EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 11, No. 4, 2018, 922-928
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

On the Bessel operator \odot_{B}^{t} related to the Bessel-Helmholtz and Bessel Klein-Gordon operator

Sudprathai Bupasiri

Department of Mathematics, Sakon Nakhon Rajabhat University, Sakon Nakhon 47000, Thailand

Abstract. In this paper, we study the Bessel operator \odot_{B}^{t}, iterated t-times and denote by

$$
\odot_{B}^{t}=\left(\left(B_{a_{1}}+\cdots+B_{a_{p}}+m^{2}\right)^{2}-\left(B_{a_{p+1}}+\cdots+B_{a_{p+q}}\right)^{2}\right)^{t}
$$

where $p+q=n, B_{a_{i}}=\frac{\partial^{2}}{\partial a_{i}^{2}}+\frac{2 v_{i}}{a_{i}} \frac{\partial}{\partial a_{i}}, 2 v_{i}=2 \alpha_{i}+1, \alpha_{i}>-\frac{1}{2}, a_{i}>0, t \in \mathbb{Z}^{+} \cup\{0\}, m \in \mathbb{R}^{+} \cup\{0\}$ and $p+q=n$ is the dimension of $\mathbb{R}_{n}^{+}=\left\{a: a=\left(a_{1}, \ldots, a_{n}\right), a_{1}>0, \ldots, a_{n}>0\right\}$.
2010 Mathematics Subject Classifications: 46F10
Key Words and Phrases: Bessel Helmholtz operator, Bessel Klein-Gordon operator, Bessel diamond operator

1. Introduction

Yildirim, Sarikaya and Ozturk [7] have showed that $(-1)^{t} S_{2 t}(a) * R_{2 t}(a)$ is the solution of the $\diamond_{B}^{t}\left((-1)^{t} S_{2 t}(a) * R_{2 t}(a)\right)=\delta$, where

$$
\begin{equation*}
\diamond_{B}^{t}=\left(\left(\sum_{i=1}^{p} B_{a_{i}}\right)^{2}-\left(\sum_{j=p+1}^{p+q} B_{a_{j}}\right)^{2}\right)^{t} \tag{1}
\end{equation*}
$$

Here $p+q=n, B_{a_{i}}=\frac{\partial^{2}}{\partial a_{i}^{2}}+\frac{2 v_{i}}{a_{i}} \frac{\partial}{\partial a_{i}}, 2 v_{i}=2 \alpha_{i}+1, \alpha_{i}>-\frac{1}{2}, a_{i}>0, i=1,2, \ldots, n$, $t \in \mathbb{Z}^{+} \cup\{0\}$ and n is the dimension of the $\mathbb{R}_{n}^{+}=\left\{a: a=\left(a_{1}, \ldots, a_{n}\right), a_{1}>0, \ldots, a_{n}>0\right\}$. Otherwise, the operator \diamond_{B}^{k} can also be expressed in the form $\diamond_{B}^{t}=\square_{B}^{t} \Delta_{B}^{t}=\triangle_{B}^{t} \square_{B}^{t}$, where \square_{B}^{t} denote by

$$
\begin{equation*}
\square_{B}^{t}=\left(B_{a_{1}}+B_{a_{2}}+\cdots+B_{a_{p}}-B_{a_{p+1}}-B_{a_{p+2}}-\cdots-B_{a_{p+q}}\right)^{t} \tag{2}
\end{equation*}
$$

DOI: https://doi.org/10.29020/nybg.ejpam.v11i4.3319
Email addresses: sudprathai@gmail.com (S. Bupasiri)
and \triangle_{B}^{t} denote by

$$
\begin{equation*}
\triangle_{B}^{t}=\left(B_{a_{1}}+B_{a_{2}}+\cdots+B_{a_{n}}\right)^{t} \tag{3}
\end{equation*}
$$

Now in this paper,

$$
\begin{equation*}
\odot_{B}^{t}=\left(\left(\sum_{i=1}^{p} B_{a_{i}}-\sum_{j=p+1}^{p+q} B_{a_{j}}\right)+m^{2}\right)^{t}\left(\sum_{i=1}^{n} B_{a_{i}}+m^{2}\right)^{t}, p+q=n \tag{4}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\odot_{B}^{t}=\left(\square_{B}+m^{2}\right)^{t}\left(\triangle_{B}+m^{2}\right)^{t}=\left(\triangle_{B}+m^{2}\right)^{t}\left(\square_{B}+m^{2}\right)^{t} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(\triangle_{B}+m^{2}\right)^{t}=\left(B_{a_{1}}+B_{a_{2}}+\cdots+B_{a_{n}}+m^{2}\right)^{t} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\square_{B}+m^{2}\right)^{t}=\left(B_{a_{1}}+B_{a_{2}}+\cdots+B_{a_{p}}-B_{a_{p+1}}-\cdots-B_{a_{p+q}}+m^{2}\right)^{t} \tag{7}
\end{equation*}
$$

