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On Hoehnke ideal in ordered semigroups

Niovi Kehayopulu

Abstract. For a proper subset A of an ordered semigroup S, we denote by HA(S) the subset of
S defined by HA(S) := {h ∈ S such that if s ∈ S\A, then s /∈ (shS]}. We prove, among others,
that if A is a right ideal of S and the set HA(S) is nonempty, then HA(S) is an ideal of S; in
particular it is a semiprime ideal of S. Moreover, if A is an ideal of S, then A ⊆ HA(S). Finally,
we prove that if A and I are right ideals of S, then I ⊆ HA(S) if and only if s /∈ (sI] for every
s ∈ S\A. We give some examples that illustrate our results. Our results generalize the Theorem
2.4 in Semigroup Forum 96 (2018), 523–535.
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1. Introduction and prerequisites

Regarding the prime ideals, Clifford uses the term “prime” while Petrich the term
“completely prime”. Clifford uses the term “semiprime ideal” and Petrich the term “com-
pletely semiprime ideal (subset)”. For ordered semigroups I adopted the terminology due
to Clifford; the authors in [2] the terminology by Petrich. Since in the present paper we
refer to [2], for the sake of completeness, in particular for this paper, we will use the terms
prime, semiprime, completely prime, completely semiprime. For an ordered semigroup S
the zero of S, denoted by 0, is an element of S such that 0x = x0 = 0 and 0 ≤ x for every
x ∈ S [1, 3]. In an ordered semigroup, the order plays an essential role and a relation
between the multiplication and the order is needed.

Let us first give the following definitions.

Definition 1.1. [5; Definition 2] Let S be an ordered semigroup. A subset A of S is
called completely prime if for any subsets B,C of S such that BC ⊆ A, we have B ⊆ A
or C ⊆ A.
Equivalent Definition: if x, y ∈ S such that xy ∈ A, then x ∈ A of y ∈ A.

Definition 1.2. [5; Definition 3] Let S be an ordered semigroup. A subset A of S is
called prime if for any ideals B,C of S such that BC ⊆ A, we have B ⊆ A or C ⊆ A.
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Definition 1.3. [5; Definition 4] Let S be an ordered semigroup. A subset A of S is
called completely semiprime if for any subset B of S such that B2 ⊆ A, we have B ⊆ A.
Equivalent Definition: for every x ∈ S such that x2 ∈ A, we have x ∈ A.

Definition 1.4. [4; Remark 4] Let S be an ordered semigroup. A subset A of S is called
semiprime if for any ideal B of S such that B2 ⊆ A, we have B ⊆ A.

Clearly, every completely prime (resp. completely semiprime) subset of S is a prime
(resp. semiprime) subset.

The authors in [2] call a right ideal I of an ordered semigroup S prime if it is proper
and for any right ideals A, B of S, AB ⊆ I implies A ⊆ I or B ⊆ I. They call a right ideal
of S semiprime if it is proper and for any right ideal A of S, A2 ⊆ I implies A ⊆ I. Their
definition regarding the completely semiprime right ideal is the same with the usual one
in rings, semigroups, ordered semigroups (see, for example [8]) with the only difference
that they defined it as “proper”. Since every ordered semigroup (ring, semigroup) is itself
a completely prime (prime) or completely semiprime (semiprime) subset of itself, these
concepts have been never defined as “proper” in the existed bibliography (so in proofs, as
well).

For an ordered semigroup (S, ·,≤) possessing a zero 0 and an identity e of (S, ·) such
that e 6= 0 it has been proved in [2] that if A is proper right ideal of S, then the set
HA(S) := {h ∈ S such that if s ∈ S\A then s /∈ (shS]} is an interior ideal of S; since
S possess an identity, the interior ideal HA(S) is also an ideal of S, but this should be
emphasized in [2] since an interior ideal is not an ideal in general. Then the authors proved
that if A is a proper right ideal of S then, for any right ideal I of S we have I ⊆ HA(S)
if and only if s /∈ (sI] for all s ∈ S\A (property (2) in [2; Theorem 2.4]) and using this
property they proved that if A is a proper ideal of S, then A ⊆ HA(S) (property (3) in
[2; Theorem 2.4]) and that HA(S) is a semiprime ideal of S (property (1) in the same
theorem) in the sense that HA(S) is a proper ideal of S and for any right ideal I of S such
that I2 ⊆ HA(S) we have I ⊆ HA(S). That is, it has been proved that (2)⇒ (1) and (3).
The set HA(S) has been called “Hoehnke ideal” in [2].

