ R that associates with each pair a1, a2 of vectors in A
a scalar, denoted (a1, a2), is called an inner product on A if and only if

(i) (a1, a2) > 0 whenever a 6= 0, and (a1, a1) = 0 if and only if a1 = 0

(ii) (a1, a2) = (a2, a1), ∀ a1, a2 ∈ A

(iii) (αa1 + βa2, a3) = α(a1, a3) + β(a2, a3), ∀ α, β ∈ R, and a1, a2, a3 ∈ V . See [13]

Definition 2. Let A be a linear space over R. A norm on A is a real-valued function
‖ ·‖ : A→ [0,∞) such that for any a1, a2 ∈ A and α ∈ R the following conditions are met:

‖a‖ ≥ 0, and ‖a‖ = 0, iff a = 0

‖αa‖ = |α|‖ua‖, ∀ a ∈ A and α ∈ R

‖a1 ± a2‖ ≤ ‖a1‖+ ‖a2‖, ∀ a1, a2 ∈ A,

See [14].
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Definition 3 (First and Second Product Inequalities). Let a1 and a2 be any two positive
real numbers, then

(i)‖a1‖‖a2‖ ≤ ‖a1‖+ ‖a2‖, ∀a1, a2 ∈ [0, 2]. (1)

(ii)‖a1‖+ ‖a2‖ ≤ ‖a1‖‖a2‖, ∀a1, a2 ∈ [2,∞). (2)

See [15].

1.1. The Proof of the AGM Inequality through the First Product In-
equality

In this section, we obtain the AGM inequality through both the first and second
product inequalities by induction as follows. Multiplying both sides of inequality (1) by
(1− p) yields

(1− p)
(
‖a1‖‖a2‖

)
≤ (1− p)

{
‖a1‖+ ‖a2‖

}
, ∀ p ∈ [0, 1]. (3)

But, we see that:(
‖a1‖‖a2‖

)(1−p)
≤ (1− p)

(
‖a1‖‖a2‖

)
. (4)

Substituting inequality (4) into inequality (3) yields(
‖a1‖‖a2‖

)(1−p)
≤ (1− p)

(
‖a1‖+ ‖a2‖

)
. (5)

Setting p = 1
2 into inequality (5) yields(

‖a1‖‖a2‖
) 1

2 ≤ 1

2

(
‖a1‖+ ‖a2‖

)
⇒
( 2∏

i=1

ai

) 1
2 ≤ 1

2

2∑
i=1

ai.

We can see that for any three positive real numbers n = 3, the following inequality
holds.

‖a1‖‖a2‖‖a3‖ ≤ ‖a1‖+ ‖a2‖+ ‖a3‖, ∀a1, a2, a3 ∈ [0, 2]

⇒ (1− p)
(
‖a1‖‖a2‖‖a3‖

)
= (1− p)

(
‖a1‖+ ‖a2‖+ ‖a3‖

)
⇒
(
‖a1‖‖a2‖‖a3‖

)(1−p)
≤ (1− p)

(
‖a1‖+ ‖a2‖+ ‖a3‖

)
.

Setting p = 2
3 into the above inequality, we obtain(

‖a1‖‖a2‖‖a3‖
) 1

3 ≤ 1

3

(
‖a1‖+ ‖a2‖+ ‖a3‖

)
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⇒
( 3∏

i=1

ai

) 1
3 ≤ 1

3

3∑
i=1

ai.

For any number of positive real numbers n, the following inequalities are observed:

‖a1‖‖a2‖ . . . ‖an‖ ≤ ‖a1‖+ ‖a2‖+ . . .+ ‖an‖ ∀a1, a2, . . . , an ∈ [0, 2]

⇒ (1− p)
(
‖a1‖‖a2‖, . . . , ‖an‖

)
≤ (1− p)

(
‖a1‖+ ‖a2‖+ . . .+ ‖an‖

)
⇒
(
‖a1‖‖a2‖, . . . , ‖an‖

)(1−p)
≤ (1− p)

(
‖a1‖+ ‖a2‖+ . . .+ ‖an‖

)
.

Setting p = (n−1)
n into the above inequality yields(
‖a1‖‖a2‖, . . . , ‖an‖

) 1
n ≤ 1

n

(
‖a1‖+ ‖a2‖+ . . .+ ‖an‖

)
⇒
( n∏

i=1

ai

) 1
n ≤ 1

n

n∑
i=1

ai ∀ a1, a2, . . . , an ∈ [0, 2].

1.2. The Proof of the AGM Inequality through the Second Product In-
equality

In a similar development, we prove the AGM inequality through the second product
inequality. The AGM inequality is obtained by induction. Multiplying both sides of
inequality (2) by p yields

p
(
‖a1‖+ ‖a2‖

)
≤ p
{
‖a1‖‖a2‖

}
, ∀ p ∈ [0, 1]. (6)

But, we see that:(
‖a1‖‖a2‖

)p
≤ p
(
‖a1‖‖a2‖

)
. (7)

Substituting inequality (7) into inequality (6), we get(
‖a1‖‖a2‖

)p
≤ p
(
‖a1‖+ ‖a2‖

)
. (8)

Setting p = 1
2 into inequality (8) yields(

‖a1‖‖a2‖
) 1

2 ≤ 1

2

(
‖a1‖+ ‖a2‖

)
⇒
( 2∏

i=1

ai

) 1
2 ≤ 1

2

2∑
i=1

ai.

