EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 12, No. 3, 2019, 1082-1095 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global

Pre-irresolute functions in closure spaces

Halgwrd M. Darwesh¹, Sarhad F. Namiq^{2,*}

Abstract. The preopen sets are used to define pre-open functions, pre-closed functions, pre-continuous functions, contra-pre-continuous functions and pre-irresolute functions which are investigated. They are also used to introduce a new type of connectedness and compactness in closure spaces, they called p-connectedness and p-compactness respectively

2010 Mathematics Subject Classifications: 54A05

Key Words and Phrases: Closure operator, closure space, pre-open functions, pre-closed functions, contra-pre-continuous functions, pre-irresolute functions, p-connectedness, p-compactness, T_p -spaces

1. Introduction

Kazimierz Kuratowski was a Polish mathematician and logician, he defined [14] closure operator by the following: Let X be a set and P(X) its power set. A Kuratowski Closure Operator is a function $cl: P(X) \to P(X)$ with the following properties:

- (i) $cl(\phi) = \phi$ (Preservation of Nullary Union)
- (ii) $A \subseteq cl(A)$ for every subset $A \subseteq X$ (Extensivity)
- (iii) $cl(A \cup B) = cl(A) \cup cl(B)$ for any subsets $A, B \subseteq X$ (Preservation of Binary Union).
- (iv) cl(cl(A)) = cl(A) for every subset $A \subseteq X$ (Idempotence)

If the last axiom(iv), idempotence, is omitted, then the axioms define a preclosure operator. A consequence of the third axiom(iii) is: $A \subseteq B$ then $cl(A) \subseteq cl(B)$ (Preservation of Inclusion). Then cl, together with the underlying set X, is called closure space and is

DOI: https://doi.org/10.29020/nybg.ejpam.v12i3.3317

Email addresses: halgwrd.darwesh@univsul.edu.iq (H.M. Darwesh), sarhad1983@gmail.com (S.F. Namiq)

 $^{^1}Department\ of\ Mathematics,\ College\ of\ Science,\ University\ of\ Sulaimani,\ Kurdistan-Region,\ Iraq$

² Department of Mathematics, College of Education, University of Garmian, Kurdistan-Region, Iraq

^{*}Corresponding author.

denoted by (X, cl).

In 1966, Eduard Cech defined closure operator by the following:

Let X be a set and P(X) its power set. A function $c: P(X) \to P(X)$ with the following properties:

- (i) $c(\phi) = \phi$.
- (ii) $A \subseteq c(A)$ for every subset $A \subseteq X$.
- (iii) $c(A \cup B) = c(A) \cup c(B)$ for any subsets $A, B \subseteq X$.

Then c, together with the underlying set X, is called a Cech closure space and is denoted by (X,c). If c also satisfies: c(c(A)) = c(A) for every subset $A \subseteq X$, then (X,c) is a topological space.

In 2009, Jeeranunt Khampakdee [15] defined closure operator by the following: A function $c: P(X) \to P(X)$ defined on the power set P(X) of a set X is called a closure operator on X and the pair (X,c) is called a closure space if the following axioms are satisfied:

- (i) $c(\phi) = \phi$.
- (ii) $A \subseteq c(A)$ for every $A \subseteq X$.
- (iii) $A \subseteq B \implies c(A) \subseteq c(B)$, for all $A, B \subseteq X$.

The concept of closure operator and closure spaces are very usefull material in several branches of Science, such as Topology [2],[3],[4],[5]Computer Science Theory[18], Biochemistry[6].

The purpose of this paper is to study the concept of preopen sets in closure spaces. Closure spaces were introduced by E.Cech [2] in 1966 and then studied by many mathematicians, see e.g. [2],[3],[4],[5],[7],[10],[8],[9] and [13]. Closure spaces are sets endowed with a grounded, extensive and monotone closure operator. Mashhure et al[17] introduced the concept of preopen sets and pre-continuous functions. The preopen sets and local dense sets are same in topological space, also the pre-continuity and almost-continuity (in the sense Hussain)[12] are same in topological spaces. Halgwrd M.Darwesh [11] used the tequique of mashhoury[12] to introduce and study the concept of preopen sets in closure spaces, and then he showed that its differ to local dense sets. However he defined the concept of pre-continuous functions in closure spaces and then he showed that the concepts of pre-continuity and almost-continuity (in the sense Hussain) [11] are independent concepts. In this paper, in Section 3, we introduce the notion of pre-open(pre-closed)

functions, contra-pre-continuous and study some of their properties.

In Section 4, we introduce and discuss pre-irresolute functions in closure spaces. We establish some basic properties of pre-irresolute functions

In Section 5, we introduce the notion of p-connectedness and study some of their properties.

In Section 6, we introduce the notion of p-compactness and study some of their properties.

2. Preliminaries

A function $c: P(X) \to P(X)$ defined on the power set P(X) of a set X is called a closure operator on X and the pair (X,c) is called a closure space[15] if the following axioms are satisfied:

- (i) $c(\phi) = \phi$.
- (ii) $A \subseteq c(A)$ for every $A \subseteq X$.
- (iii) $A \subseteq B \Rightarrow c(A) \subseteq c(B)$, for all $A, B \subseteq X$.