In the present paper we define the HA(S) for any proper subset A of an ordered semi-
group S. We keep the definitions of semiprime and prime subsets of ordered semigroups
given above, and we first prove that the set HA(S) is a semiprime subset of S. Then we
prove that, if A is a proper ideal of S, then A is a subset of HA(S). We show, among
others, that if A is a right ideal of S and the set HA(S) is nonempty, then HA(S) is an ideal
of S; and hence a semiprime ideal of S. Finally, we prove that if A and I are right ideals of
an ordered semigroup S, then we have I ⊆ HA(S) if and only if s /∈ (sI] for every s ∈ S\A.
Unlike in [2], we have not used this last property to prove that HA(S) is semiprime and
that A ⊆ HA(S); each of the three properties have been proved independently and the
proof of Theorem 2.4 in [2] can be also given in the same way.

In [2] only the definition of semiprime right ideal is given, there is no the definition
of semiprime ideal in the paper. However, according to the proof of Theorem 2.4, the
authors call an ideal A of an ordered semigroup S semiprime if it is proper and for any
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right ideal I of S, I2 ⊆ A implies I ⊆ A. In case of ideals, this definition is equivalent
to our Definition 1.4. So the results of the present paper generalize the Theorem 2.4 in
[2]. On this occasion some information concerning the associate prime ideal has been also
given. We give some examples that illustrate our results.

2. Main results

Let (S, ·,≤) be an ordered semigroup. A nonempty subset A of S is called a right
(resp. left) ideal of S if (1) AS ⊆ A (resp. SA ⊆ A) and (2) if a ∈ A and S 3 b ≤ a,
then b ∈ A [4, 5]. For a subset A of an ordered semigroup (S, ·,≤), we denote by (A] the
subset of S defined by (A] := {t ∈ S | t ≤ a for some a ∈ A} [4, 5]. If S is a right ideal,
left ideal or an ideal of an ordered semigroup S, then (A] = A. For a proper subset A of
S we denote by HA(S) the subset of S defined by

HA(S) := {h ∈ S such that if s ∈ S\A, then s /∈ (shS]} [2].

Clearly, HA(S) = ∅ or HA(S) 6= ∅. Let us give an example for which HA(S) = ∅.
Example 2.1. For the ordered semigroup S = {a, b, c} defined by Table 2 and Figure
2 and the subset A = {a, b} of S, we have HA(S) = ∅. For A = {b, c} we also have
HA(S) = ∅.

· a b c

a a b a

b a b a

c a b c

Table 2.

c b

a

Figure 2.

Proposition 2.2. (see also [2; Theorem 2.4(1)]) If S is an ordered semigroup, then the
set HA(S) is a semiprime subset of S.

Proof. Let I be an ideal of S such that I2 ⊆ HA(S). Then I ⊆ HA(S). Indeed: Let
h ∈ I. We have to prove that h ∈ HA(S) that is, if s ∈ S\A, then s /∈ (shS]. Suppose
s ∈ S\A and s ∈ (shS]. Since h ∈ I and I is an ideal of S, we have

s ∈ (s(IS)] ⊆ (sI] ⊆ (SI] ⊆ (I] = I,



N. Kehayopulu / Eur. J. Pure Appl. Math, 11 (4) (2018), 911-921 914

then s2 ∈ I2 ⊆ HA(S). Since s2 ∈ HA(S) and s ∈ S\A, we have s /∈ (ss2S] = (S] = S
which is impossible. �

Proposition 2.3. (see also [2; Theorem 2.4(3)] Let S be an ordered semigroup. Then we
have the following:

If A is a (proper) ideal of S, then A ⊆ HA(S).