Again, we observed that:

‖a1‖+ ‖a2‖+ ‖a3‖ ≤ ‖a1‖‖a2‖‖a3‖ ∀a1, a2, a3 ∈ [2,∞)
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⇒ p
(
‖a1‖+ ‖a2‖+ ‖a3‖

)
≤ p

(
‖a1‖‖a2‖‖a3‖

)
. (9)

We observed that:(
‖a1‖‖a2‖‖a3‖

)p
≤ p
(
‖a1‖‖a2‖‖a3‖

)
. (10)

Substituting inequality (10) into inequality (9) yields(
‖a1‖‖a2‖‖a3‖

)p
≤ p
(
‖a1‖+ ‖a2‖+ ‖a3‖

)
.

Setting p = 1
3 into the above inequality, we obtain(

‖a1‖‖a2‖‖a3‖
) 1

3 ≤ 1

3

(
‖a1‖+ ‖a2‖+ ‖a3‖

)
⇒
( 3∏

i=1

ai

) 1
3 ≤ 1

3

3∑
i=1

ai.

We observed for any number of positive real numbers n, we have:

‖a1‖+ ‖a2‖+ . . .+ ‖an‖ ≤ ‖a1‖‖a2‖ . . . ‖an‖ ∀a1, a2, . . . , an ∈ [2,∞)

⇒ p
(
‖a1‖+ ‖a2‖+ . . .+ ‖an‖

)
≤ p

(
‖a1‖‖a2‖ . . . ‖an‖

)
. (11)

But we see that:(
‖a1‖‖a2‖ . . . ‖an‖

)p
≤ p
(
‖a1‖‖a2‖ . . . ‖an‖

)
. (12)

Substituting inequality (12) into inequality (11) yields(
‖a1‖‖a2‖ . . . ‖an‖

)p
≤ p
(
‖a1‖+ ‖a2‖+ . . .+ ‖an‖

)
.

Setting p = 1
n in the above equation yields

( n∏
i=1

ai

) 1
n ≤ 1

n

n∑
i=1

ai ∀ a1, a2, . . . , an ∈ [2,∞).

1.3. The Proof of the AGM Inequality through the Binomial Inequalities

In this section, the AGM inequality is proved through new binomial inequalities of
rational numbers. We can see that n = 2, the following inequality holds.

(
√
a1 +

√
a2)

2 ≥ 0

⇒
(
‖a1a2‖

) 1
2 ≤ 1

2

(
‖a1‖+ ‖a2‖

)
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⇒ ‖a1‖
1
2 ‖a2‖

1
2 ≤ 1

2

(
‖a1‖+ ‖a2‖

)
⇒
( 2∏

i=1

ai

) 1
2 ≤ 1

2

2∑
i=1

ai.

Also, let a1, a2 and a3 be three positive real numbers, then

(
√
a1 +

√
a2 +

√
a3)

2 ≥ 0

⇒ −2
(√

a1a2 +
√
a1a3 +

√
a2a3

)
≤ (a1 + a2 + a3)

⇒ −2

3

(√
a1a2 +

√
a1a3 +

√
a2a3

)
=

(a1 + a2 + a3)

3

⇒ −4

3

{1

2

(√
a1a2 +

√
a3

)}
≤ (a1 + a2 + a3)

3

⇒ ‖−4

3

{1

2

(√
a1a2 +

√
a3

)}
‖ ≤ ‖(a1 + a2 + a3)

3
‖

⇒ 4

3

∥∥∥{1

2

(√
a1a2 +

√
a3

)}∥∥∥ ≤ 1

3
(‖a1‖+ ‖a2‖+ ‖a3‖)

⇒ 4

3

(
‖a1‖‖a2‖‖a3‖

) 1
4 ≤ 1

3

(
‖a1‖+ ‖a2‖+ ‖a3‖

)
. (13)

We see that:(
‖a1‖‖a2‖‖a3‖

) 1
3 ≤ 4

3

(
‖a1‖‖a2‖‖a3‖

) 1
4
. (14)

Substituting inequality (13) into inequality (14) yields

⇒
( 3∏

i=1

ai

) 1
3 ≤ 1

3

3∑
i=1

ai.

Similarly, we can see that:

(
√
a1 +

√
a2 +

√
a3 +

√
a4)

2 ≥ 0

⇒ (a1 + a2 + a3 + a4) ≥ −2
(√

a1a2 +
√
a3a4 +

√
a1a3 +

√
a1a4 +

√
a2a3 +

√
a2a4

)
⇒ −1

2

(√
a1a2 +

√
a3a4 +

√
a1a3 +

√
a1a4 +

√
a2a3 +

√
a2a4

)
≤ (a1 + a2 + a3 + a4)

4

⇒ −1

2

(√
a1a2 +

√
a3a4

)
≤ (a1 + a2 + a3 + a4)

4

⇒ ‖− 1

2

(√
a1a2 +

√
a3a4

)
‖ = ‖(a1 + a2 + a3 + a4)

4
‖

⇒ 1

2
‖
(√

a1a2 +
√
a3a4

)
‖ ≤ 1

4
(‖a1‖+ ‖a2‖+ ‖a3‖+ ‖a4‖)

⇒
(
‖a1‖‖a2‖‖a3‖‖a4‖

) 1
4 ≤ 1

4
(‖a1‖+ ‖a2‖+ ‖a3‖+ ‖a4‖)
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⇒
( 4∏

i=1

ai

) 1
4 ≤ 1

4

4∑
i=1

ai.

By the principle of induction, we see that for any n number of real numbers, we have:( n∏
i=1

ai

) 1
n ≤ 1

n

n∑
i=1

ai.

This completes the prove.

2. Conclusion

In a nutsell, we have provided the new ways of proving the AGM inequality through
the product and binomial inequalities.
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