Definition 1. [15] A closure operator c on a set X is called additive if $c(A \cup B) = c(A) \cup c(B)$, for all $A, B \subseteq X$.

Definition 2. [15] A closure operator c on a set X is called idempotent if cc(A) = c(A), for all $A \subseteq X$.

Definition 3. [15] A subset $A \subseteq X$ is closed in the closure space (X, c) if c(A) = A. It is called open, if its complement in X is closed. The empty set and the whole space are both open and closed.

Definition 4. [11] A subset A of a space (X, c) is said to be a preopen set, if there exists an open set G such that $A \subseteq G \subseteq c(A)$. The complement of a preopen set is called preclosed.

Theorem 1. [11] A subset A of a space(X, c) is preclosed if and only if there exists a closed set F such that $X \setminus c(X \setminus A) \subseteq F \subseteq A$.

Proposition 1. [15] Let (X, c) be a closure space and $\{G_{\alpha}\}_{{\alpha} \in J}$ be a collection of subsets of X. Then $\bigcup_{{\alpha} \in J} c(G_{\alpha}) \subseteq c(\bigcup_{{\alpha} \in J} G_{\alpha})$.

Proposition 2. [15] The union(intersection) of any family of open(closed) sets in a closure space (X, c) is open(closed).

Proposition 3. [11] The union(intersection) of any family of preopen(preclosed) sets in a closure space (X, c) is preopen(preclosed).

Definition 5. [11] The interior operator $i: P(X) \to P(X)$ corresponding to the closure operator c on X is given by; $i(A) = X \setminus c(X \setminus A)$.

Theorem 2. [11] Let A be a subset of a closure (X, c). If $x \in c(A)$, then $G \cap A \neq \phi$, for each open subset G of X containing x.

Proposition 4. [11] Let A be a subset of a closure (X, c) and c is idempotent on X, then $x \in c(A)$ if and only if $G \cap A \neq \phi$, for each open subset G of X containing x.

Proposition 5. [11] Let c be an idempotent closure operator on a set X. If A is preopen in X and $B \subseteq A \subseteq c(B)$, then B is preopen.

Definition 6. [15] A closure space (Y, v), is said to be a subspace of (X, c), if $Y \subseteq X$ and $v(A) = c(A) \cap Y$, for each subset $A \subseteq Y$.

Theorem 3. [11] Let $A \subseteq Y \subseteq X$, where (Y, v) is a subspace of (X, c). If A is preopen in X, then A is preopen in Y.

Proposition 6. [1] The product of a family $\{(X_{\alpha}, c_{\alpha}) : \alpha \in I\}$ of closure spaces, denoted by $\prod_{\alpha \in I} (X_{\alpha}, c_{\alpha})$, is the closure space $(\prod_{\alpha \in I} X_{\alpha}, c)$, where $\prod_{\alpha \in I} X_{\alpha}$ denotes the cartesian product of sets X_{α} , $\alpha \in I$ and c is the closure operator generated by the projections π_{α} : $\prod_{\alpha \in I} (X_{\alpha}, c) \to (X_{\alpha}, c)$, $\alpha \in I$, i.e., is defined by $c(A) = \prod_{\alpha \in I} c_{\alpha} \pi_{\alpha}(A)$, $A \subseteq \prod_{\alpha \in I} X_{\alpha}$. Then the projection function π_{α} is continuous.

Proposition 7. [16] Let $\{(X_{\alpha}, c_{\alpha}) : a \in J\}$ be a family of closure spaces. Then F_a is closed in (X_{α}, c_{α}) , for all $a \in J$ if and only if $\prod_{\alpha \in J} F_{\alpha}$ is closed in $\prod_{\alpha \in J} (X_{\alpha}, c_{\alpha})$.

Proposition 8. [16] Let $\{(X_{\alpha}, c_{\alpha}) : a \in J\}$ be a collection of closure spaces, $G \subseteq \prod_{\alpha \in J} X_{\alpha}$. If G is a open in $\prod_{\alpha \in J} (X_{\alpha}, c_{\alpha})$ and π_{α} is a project function, then $\pi_{\alpha}(G)$ is a open in (X_{α}, c_{α}) .

Definition 7. [16] Let (X, c_1) and (Y, c_2) be closure spaces. A function $f: (X, c_1) \to (Y, c_2)$ is called open (respectively, closed) if the image of every open (respectively, closed) set in (X, c_1) is open (respectively, closed) in (Y, c_2) .

Proposition 9. [16] A function $f:(X,c_1)\to (Y,c_2)$ is said to be continuous if $f(c_1(A))\subseteq c_2f(A)$ for every subset A of X.

Proposition 10. [16] Let (X, c_1) and (Y, c_2) be closure spaces. If $f: (X, c_1) \to (Y, c_2)$ is a continuous function, then the inverse image under f of each open set in (Y, c_2) is open in (X, c_1) .

Proposition 11. [16] Let (X, c_1) , (Y, c_2) and (Z, c_3) be closure spaces, let $f: (X, c_1) \rightarrow (Y, c_2)$ and $g: (Y, c_2) \rightarrow (Z, c_3)$ be functions. Then:

- (i) If f and g are open, then so is gof.
- (ii) If gof is open and f is a continuous surjection, then g is open.
- (iii) If gof is open and g is a continuous injection, then f is open.