Proof. Let h ∈ A. Then h ∈ HA(S). Indeed: First of all, since A ⊆ S, we have h ∈ S.
Let now s ∈ S\A. Then s /∈ (shS]. In fact: If s ∈ (shS] then, since A is an ideal of S, we
have

s ∈ (s(hS)] ⊆ (s(AS)] ⊆ (sA] ⊆ (SA] ⊆ (A] = A

which is impossible. Since h ∈ S, s ∈ S\A and s /∈ (shS], we have h ∈ HA(S). �

Corollary 2.4. If A is a (proper) ideal of S, then HA(S) 6= ∅.
In Proposition 2.3 and Corollary 2.4 is not necessary to assume that the ideal A is a

“proper” ideal of S; this is because, by writing HA(S), we already accepted that A is a
proper subset of S.

Proposition 2.5. Let (S, ·,≤) be an ordered semigroup. Then
If HA(S) 6= ∅, then HA(S) is a right ideal of S.

Proof. By hypothesis, HA(S) is a nonempty subset of S. Let h ∈ HA(S) and t ∈ S. Then
ht ∈ HA(S). In fact: First of all, ht ∈ S. Let now s ∈ S\A. Then s /∈ (shtS]. Indeed: if
s ∈ (sh(tS)], then s ∈ (shS]. On the other hand, since h ∈ HA(S) and s ∈ S\A, we have
s /∈ (shS], we get a contradiction. Let now h ∈ HA(S) and S 3 g ≤ h. Then g ∈ HA(S).
Indeed: Let s ∈ S\A. Since h ∈ HA(S) and s ∈ S\A, we have s /∈ (shS]. Since g ≤ h,
we have (sgS] ⊆ (shS]. Then we get s /∈ (sgS]. Since s ∈ S\A and s /∈ (sgS], we have
g ∈ HA(S). �

Proposition 2.6. Let (S, ·,≤) be an ordered semigroup. Then
If A is a right ideal of S and HA(S) 6= ∅, then HA(S) is a left ideal of S.

Proof. By hypothesis, HA(S) is a nonempty subset of S. Let t ∈ S and h ∈ HA(S).
Then th ∈ HA(S). Indeed: Let s ∈ S\A. We have to prove that s /∈ (sthS]. Suppose
s ∈ (sthS]. Then we have

st ∈ (sthS](S] ⊆ (sthS2] ⊆ (sthS] (1)

On the other hand, since h ∈ HA(S), we have st ∈ A. Indeed: Let st ∈ S\A. Since
h ∈ HA(S) and st ∈ S\A, we have st /∈ (sthS] which is impossible by (1). Since s ∈ (sthS]
and st ∈ A, we have s ∈ ((st)hS] ⊆ (AhS] ⊆ (AS] ⊆ (A] = A, so s ∈ A which is impossible.
Finally, as in Proposition 2.5, h ∈ HA(S) and S 3 g ≤ h imply g ∈ HA(S); thus HA(S) is
a left ideal of S. �

Corollary 2.7. If S is an ordered semigroup, A a right ideal of S and HA(S) 6= ∅, then
HA(S) is an ideal of S.
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Proof. Since HA(S) 6= ∅, by Proposition 2.5, HA(S) is a right ideal of S. Since A a right
ideal of S and HA(S) 6= ∅, by Proposition 2.6, HA(S) is a left ideal of S; and so HA(S) is
an ideal of S. �

Corollary 2.8. (see also [2; Theorem 2.4(1)]) If S is an ordered semigroup, A a right
ideal of S and HA(S) 6= ∅, then HA(S) is a semiprime ideal of S.