and from (4) with $q=0$ and $t=1$, we obtain

$$
\odot_{B}=\left(\triangle_{B, p}+m^{2}\right)^{2}
$$

where

$$
\begin{equation*}
\left(\triangle_{B, p}+m^{2}\right)=\left(B_{a_{1}}+B_{a_{2}}+\cdots+B_{a_{p}}+m^{2}\right) \tag{8}
\end{equation*}
$$

Moreover for $m=0$, then we obtain Bessel diamond operator and defined by (1).

2. Preliminaries

Denoted by T_{a}^{b} the generalized shift operator acting according to the law [2]

$$
\begin{aligned}
T_{a}^{b} \varphi(a)= & C_{v}^{*} \int_{0}^{\pi} \ldots \int_{0}^{\pi} \varphi\left(\sqrt{a_{1}^{2}+b_{1}^{2}-2 a_{1} b_{1} \cos \theta_{1}}, \ldots, \sqrt{a_{n}^{2}+b_{n}^{2}-2 a_{n} b_{n} \cos \theta_{n}}\right) \\
& \times\left(\Pi_{i=1}^{n} \sin ^{2 v_{i}-1}\right) d \theta_{1} \ldots d \theta_{n}
\end{aligned}
$$

where $a, b \in \mathbb{R}_{n}^{+}, C_{v}^{*}=\Pi_{i=1}^{n} \frac{\Gamma\left(v_{i}+1\right)}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(v_{i}\right)}$. We remark that this shift operator is closely connected with the Bessel differential operator [2].

$$
\begin{gathered}
\frac{d^{2} U}{d a^{2}}+\frac{2 v}{a} \frac{d U}{d a}=\frac{d^{2} U}{d b^{2}}+\frac{2 v}{b} \frac{d U}{d b} \\
U(a, 0)=f(a) \\
U_{b}(a, 0)=0
\end{gathered}
$$

The convolution operator determined by T_{a}^{b} is as follow:

$$
\begin{equation*}
(f * \varphi)=\int_{\mathbb{R}_{n}^{+}} f(b) T_{a}^{b} \varphi(a)\left(\Pi_{i=1}^{n} b_{i}^{2 v_{i}}\right) d b \tag{9}
\end{equation*}
$$

Convolution (9) is known as a B-convolution. We note the following properties for the B-convolution and the generalized shift operator:
(a) $T_{a}^{b} \cdot 1=1$.
(b) $T_{a}^{0} \cdot f(a)=f(a)$.
(c) If $f(a), g(a) \in C\left(\mathbb{R}_{n}^{+}\right), g(a)$ is a bounded function, $a>0$ and

$$
\int_{0}^{\infty}|f(a)|\left(\Pi_{i=1}^{n} a_{i}^{2 v_{i}}\right) d a<\infty
$$

then

$$
\int_{\mathbb{R}_{n}^{+}} T_{a}^{b} f(a) g(b)\left(\Pi_{i=1}^{n} b_{i}^{2 v_{i}}\right) d b=\int_{\mathbb{R}_{n}^{+}} f(b) T_{a}^{b} g(a)\left(\Pi_{i=1}^{n} b_{i}^{2 v_{i}}\right) d b .
$$

(d) From (c), we have the following equality for $g(a)=1$,

$$
\int_{\mathbb{R}_{n}^{+}} T_{a}^{b} f(a)\left(\Pi_{i=1}^{n} b_{i}^{2 v_{i}}\right) d b=\int_{\mathbb{R}_{n}^{+}} f(b)\left(\Pi_{i=1}^{n} b_{i}^{2 v_{i}}\right) d b
$$

(e) $(f * g)(a)=(g * f)(a)$.