Proposition 12. [16] Let (X, c_1) and (Y, c_2) be closure spaces and let $f: (X, c_1) \to (Y, c_2)$ be a function. If f is open, then for every $y \in Y$ and every closed subset F of (X, c_1) such that $f^{-1}(\{y\}) \subseteq F$, there exists a closed subset K of (Y, c_2) such that $y \in K$ and $f^{-1}(K) \subseteq F$.

Proposition 13. [11] Let (X, c_1) and (Y, c_2) be closure spaces. A function $f : (X, c_1) \to (Y, c_2)$ is called pre-continuous if the inverse image of every open set in (Y, c_2) is preopen in (X, c_1) .

Proposition 14. [11] Let (X, c_1) and (Y, c_2) be closure spaces. A function $f: (X, c_1) \to (Y, c_2)$ is called pre-continuous if and only if the inverse image of every closed set in (Y, c_2) is preclosed in (X, c_1) .

Proposition 15. [11] Let (X, c_1) , (Y, c_2) and (Z, c_3) be closure spaces. If $f: (X, c_1) \to (Y, c_2)$ and $g: (Y, c_2) \to (Z, c_3)$ are pre-continuous and continuous respectively. Then $gof: (X, c_1) \to (Z, c_3)$ is pre-continuous.

Proposition 16. [11] Let (X, c_1) , (Y, c_2) and (Z, c_3) be closure spaces. Let $f: (X, c_1) \to (Y, c_2)$ be a surjective open continuous function and $g: (Y, c_2) \to (Z, c_3)$ is a function such that $g \circ f: (X, c_1) \to (Z, c_3)$ is pre-continuous. Then $g: (Y, c_2) \to (Z, c_3)$ is pre-continuous.

Definition 8. [16] A closure space (X, c) is said to be connected if ϕ and X are the only subsets of X which are both closed and open.

Definition 9. [16] A collection $\{G_a\}_{a\in J}$ of sets in a closure space(X,c) is called a cover of a subset B of X if $B\subseteq \bigcup_{\alpha\in J}G_a$ if holds, and an open cover if G_a is open for each $\alpha\in J$. Furthermore, a cover $\{G_a\}_{a\in J}$ of a subset B contains a finite subcover, if there exists a finite subset J_0 of J such that $B\subseteq \bigcup_{\alpha\in J_0}G_a$.

Definition 10. [16] A subset A of a closure space (X, c) is compact if every open cover of A contains a finite subcover.

3. Pre-Open (Pre-Closed) Functions and Contra-Pre-Continuous

In the present section, we define and study some properties of pre-open (preclosed)functions and contra-pre-continuous.

Definition 11. Let (X, c_1) and (Y, c_2) be two closure spaces. Let $f : (X, c_1) \to (X, c_2)$ be a function. Then f is pre-open (or preopen) if f(G) is preopen in Y, for every open subset G of X.

Definition 12. Let (X, c_1) and (Y, c_2) be two closure spaces. Let $f : (X, c_1) \to (X, c_2)$ be a function. Then f is pre-closed (or preclosed) if f(K) is preclosed in Y, for every closed subset K of X.

Proposition 17. Let (X, c_1) , (Y, c_2) and (Z, c_3) be closure spaces, let $f: (X, c_1) \to (Y, c_2)$ and $g: (Y, c_2) \to (Z, c_3)$ be functions. Then:

- (i) If f is open and g is preopen, then gof is preopen.
- (ii) If gof is preopen and f is a continuous surjection, then g is preopen.

Proof.

- (i) Let G be an open subset of (X, c_1) . Since f is open, f(G) is open in (Y, c_2) . Hence g(f(G)) is preopen in (Z, c_3) . Thus, gof is preopen.
- (ii) Let G be an open subset of (Y, c_2) . Since f is a continuous function, $f^{-1}(G)$ is open in (X, c_1) . Since gof is preopen, $gof(f^{-1}(G)) = g(f(f^{-1}(G)))$ is preopen in (Z, c_3) . But f is surjection, so that $gof(f^{-1}(G)) = g(G)$. Hence, g(G) is preopen in (Z, c_3) . Therefore, g is preopen.

Proposition 18. Let (X, c_1) , (Y, c_2) and (Z, c_3) be closure spaces, let $f: (X, c_1) \to (Y, c_2)$ and $g: (Y, c_2) \to (Z, c_3)$ be functions. If gof is open and g is a pre-continuous injection, then f is preopen.

Proof. Let G be an open subset of (X, c_1) . Since $g \circ f$ is open, g(f(G)) is open in (Z, c_3) . As g is pre-continuous, $g^{-1}(g(f(G)))$ is preopen in (Y, c_2) . But g is injective, so that $g^{-1}(g(f(G))) = f(G)$ is preopen in (Y, c_2) . Therefore, f is preopen.

Proposition 19. Let (X, c_1) and (Y, c_2) be closure spaces. If $f : (X, c_1) \to (Y, c_2)$ is a bijection, then the following statements are equivalent:

- (i) The inverse function $f^{-1}: (Y, c_2) \to (X, c_1)$ is pre-continuous.
- (ii) f is a preopen function.
- (iii) f is a preclosed function.