Proof. Since A is a right ideal of S and HA(S) 6= ∅, by Corollary 2.7, HA(S) is an ideal
of S. On the other hand, by Proposition 2.2, HA(S) is a semiprime subset of S. Thus
HA(S) is a semiprime ideal of S. �

Proposition 2.9. Let (S, ·,≤) be an ordered semigroup and I a right ideal of the semigroup
(S, ·). If s /∈ (sI] for every s ∈ S\A, then I ⊆ HA(S).

Proof. Let h ∈ I. Then h ∈ HA(S), that is if s ∈ S\A, then s /∈ (shS]. Indeed: Let
s ∈ S\A and s ∈ (shS]. Then we have s ∈ (s(IS)] ⊆ (sI], we get a contradiction. �

Proposition 2.10. Let S be an ordered semigroup, HA(S) a left ideal of S and I be a
subset of S such that I ⊆ HA(S). Then s /∈ (sI] for every s ∈ S\A.

Proof. Let s ∈ S\A such that s ∈ (sI]. Then

s ∈ (sI] ⊆ (sHA(S)] ⊆ (SHA(S)] ⊆ (HA(S)] = HA(S)

since HA(S) is a left ideal of S. We have s ∈ S\A and s ∈ HA(S), so s /∈ (ssS] = (S] = S
which is impossible. �

Corollary 2.11. Let S be an ordered semigroup, A a right ideal of S, HA(S) 6= ∅ and I a
subset of S such that I ⊆ HA(S). Then s /∈ (sI] for every s ∈ S\A.

Proof. Since A is a right ideal of S and HA(S) 6= ∅, by Proposition 2.6, HA(S) is a left
ideal of S. Since HA(S) is a left ideal of S and I a subset of S such that I ⊆ HA(S), by
Proposition 2.10, s /∈ (sI] for every s ∈ S\A. �

Corollary 2.12. (see also [2; Theorem 2.4(2)]) Let (S, ·,≤) be an ordered semigroup and
A, I right ideals of (S, ·,≤). Then I ⊆ HA(S) if and only if s /∈ (sI] for every s ∈ S\A.

Proof. =⇒. Since I is a right ideal of S and I ⊆ HA(S), we have HA(S) 6= ∅. Since A is
a right ideal of S, HA(S) 6= ∅ and I is a subset of S such that I ⊆ HA(S), by Corollary
2.11, s /∈ (sI] for every s ∈ S\A.
⇐=. Since I is a right ideal of the ordered semigroup (S, ·,≤), it is a right ideal of the
semigroup (S, ·) as well. Since I is a right ideal of (S, ·) and s /∈ (sI] for every s ∈ S\A,
by Proposition 2.9, we have I ⊆ HA(S). �

Summarizing, from Proposition 2.3, Corollary 2.8 and Corollary 2.12 we have the
following theorem

Theorem 2.13. Let (S, ·,≤) be an ordered semigroup. Then we have the following:

(1) If A is a (proper) ideal of S, then A ⊆ HA(S).

(2) If A a right ideal of S and HA(S) 6= ∅, then HA(S) is a semiprime ideal of S.
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(3) If A and I are right ideals of S, then I ⊆ HA(S) if and only if s /∈ (sI] for every
s ∈ S\A.

Again in property (1) the assumption “proper” can be omitted.

Theorem 2.13 generalizes the Theorem 2.4 in [2]. It is enough to observe that if S has
a zero and A is a proper right ideal of S, then 0 ∈ HA(S) and so HA(S) 6= ∅.

We apply the above results to the following examples. The first two examples are
on ordered semigroups in general; the third one is an example of an ordered semigroup
(S, ·,≤) that contains a zero.

Example 2.14. We consider the ordered semigroup S = {a, b, c, d, e, f} defined by Table
3 and Figure 3.

· a b c d e f

a a b b b e f

b a b b b e f

c a b b c e f

d a b b d e f

e e e e e e f

f f f f f f f

Table 3.

a

b

e

c

d

f

Figure 3.