Definition 1. ([6]) A distribution E is said to be a fundamental solution or an elementary solution for the differential operator L if

$$
L E=\delta
$$

, where δ is Dirac-delta distribution. Let $L(D)$ be a differential operator with constant coefficients. We say that a distribution $E \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ is a fundamental solution or the elementary solution of the differential operator $L(D)$ if E satisfies $L(D) E=\delta$ in $\mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$.
Lemma 1. If $\square_{B}^{t} u(a)=\delta$ for $a \in \Gamma_{+}=\left\{a \in \mathbb{R}^{n}: a_{1}>0, a_{2}>0, \ldots, a_{n}>0\right.$ and $\left.U>0\right\}$, where \square_{B}^{t} is the Bessel ultra-hyperbolic operator iterated t-times defined by (2). Then $u(a)=R_{2 t}(a)$ is the unique elementary solution of the operator $\square \square_{B}^{t}$ where

$$
\begin{equation*}
R_{2 t}(a)=\frac{U^{\left(\frac{2 t-n-2|v|}{2}\right)}}{y_{n}(2 t)}=\frac{\left(\sum_{i=1}^{p} a_{i}^{2}-\sum_{j=p+1}^{p+q} a_{j}^{2}\right)^{\left(\frac{2 t-n-2|v|}{2}\right)}}{y_{n}(2 t)} \tag{10}
\end{equation*}
$$

for

$$
\begin{equation*}
y_{n}(2 t)=\frac{\pi^{\frac{n+2|v|-1}{2}} \Gamma\left(\frac{2+2 t-n-2|v|}{2}\right) \Gamma\left(\frac{1-2 t}{2}\right) \Gamma(2 t)}{\Gamma\left(\frac{2+2 t-p-2|v|}{2}\right) \Gamma\left(\frac{p-2 t}{2}\right)},|v|=\sum_{i=1}^{n} v_{i} . \tag{11}
\end{equation*}
$$

Lemma 2. Given the equation $\triangle_{B}^{t} u(a)=\delta$ for $a \in \mathbb{R}_{n}^{+}$, where \triangle_{B}^{t} is the Laplace-Bessel operator iterated t-times defined by (3). Then $u(a)=(-1)^{t} S_{2 t}(a)$ is an elementary solution of the operator \triangle_{B}^{t} where

$$
\begin{equation*}
S_{2 t}(a)=\frac{|a|^{2 t-n-2|v|}}{z_{n}(2 t)} \tag{12}
\end{equation*}
$$

for

$$
z_{n}(2 t)=\frac{\prod_{i=1}^{n} 2^{v_{i}-\frac{1}{2}} \Gamma\left(v_{i}+\frac{1}{2}\right) \Gamma(t)}{2^{n+2|v|-4 t} \Gamma\left(\frac{n+2|v|-2 t}{2}\right)} .
$$

Proof. The proofs of Lemma 1 and Lemma 2 are given in [7].
Lemma 3. Given the equation $\left(\square_{B}+m^{2}\right)^{t} u(a)=\delta$ for $a \in \mathbb{R}_{n}^{+}$, where $\left(\square_{B}+m^{2}\right)^{t}$ is the Bessel Klein-Gordon operator iterated t-times defined by equation (7), δ is the Dirac-delta distribution, $a \in \mathbb{R}_{n}^{+}$and $t \in \mathbb{Z}^{+} \cup\{0\}$, then $u(a)=F_{B, 2 t}(a, m)$, where

$$
\begin{equation*}
F_{B, 2 t}(a, m)=\sum_{r=0}^{\infty}\binom{-t}{r} m^{2 r} R_{2 t+2 r}(a), \tag{13}
\end{equation*}
$$

$R_{2 t}(a)$ is defined by (10).
Proof. See [5].
Lemma 4. Let \square_{B} be the Bessel ultra-hyperbolic operator, defined by (2) and δ is the Dirac delta distribution for $a \in \mathbb{R}_{n}^{+}$, then

$$
\left(\square_{B}+m^{2}\right)^{t} \delta=F_{B,-2 t}(a, m)
$$

where $F_{B,-2 t}(a, m)$ is the inverse of $F_{B, 2 t}(a, m)$ in the convolution algebra.
Proof. Let

$$
D(a)=\left(\square_{B}+m^{2}\right)^{t} \delta
$$

convolving both sides by $F_{B, 2 t}(a, m)$, then

$$
\begin{align*}
F_{B, 2 t}(a, m) * D(a) & =F_{B, 2 t}(a, m) *\left(\square_{B}+m^{2}\right)^{t} \delta \\
& =\left(\square_{B}+m^{2}\right)^{t} F_{B, 2 t}(a, m) * \delta \\
& =\delta . \tag{14}
\end{align*}
$$

Since $F_{B, 2 t}(a, m)$ is lie in S^{\prime}, where S^{\prime} is a space of tempered distribution, choose $S^{\prime} \subset D_{R}^{\prime}$, where D_{R}^{\prime} is the right-side distribution which is a subspace of D^{\prime} of distribution. Thus $F_{B, 2 t}(a, m) \in D_{R}^{\prime}$, it follow that $F_{B, 2 t}(a, m)$ is an element of convolution algebra, thus by ([4], p.150-151), we have that the equation (14) has a unique solution

$$
\begin{equation*}
D(a)=F_{B,-2 t}(a, m) * \delta=F_{B,-2 t}(a, m) \tag{15}
\end{equation*}
$$