Proof. Obvious

Definition 13. A closure space (X,c) is said to be a T_p -space if every preopen set in (X,c) is open.

The closure space in the following example is a T_p -space.

Example 1. Let $X = \{1, 2, 3\}$ and defined a closure operator $c: P(X) \to P(X)$ by:

$$c\left(A\right) = \left\{ \begin{array}{ll} A & \quad if \ A \in \left\{\phi, \left\{1\right\}, \left\{2\right\}, \left\{3\right\}\right\} \\ X & \quad Otherwise \end{array} \right.$$

Clearly (X,c) is a T_p -space, since every preopen set is open set

Proposition 20. Let (X, c_1) and (Y, c_2) be closure spaces and (Y, c_2) be a T_p -space. If $f: (X, c_1) \to (Y, c_2)$ and $g: (Y, c_2) \to (Z, c_3)$ are pre-continuous, then gof is pre-continuous.

Proof. Let H be open in (Z, c_3) . Since g is pre-continuous, $g^{-1}(H)$ is preopen in (Y, c_2) . But (Y, c_2) is a T_p -space, hence $g^{-1}(H)$ is open in (Y, c_2) . Thus $f^{-1}(g^{-1}(H)) = (gof)^{-1}(H)$ is preopen in (X, c_1) . Therefore, gof is pre-continuous

Theorem 4. Let (X,c) be a closure space, $\{(Y_{\alpha},c_{\alpha}): \alpha \in J\}$ be a family of closure spaces and $f:(X,c) \to \prod_{\alpha \in J} (Y_{\alpha},c_{\alpha})$ be a function. If f is pre-continuous and π_{α} is a projection function, then π_{α} of is pre-continuous for each $\alpha \in J$.

Proof. Assume that $f:(X,c)\to \prod_{\alpha\in J}(Y_\alpha,c_\alpha)$ is pre-continuous for all $\alpha\in J$. Since π_α is continuous, $\pi_\alpha of$ is pre-continuous for each $\alpha\in J$ by Proposition 15.

Definition 14. Let (X, c_1) and (Y, c_2) be closure spaces and let $f: (X, c_1) \to (Y, c_2)$ be a function. Then f is contra-pre-continuous if the inverse image under f of every open subset of (Y, c_2) is preclosed in (X, c_1) .

Proposition 21. Let (X, c_1) and (Y, c_2) be closure spaces and let $f: (X, c_1) \to (Y, c_2)$ be a function. Then f is contra-pre-continuous if and only if the inverse image under f of every closed subset of (Y, c_2) is preopen in (X, c_1) .

Proof. Let F be a closed subset in (Y, c_2) . Then Y/F is open in (Y, c_2) . Since f is contra-pre-continuous, $f^{-1}(Y/F)$ is preclosed. But $f^{-1}(Y/F) = X/f^{-1}(F)$, thus $f^{-1}(F)$ is preopen in (X, c_1) .

Conversely, let G be an open subset in (Y, c_2) . Then Y/G is closed in (Y, c_2) . Since the inverse image of each closed subset in (Y, c_2) is preopen in (X, c_1) , $f^{-1}(Y/G)$ is preopen in (X, c_1) . But $f^{-1}(Y/G) = X/f^{-1}(G)$, thus $f^{-1}(G)$ is preclosed. Therefore, f is contra-pre-continuous.

Proposition 22. Let (X, c_1) , (Y, c_2) and (Z, c_3) be closure spaces, let $f: (X, c_1) \to (Y, c_2)$ and $g: (Y, c_2) \to (Z, c_3)$ be functions. If gof is contra-pre-continuous and g is a closed injection, then f is contra-pre-continuous.

Proof. Let H be a closed subset of (Y, c_2) . Since g is closed, g(H) is closed in (Z, c_3) . As gof is contra-pre-continuous, $(gof)^{-1}(g(H)) = f^{-1}(g^{-1}(g(H)))$ is preopen in (X, c_1) by Proposition 21. But g is injective, hence $f^{-1}(g^{-1}(g(H))) = f^{-1}(H)$. Therefore, f is contra-pre-continuous.

Proposition 23. Let (X, c_1) and (Z, c_3) be closure spaces and (Y, c_2) be a T_p -space. If $f: (X, c_1) \to (Y, c_2)$ and $g: (Y, c_2) \to (Z, c_3)$ are contra-pre-continuous functions, then gof is pre-continuous.

Proof. Let H be closed in (Z, c_3) . Since g is contra-pre-continuous, $g^{-1}(H)$ is preopen in (Y, c_2) . But (Y, c_2) is a T_p -space, hence $g^{-1}(H)$ is open in (Y, c_2) . As f is contra-pre-continuous by Proposition 21, $f^{-1}(g^{-1}(H)) = (gof)^{-1}(H)$ is preclosed in (X, c_1) . Therefore, gof is pre-continuous by Proposition 15.

The following statement is evident:

Proposition 24. Let (X, c_1) , (Y, c_2) and (Z, c_3) be closure spaces and let $f: (X, c_1) \to (Y, c_2)$ and $g: (Y, c_2) \to (Z, c_3)$ be functions. If f is contra-pre-continuous and g is continuous, then $g \circ f$ is contra-pre-continuous.