For the subset A = {c, d, e} of S, we have HA(S) = ∅.
The sets {f} and {e, f} are proper subsets of S, so the sets H{f}(S) and H{e,f}(S) are
defined and, by Proposition 2.2, they are semiprime subsets of S. Independently, let us
prove that H{e,f}(S) is semiprime. We first prove that H{e,f}(S) = {e, f}. Let now I be an
ideal of S such that I2 ⊆ {e, f}. Then I ⊆ {e, f}. Indeed: if x ∈ I, then x2 ∈ I2 ⊆ {e, f},
so x2 = e or x2 = f . If x2 = e then, by Table 3, we have x = e and so x ∈ {e, f}.



N. Kehayopulu / Eur. J. Pure Appl. Math, 11 (4) (2018), 911-921 917

If x2 = f , then x = f and again x ∈ {e, f}. Independently, the set H{f}(S) is also a
semiprime subset of S. Indeed, we have H{f}(S) = {f}; and if I is an ideal of S such
that I2 ⊆ {f} and x ∈ I, then x2 = f and, by Table 3, x = f ; so I ⊆ {f}. The sets {f}
and {e, f} are ideals of S. We have already seen that {f} ⊆ H{f}(S) and {e, f} ⊆ H{e,f};
that is a consequence of Proposition 2.3 as well. Since H{f}(S) 6= ∅, by Proposition 2.5,
H{f}(S) is a right ideal of S; which is true. In a similar way all of the above results can
be applied to this example.

Example 2.15. We consider the ordered semigroup S = {a, b, c, d, e, f} defined by Table
4 and Figure 4.

· a b c d e f

a a a a d a a

b a b b d b b

c a b c d e e

d a a d d d d

e a b c d e e

f a b c d e f

Table 4.

e

a

d

b

c

f

Figure 4.

The proper ideals of S are the sets {a, d} and {a, b, d}. Moreover we have H{a,d}(S) =
{a, d} and H{a,b,d}(S) = {a, b, d}. Since {a, d} (resp. {a, b, d}) is a right ideal of S and
H{a,d}(S) 6= ∅ (resp. H{a,b,d}(S) 6= ∅), by Corollary 2.8, the sets H{a,d}(S) and H{a,b,d}(S)
are semiprime ideals of S. Independently we can prove that the set H{a,d}(S) is a semiprime
subset (and thus a semiprime ideal) of S, by showing that the set I = {a, d} is the only ideal
of S such that I2 ⊆ {a, d} or in the way indicated in Example 2.14. The sets {a, b, d} and
{a, d} are right ideals of S and {a, d} ⊆ H{a,b,d}(S). So, by the ⇒-part of Corollary 2.12,
we have s /∈ (s{a, d}] for every s ∈ S\{a, b, d}. Independently, if s ∈ S\{a, b, d}, then s = c
or s = e or s = f ; c /∈ (a, d] = (c{a, d}], e /∈ (a, d] = (e{a, d}] and f /∈ (a, d] = (f{a, d}].
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In addition, since {a, b, d} and {a, d} are right ideals of S and s /∈ (sa, sd] = (s{a, d}]
for every s ∈ S\{a, b, d}, by the ⇐-part of Corollary 2.12, we have {a, d} ⊆ H{a,b,d}(S);
independently, we can check that this is true. All of the results given above in a similar
way can be applied.

Example 2.16. We consider the ordered semigroup S = {a, b, c, d, e} defined by Table 5
and Figure 5. This is an ordered semigroup with zero; the element a is the zero element
of S; that is ax = xa = a and a ≤ x for every x ∈ S.

· a b c d e

a a a a a a

b a a a a a

c a a c c a

d a a c c a

e a a e e a

Table 5.

a

b

c e

d

Figure 5.