That complete the proof.
Lemma 5. Given the equation $\left(\triangle_{B}+m^{2}\right)^{t} u(a)=\delta$ for $a \in \mathbb{R}_{n}^{+}$, where $\left(\triangle_{B}+m^{2}\right)^{t}$ is the Bessel-Helmholtz operator iterated t-times defined by equation (6), δ is the Dirac-delta distribution, $a \in \mathbb{R}_{n}^{+}$and $t \in \mathbb{Z}^{+} \cup\{0\}$, then $u(a)=H_{B, 2 t}(a, m)$ is an elementary solution of the operator $\left(\triangle_{B}+m^{2}\right)^{t}$, where

$$
\begin{equation*}
H_{B, 2 t}(a, m)=\sum_{r=0}^{\infty}\binom{-t}{r} m^{2 r}(-1)^{t+r} S_{2 t+2 r}(a) \tag{16}
\end{equation*}
$$

$S_{2 t}(a)$ is defined by (12).

Proof. See [9].
Lemma 6. The convolution $F_{B, 2 t}(a, m) * H_{B, 2 t}(a, m)$ exists and is a tempered distribution where $F_{B, 2 t}(a, m)$ and $H_{B, 2 t}(a, m)$ be defined by (13) and (16), respectively.

Proof. From (13) and (16), we have

$$
\begin{aligned}
F_{B, 2 t}(a, m) * H_{B, 2 t}(a, m)= & \left(\sum_{r=0}^{\infty}\binom{-t}{r} m^{2 r} R_{2 t+2 r}(a)\right) \\
& *\left(\sum_{r=0}^{\infty}\binom{-t}{r} m^{2 r}(-1)^{t+r} S_{2 t+2 r}(a)\right) \\
& =\sum_{r=0}^{\infty} \sum_{s=0}^{\infty}\binom{-t}{r}\binom{-t}{s} m^{2 r+2 s}(-1)^{t+r} S_{2 t+2 r}(a) * R_{2 t+2 s}(a)
\end{aligned}
$$

Since the function $S_{2 t+2 r}(a)$ and $R_{2 t+2 s}(a)$ are tempered distributions, see([3], p. 302 and [1], p.97). From ([10], p.152), the convolution of functions

$$
(-1)^{t+r} S_{2 t+2 r}(a) * R_{2 t+2 s}(a)
$$

exists and is also a tempered distribution. Thus, $F_{B, 2 t}(a, m) * H_{B, 2 t}(a, m)$ exists and also is a tempered distribution.

3. Main results

Theorem 1. Given the equation

$$
\begin{equation*}
\odot_{B}^{t} T(a, m)=\delta \tag{17}
\end{equation*}
$$

for $a \in \mathbb{R}_{n}^{+}$, where \odot_{B}^{t} is the Bessel operator iterated t-times defined by (5), then

$$
\begin{equation*}
T(a, m)=F_{B, 2 t}(a, m) * H_{B, 2 t}(a, m) \tag{18}
\end{equation*}
$$

is an elementary solution of (17), where $F_{B, 2 t}(a, m)$ and $H_{B, 2 t}(a, m)$ are defined by (13) and (16), respectively, $t \in \mathbb{Z}^{+} \cup\{0\}$ and $m \in \mathbb{R}^{+} \cup\{0\}$. Moreover, from (18) we obtain

$$
\begin{equation*}
F_{B,-2 t}(a, m) * T(a, m)=H_{B, 2 t}(a, m) \tag{19}
\end{equation*}
$$

as an elementary solution of the Bessel-Helmholtz operator $\left(\triangle_{B}+m^{2}\right)^{t}$ iterated t-times defined by (6) and in particular, for $q=0$ then \odot_{B}^{t} reduces to the Bessel-Helmhotz operator $\left(\triangle_{B, p}+m^{2}\right)^{2 t}$ of p-dimension iterated $2 t$-times and is defined by (8), where

$$
\triangle_{B, p}=B_{a_{1}}+B_{a_{2}}+\cdots+B_{a_{p}}
$$

thus (17) becomes

$$
\begin{equation*}
\left(\triangle_{B, p}+m^{2}\right)^{2 t} T(a, m)=\delta \tag{20}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
T(a, m)=H_{B, 4 t}(a, m) \tag{21}
\end{equation*}
$$

is an elementary solution of (20).
Proof. From (5) and (17) we have

$$
\odot_{B}^{t} T(a, m)=\left(\left(\square_{B}+m^{2}\right)^{t}\left(\triangle_{B}+m^{2}\right)^{t}\right) T(a, m)=\delta
$$