As a direct consequence of Proposition 24, we have:

Proposition 25. Let (X,c) be a closure space, $\{(Y_{\alpha},c_{\alpha}): \alpha \in J\}$ be a family of closure spaces and $f:(X,c) \to \prod_{\alpha \in J} (Y_{\alpha},c_{\alpha})$ be a function. If f is contra-pre-continuous and π_{α} is a projection function, then π_{α} of is contra-pre-continuous for each $\alpha \in J$.

4. Pre-Irresolute Functions

In view of the definition of Pre-irresolute Functions, we define Pre-irresolute Functions as:

Definition 15. Let (X, c_1) and (Y, c_2) be closure spaces. A function $f: (X, c_1) \to (Y, c_2)$ is called pre-irresolute if $f^{-1}(G)$ is preopen in (X, c_1) for every preopen set G in (Y, c_2) .

Proposition 26. Let (X, c_1) and (Y, c_2) be closure spaces and $f : (X, c_1) \to (Y, c_2)$ be a function. Then f is pre-irresolute if and only if $f^{-1}(B)$ is preclosed in (X, c_1) , whenever B is preclosed in (Y, c_2) .

Proof. Let B be a preclosed subset of (Y, c_2) . Then Y/B is preopen in (Y, c_2) . Since $f: (X, c_1) \to (Y, c_2)$ is pre-irresolute, $f^{-1}(Y/B)$ is preopen in (X, c_1) . But $f^{-1}(Y/B) = X / f^{-1}(B)$, so that $f^{-1}(B)$ is preclosed in (X, c_1) .

Conversely, let A be a preopen subset in (Y, c_2) . Then Y/A is preclosed in (Y, c_2) . By the assumption, $f^{-1}(Y/A)$ is preclosed in (X, c_1) . But $f^{-1}(Y/A) = X/f^{-1}(A)$. Thus $f^{-1}(A)$ is preopen in (X, c_1) . Therefore, f is pre-irresolute.

Clearly, every pre-irresolute function is pre-continuous. The converse need not be true as can be seen from the following example.

Example 2. Let $X = \{1, 2, 3\} = Y$ and define a closure operator c_1 on X by:

$$c_{1}(A) = \begin{cases} A & \text{if } A \in \{\phi, \{3\}\} \\ \{1, 2\} & \text{if } A = \{1\} \\ \{2, 3\} & \text{if } A = \{2\} \\ X & \text{Otherwise} \end{cases}$$

And also define a closure operator c_2 on Y by:

$$c_{2}(A) = \begin{cases} A & \text{if } A = \phi \\ \{1, 3\} & \text{if } A = \{1\} \\ \{2, 3\} & \text{if } A = \{2\} \\ Y & \text{Otherwise} \end{cases}$$

Let $f:(X,c_1)\to (Y,c_2)$ be the function defined by:

$$f(x) = \begin{cases} 1 & if \ x = 1 \\ 2 & if \ x = 2 \\ 3 & if \ x = 3 \end{cases}$$

The family of all open sets with respect to $c_1 = \{\phi, \{1, 2\}, X\}$

$$PO(X, c_1) = \{\phi, \{1\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, X\}.$$

The family of all open sets with respect to $c_2 = \{\phi, X\}$

$$PO(X, c_2) = \{\phi, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, X\}.$$

Then f is pre-continuous but not pre-irresolute because $\{3\}$ is preopen in (Y, c_2) but $f^{-1}(\{3\}) = \{3\}$ is not preopen in (X, c_1) .

Proposition 27. Let (X, c_1) , (Y, c_2) and (Z, c_3) be closure spaces. If $f: (X, c_1) \to (Y, c_2)$ is a pre-irresolute function and $g: (Y, c_2) \to (Z, c_3)$ is a pre-continuous function, then the composition $gof: (X, c_1) \to (Z, c_3)$ is pre-continuous.

Proof. Let G be an open subset of (Z, c_3) . Then $g^{-1}(G)$ is a preopen subset of (Y, c_2) as g is pre-continuous. Hence, $f^{-1}(g^{-1}(G))$ is preopen in (X, c_1) because f is pre-irresolute. Thus, $g \circ f$ is pre-continuous.

The following statements are evident:

Proposition 28. Let (X, c_1) , (Y, c_2) and (Z, c_3) be closure spaces. If $f: (X, c_1) \to (Y, c_2)$ and $g: (Y, c_2) \to (Z, c_3)$ are pre-irresolute, then $g \circ f: (X, c_1) \to (Z, c_3)$ is pre-irresolute.

Proof. Obvious.

Proposition 29. Let (X, c_1) and (Z, c_3) be closure spaces and (Y, c_2) be a T_P -space. If $f: (X, c_1) \to (Y, c_2)$ is a pre-continuous function and $g: (Y, c_2) \to (Z, c_3)$ is a pre-irresolute function, then the composition $gof: (X, c_1) \to (Z, c_3)$ is pre-irresolute.

Proof. Obvious.

Proposition 30. Let (X, c_1) and (Y, c_2) be closure spaces and $f: (X, c_1) \to (Y, c_2)$ be a bijective function. If f and f^{-1} are continuous, then f and f^{-1} are pre-irresolute.

Proof. Let B be a preopen subset of (Y, c_2) . Then there exists an open set B in (Y, c_2) such that $B \subseteq H \subseteq c_2(B)$, hence $f^{-1}(B) \subseteq f^{-1}(H) \subseteq f^{-1}(c_2(B))$. Since $f^{-1}(C_2(B)) \subseteq c_1 f^{-1}(B)$ is continuous, $f^{-1}(c_2(B)) \subseteq c_1 f^{-1}(B)$. But f is continuous. Thus $f^{-1}(B)$ is open in (X, c_1) . Hence, $f^{-1}(B)$ is preopen in (X, c_1) . Therefore, f is pre-irresolute. Let f be a preopen subset of f is preopen in f is continuous, f is continuous, f is continuous, f is continuous, f is continuous and f is continuous and f is the inverse image of f under f is open in f in f is pre-irresolute.

5. P-Connectedness

As another application of preopen sets, a new kind of Connectedness, namely p-Connectedness, is introduced.

Definition 16. A closure space (X,c) is said to be p-connected if ϕ and X are the only subsets of X which are both preopen and preclosed. Clearly, if (X,c) is p-connected, then (X,c) is connected. The converse is not true as can be seen from the following example.

Example 3. Let $X = \{1, 2, 3\}$ and define a closure operator c on X by:

$$c(A) = \begin{cases} A & \text{if } A = \phi \\ \{1,3\} & \text{if } A = \{1\} \\ \{2,3\} & \text{if } A = \{2\} \\ X & \text{Otherwise} \end{cases}$$

The family of all open sets $= \{\phi, X\}$

$$PO(X, c) = \{\phi, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, X\}.$$

We have (X, c) is connected, but it is not p-connected, because $\{1, 2\}$ is preopen set and preclosed set.

Proposition 31. Let (X,c) be a closure space. Then the following statements are equivalent:

- (i) X is p-connected.
- (ii) X cannot be expressed as the union of two disjoint, non-empty, preclosed subsets.
- (iii) X cannot be expressed as the union of two disjoint, non-empty, preopen subsets.

Proof. Statement(i) implies statement(ii): Suppose that $X = U \cup V$, where U and V are non-empty, disjoint, preclosed subsets of (X,c). Then U = X/V and U is preopen. Thus, U is a subset of X which is both preopen and preclosed but U is neither X nor ϕ . Hence, (X,c) is not p-connected.

Statement (ii) implies statement (iii): Suppose that $X = A \cup B$ where A and B are disjoint non-empty preopen subsets of (X,c). Then X/A = B and X/B = A are both complements of preopen sets and hence are preclosed. Thus, $X = A \cup B$ is an expression of X as the union of two disjoint, non-empty, preclosed subset of (X,c), which contradicts (ii).

Statement (iii) implies statement (i): Suppose that A is a subset of X which is both preopen and preclosed, but A is neither X nor ϕ . Then X/A is also preclosed, preopen and non-empty. Thus, $X = (X/A) \cup A$ is the expression of X as the union of two disjoint, non-empty preopen subsets, which contradicts (iii).

The following statement is evident:

Proposition 32. Let (X,c) be a T_p -space. Then (X,c) is connected if and only if (X,c) is p-connected.

Proof. Obvious.

Proposition 33. Let (X, c_1) be a closure space and let $Y = \{0, 1\}$ and c_2 be a closure operator on Y defined by:

- $c_2(A) = A$, for all subset A of Y. Then the following statements are equivalent:
 - (i) The only contra-pre-continuous functions $f:(X,c_1)\to (Y,c_2)$ are the constant functions.
 - (ii) A closure space (X, c_1) is p-connected.

Proof. Statement (i) implies statement (ii): Suppose that there is a non-empty subset A of (X, c_1) such that $A \neq X$ and A is both preopen and preclosed. Then X/A is both preopen and preclosed in (X, c_1) . Define a function $f: (X, c_1) \to (Y, c_2)$ by:

$$f(x) = \begin{cases} 0 & x \in A \\ 1 & x \in X/A \end{cases}$$

Consequently, $f^{-1}(\phi) = \phi$, $f^{-1}(\{0\}) = A$, $f^{-1}(\{1\}) = X/A = B$ and $f^{-1}(Y) = X$. Since there are only four closed subsets of (Y, c_2) , namely ϕ , $\{0\}$, $\{1\}$ and Y, the inverse image under f of any closed subset in (Y, c_2) is preopen in (X, c_1) . Thus, f is contra-precontinuous but non-constant, which a contradiction. Therefore, (X, c_1) is p-connected. Statement (ii) implies statement (i): Suppose that a contra-pre-continuous function f: $(X, c_1) \to (Y, c_2)$ is non-constant, where the closure operator c_2 on Y is defined by: c(A) = A, for all subset A of Y.