Convolution of the above equation by $F_{B, 2 t}(a, m) * H_{B, 2 t}(a, m)$ and the properties of convolution with derivatives, we obtain

$$
\begin{align*}
& \left(\square_{B}+m^{2}\right)^{t} F_{B, 2 t}(a, m) *\left(\triangle_{B}+m^{2}\right)^{t} H_{B, 2 t}(a, m) * T(a, m) \\
& \quad=F_{B, 2 t}(a, m) * H_{B, 2 t}(a, m) * \delta \tag{22}
\end{align*}
$$

Thus

$$
\begin{equation*}
T(a, m)=\delta * \delta * T(a, m)=F_{B, 2 t}(a, m) * H_{B, 2 t}(a, m) \tag{23}
\end{equation*}
$$

by Lemma 3 and Lemma 5. Now from (18) and by Lemma 3 and Lemma 4 and properties of inverses in the convolution algebra, we obtain

$$
F_{B,-2 t}(a, m) * T(a, m)=\delta * H_{B, 2 t}(a, m)=H_{B, 2 t}(a, m)
$$

is an elementary solution of the Bessel-Helmhotz operator iterated t-times defined by (6). In particular, for $q=0$ then (17) becomes

$$
\begin{equation*}
\left(\triangle_{B, p}+m^{2}\right)^{2 t} T(a, m)=\delta \tag{24}
\end{equation*}
$$

where $\left(\triangle_{B, p}+m^{2}\right)^{2 t}$ is the Bessel-Helmholtz operator of p-dimension, iterated $2 t$-times and is defined by (8). By Lemma 5, we have

$$
\begin{equation*}
T(a, m)=H_{B, 4 t}(a, m) \tag{25}
\end{equation*}
$$

is an elementary solution of (17). This completes the proof.
Corollary 1. Given the equation

$$
\begin{equation*}
\odot_{B}^{t} T(a, 0)=\delta \tag{26}
\end{equation*}
$$

for $a \in \mathbb{R}_{n}^{+}$, where \odot_{B}^{t} is the Bessel operator iterated t-times defined by (5), then

$$
\begin{equation*}
T(a, 0)=(-1)^{t} S_{2 t}(a) * R_{2 t}(a) \tag{27}
\end{equation*}
$$

is an elementary solution of Bessel diamond operator, where $R_{2 t}(a)$ and $S_{2 t}(a)$ are defined by (10) and (12), respectively.

Proof. If $m=0$, then we have $T(a, 0)=(-1)^{t} S_{2 t}(a) * R_{2 t}(a)$ yielding the result, see [7].

Acknowledgements

The author would like to thank the referee for his suggestions which enhanced the presentation of the paper. The author was supported by Sakon Nakhon Rajabhat University

References

[1] A. Kananthai, On the convolution equation related to the diamond kernel of Marcel Riesz, Appl. Math. Comput. 114 (1998), 95-101.
[2] B.M. Levitan, Expansion in Fourier series and integrals with Bessel functions, Uspeki Mat., Nauka (N.S.) 6,2(42)(1951) 102-143 (in Russian).
[3] A. Kananthai, On the convolution equation related to the N-dimensional ultrahyperbolic operator, J. Comp. Appl. Math. 115 (2000), 301-308.
[4] A. H. Zemanian, Distribution Theory and Transform Analysis, New York, McGrawHill, 1964.
[5] C. Bunpog, Nonlinear L_{1}^{k} operator related to the Bessel-Helmholtz operator and the Bessel Klein-Gordon operator, Int. Journal of Math. 6 (28) (2012), 1395-1402.
[6] Daniel Eceizabarrena Pérez, Distribution Theory and Fundamental Solutions of Differential Operators, Leioa, June 24th, 2015.
[7] H. Yildirim, M.Z. Sarikaya, S. and Ozturk, The solution of the n-dimensional Bessel diamond operator and the Fourier-Bessel transform of their convolution, Proc. Indian Acad. Sci. (Math. Sci.) 114 (4) (2004), 375-387.
[8] I.M. Gelfand, and G.E. Shilov, Generalized Function, New York, Academic Press, 1964.
[9] S. Niyom, and A. Kananthai, The nonlinear product of the Bessel Laplace operator and the Bessel Helmholtz operator, Applied Mathematical sciences 4 (36) (2010), 1797-1804.
[10] W. F. Donoghue, Distribution and Fourier Transform, New York, Academic Press, 1969.