Then $f^{-1}(\{0\})$ and $f^{-1}(\{1\})$ are non-empty. Further, neither $f^{-1}(\{0\})$ nor $f^{-1}(\{1\})$ are equal to X. Since $\{0\}$ and $\{1\}$ are closed subset of (Y, c_2) and f is contra pre-continuous, $f^{-1}(\{0\})$ and $f^{-1}(\{1\})$ are preopen subsets of (X, c_1) . But $f^{-1}(\{0\}) = X/f^{-1}(\{1\})$. Hence $f^{-1}(\{0\})$ is both preclosed and preopen. Consequently, X is not p-connected, which a contradiction.

Proposition 34. Let (X, c_1) and (Y, c_2) be closure spaces and $f: (X, c_1) \to (Y, c_2)$ be a function.

- (i) If f is a contra-pre-continuous function from (X, c_1) onto (Y, c_2) and (X, c_1) is p-connected, then (Y, c_2) is connected.
- (ii) If f is a pre-irresolute function from (X, c_1) onto (Y, c_2) and (X, c_1) is p-connected, then (Y, c_2) is p-connected.

Proof. (ii). Suppose that (Y, c_2) is not p-connected. Then there is a non-empty subset A of Y, $A \neq Y$ such that A is both preopen and preclosed. Since f is pre-irresolute, the set $f^{-1}(A)$ is both preopen and preclosed. Since f is an onto function and A is a non-empty subset of Y with $A \neq Y$, it follows that $f^{-1}(A)$ is a non-empty subset of X with $f^{-1}(A) \neq X$. Hence, (X, c_1) is not p-connected which a contradiction. Therefore, (Y, c_2) is connected. The proof of (i)is similar to that of (ii).

6. P-Compactness

As another application of preopen sets, a new kind of compactness, namely p-compactness, is introduced.

Definition 17. A collection $\{G_{\alpha}\}_{{\alpha}\in J}$ of preopen sets in a closure space (X,c_1) is called a preopen cover of a subset B of X if $B\subseteq \bigcup_{{\alpha}\in J}G_{\alpha}$ holds.

Definition 18. A subset A of a closure space (X, c) is p-compact if every preopen cover of A contains a finite subcover.

The following statements are evident:

Proposition 35. Let (X, c_1) be a closure space. If X is p-compact and B is a preclosed subset of X, then B is p-compact

Proof. Let $\{G_{\alpha}\}_{\alpha \in J}$ be a collection of preopen subsets of X such that $B \subseteq \bigcup_{\alpha \in J} G_{\alpha}$. It follows that $X = \bigcup_{\alpha \in J} G_{\alpha} \cup (X/B)$. Since B is preclosed, X/B is preopen. Consequently, $\bigcup_{\alpha \in J} G_{\alpha} \cup (X/B)$ is a preopen cover of X. But X is p-compact, so $\bigcup_{\alpha \in J} G_{\alpha} \cup (X/B)$ contains a finite subcover, i.e. there exits a finite subset J_0 of J such that $X = \bigcup_{\alpha \in J_0} G_{\alpha} \cup (X/B)$. Since B and X/B are disjoint, $B \subseteq \bigcup_{\alpha \in J_0} G_{\alpha}$. Thus, any preopen cover $\{G_{\alpha}\}_{\alpha \in J}$ of B contains a finite subcover. Therefore, B is B-compact.

Proposition 36. Let (X, c_1) and (Y, c_2) be closure spaces and $f : (X, c_1) \to (Y, c_2)$ be a function. If f is pre-irresolute and a subset B of X is p-compact, then the image $f(B) \subseteq Y$ is p-compact.

Proof. Let $\{G_{\alpha}\}_{\alpha \in J}$ be a collection of preopen subsets of Y such that $f(B) \subseteq \bigcup_{\alpha \in J} G_{\alpha}$ it follow that $B \subseteq f^{-1}(f(B)) \subseteq f^{-1}\{\bigcup_{\alpha \in J} G_{\alpha}\} = \bigcup_{\alpha \in J} f^{-1}(G_{\alpha})$, but f is pre-irresolute, so $\{f^{-1}(G_{\alpha})\}_{\alpha \in J}$ is a preopen cover of B. Since B is p-compact, there exists a finite subset J_0 of J such that $B \subseteq \bigcup_{\alpha \in J_0} f^{-1}(G_{\alpha})$. It follow that $f(B) \subseteq \bigcup_{\alpha \in J_0} G_{\alpha}$. Thus, any preopen cover $\{G_{\alpha}\}_{\alpha \in J}$ of f(B) contains a finite subcover. Therefore, f(B) is p-compact.

Proposition 37. Let (X, c_1) and (Y, c_2) be closure spaces and $f: (X, c_1) \to (Y, c_2)$ be a function. If f is a pre-continuous surjection and X is p-compact, then Y is compact.

REFERENCES 1094

Proof. Let $\{G_{\alpha}\}_{\alpha\in J}$ be a collection of open subsets of Y such that $Y\subseteq\bigcup_{\alpha\in J}G_{\alpha}$. It follows that $X=f^{-1}(Y)\subseteq f^{-1}\left(\bigcup_{\alpha\in J}G_{\alpha}\right)=\bigcup_{\alpha\in J}f^{-1}(G_{\alpha})$. But f is pre-continuous, so $\{f^{-1}(G_{\alpha})\}_{\alpha\in J}$ is a preopen cover of X. Since X is p-compact, there exists a finite subset J_0 of J such that $X=\bigcup_{\alpha\in J_0}f^{-1}(G_{\alpha})$. It follow that $Y=f\left(\bigcup_{\alpha\in J_0}f^{-1}(G_{\alpha})\right)=f\left(f^{-1}(\bigcup_{\alpha\in J_0}(G_{\alpha}))\right)$. Since f is a surjection, $Y=\bigcup_{\alpha\in J_0}G_{\alpha}$ Thus, any open cover $\{G_{\alpha}\}_{\alpha\in J}$ of Y contains a finite subcover. Therefore, Y is compact.

Proposition 38. Let (X, c_1) and (Y, c_2) be closure spaces and $f: (X, c_1) \to (Y, c_2)$ be a function. If f is a preirresolute surjection and X is p-compact, then Y is p-compact.

Proof. Let $\{A_{\alpha}\}_{\alpha\in J}$ be a collection of preopen subsets of Y such that $Y\subseteq\bigcup_{\alpha\in J}A_{\alpha}$. It follow that $X=f^{-1}(Y)\subseteq f^{-1}\left(\bigcup_{\alpha\in J}A_{\alpha}\right)=\bigcup_{\alpha\in J}f^{-1}(A_{\alpha})$. But f is pre-irresolute, hence $\{f^{-1}(A_{\alpha})\}_{\alpha\in J}$ is a preopen cover of X. Since X is p-compact, there exists a finite subset J_0 of J such that $X=\bigcup_{\alpha\in J_0}f^{-1}(A_{\alpha})$. Hence, $(Y)=f\left(\bigcup_{\alpha\in J}f^{-1}(A_{\alpha})\right)=f(f^{-1}\left(\bigcup_{\alpha\in J_0}(A_{\alpha})\right)$. Since f is a surjection $Y=\bigcup_{\alpha\in J_0}A_{\alpha}$ of Y contains a finite subcover. Therefore, Y is p-compact.

Acknowledgements

As a corresponding author, I would be very grateful to deeply acknowledge my PhD supervisor (Assist. Prof. Dr. Halgwrd M. Darwesh) for helping me to publish this article, which is a part of Ministry of Higher Education and Scientific Research-KRG-Iraq's requirements to achieve my PhD degree. I would also acknowledge the academic staff of Department of Mathematics, College of Science, University of Sulaimani for their assistance as PhD student in their department.

References

- [1] Boonpok, C., On Continuous Maps in Closure Spaces, General Mthematics, 17(2) (2009), 127-134.
- [2] Cech, E., On Bicompact spaces, Annals of Mathematics, 6 (1937)823-844.
- [3] Cech, E., Topological Spaces, Inter Science Publishers, John Wiley and Sons, New York, 1966.
- [4] Cech, E.,: Topological spaces. (revised by Z. Frolk, M. Kattov), Academia, Prague (1966).
- [5] Cech, E., Topological spaces. Topological papers of Eduard ech, Academia, Prague (1968), 436-472.
- [6] Chandrasekhara Rao, K., Gowri, R., and Swaminathan, V., Cech Closure Space in Structural Configuration of Proteins, Advanced Studies in Biology, Vol. 1, 2009, no. 2, 95-104.

REFERENCES 1095

[7] Chvalina J., On homeomorphic topologies and equivalent set-system.Arch.Math.2, Scripta Fac.Sci.Nat. UJEP Brunensis,XII(1976),107-116.

- [8] Chvalina J., Separation properties of topologies associated with digraphs. Scripta Fac. Sci. Nat. Univ. Purk. Brun. 8 (10) (1980), 399-410.
- [9] Chvalina J., Stackbases in power sets of neighbourhood spaces preserving the continuity of mappings. Arch. Math. 2, Scripta Fac. Sci. Nat. UJEP Brunensis XVII(1981) 81-86.
- [10] David N. Roth, Cech Closure Spaces, A Thesis Presented to The Department of Mathematics Emporia State University, July 1979.
- [11] Halgwrd M. Darwesh, Almost-continuity, Pre-continuity and Preopen sets in Closure Spaces.(submit)
- [12] Hussain, T., Almost continuous mappings, Prace. Mat 10 (1966) 1-7 MR 36 3332
- [13] Halgwrd M. Darwesh and Sarhad F.Namiq, Some Properties of Preopen Set in Closure Spaces, Journal of Garmian University. Volume 5, Issue 2, Spring 2018, Page 229-246.
- [14] Kuratowski, K. (1966) [1958], Topology Volume I, Academic Press, ISBN 0-12-429201-
- [15] Khampakdee J. (2009), Semi-open sets in closure spaces, Ph. D. thesis, BRNO University of technology, BRNO.
- [16] Khampakdee J.: Semi-open sets in biclosure spaces. Discussiones Mathematicae, General Algebra and Applications, 53 (2009),181-201.
- [17] Mashhour, A. S., Abd El-Monsef, M. E., and El-Deeb, S. N., On precontinuous and week precontinuous mappings, *Proc. Math. Phys. So.* Egypt, 53 (1982), 47-53.
- [18] Smyth, M. B., Semi-metrics, closure spaces and digital topology Theoretical Computer Science 151 (1995) 257-276.