The set A = {a, b, c, d} is a right ideal of S, S\A = {e} and HA(S) = {a, b, e}. Since
HA(S) 6= ∅, by Corollary 2.8, HA(S) is a semiprime ideal of S. Independently, by looking
at Table 5 and Figure 5 we can see that this is indeed an ideal of S. Moreover, it is a
semiprime subset of S (and so a semiprime ideal of S as Corollary 2.8 shows). Indeed, if
I is an ideal of S such that I2 ⊆ {a, b, e} and x ∈ I, then x2 = a or x2 = b or x2 = e.
As there is no element x of S such that x2 = b or x2 = e, we have x2 = a and so x = a
or x = b or x = e; that is x ∈ {a, b, e}. Thus we have I ⊆ {a, b, e} and {a, b, e} is
semiprime. As one can see, A = {a, b, c, e} is an ideal of S and HA(S) = S. We can check
that H{a,b,e}(S) = {a, b, e}. Since H{a,b,e}(S) is a left ideal of S and {a, b} is a subset of
S such that {a, b} ⊆ H{a,b,e}(S), by Proposition 2.10, for every s ∈ S\{a, b, e}, we have
s /∈ (s{a, b}) = (sa, sb], that is c /∈ (ca, cb] = (a] and d /∈ (da, db] = (a]; independently we
can check that this is indeed so as c � a and d � b. All the above results can be applied
to this example.
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For a subset A of an ordered semigroup (S, ·,≤), we denote by Pr(A) the subset of S
defined by

Pr(A) := {p ∈ S | ∃ s ∈ S\A such that sp ∈ A}

(cf. also [2]). Clearly Pr(A) = ∅ or Pr(A) 6= ∅. For the ordered semigroup S defined in
Example 2.1 and the subset A = {c} of S, we have Pr(A) = ∅. If A is a proper left ideal of
(S, ·), then A ⊆ Pr(A), and thus Pr(A) 6= ∅. Indeed: Let p ∈ A. Take an element s ∈ S\A
(A is proper). We have sp ∈ (S\A)A ⊆ SA ⊆ A and so sp ∈ A. Since p ∈ S, s ∈ S\A and
sp ∈ A, we have p ∈ Pr(A).

Example 2.17. Let us consider the ordered semigroup of the Example 2.14. For the
subset {c, e} of S, we have Pr({c, e}) = {e}. For the subset {c, d, e} of S, we also have
Pr({c, d, e}) = {e}. On the other hand, the sets {f} and {e, f} are proper left ideals of S,
and we have {f} = Pr({f}) ⊆ Pr({f}) and {e, f} = Pr({e, f}) ⊆ Pr({e, f}).

In a semigroup (S, ·) containing an identity e, if A is a proper right ideal of S, then
A ⊆ Pr(A). Indeed, as A is proper, we have e ∈ S\A; and if p ∈ A, then ep = p ∈ A,
thus p ∈ Pr(A) (see also [2]). According to [2; Proposition 2.5], if (S, ·,≤) is an ordered
semigroup, e an identity of (S, ·) and A a proper right ideal of (S, ·,≤), then the set Pr(A)
is a completely prime right ideal of S and A ⊆ Pr(A). The first part of this proposition
can be also obtained as a corollary to the following proposition.

Proposition 2.18. Let A be a proper right of an ordered semigroup S. If Pr(A) is
nonempty, then it is a completely prime right ideal of S.

In contrast to semigroups containing identity, if S is an ordered semigroup and A is
a proper right ideal of S, then the property A ⊆ Pr(A) does not hold in general. Let us
show it by the following

Example 2.19. Consider the ordered semigroup of the Example 2.14. As we have
already seen in Example 2.17, for the subset A = {c, d, e} of S, we have Pr(A) = {e} and
so A * Pr(A). We observe here that the set {c, d, e} is not an ideal of S.

In this respect, we have the following

Proposition 2.20. Let A be a proper ideal of an ordered semigroup (S, ·,≤). Then Pr(A)
is a completely prime right ideal of S containing A.

Proof. Since A is a proper left ideal of (S, ·), we have A ⊆ Pr(A) and so Pr(A) 6= ∅.
Since A is a proper right ideal of (S, ·,≤) and Pr(A) 6= ∅, by Proposition 2.18, Pr(A) is a
completely prime right ideal of S containing A. �

We apply Proposition 2.20 to the following example

Example 2.21. Consider the ordered semigroup S of the Example 2.14. The sets {f}
and {e, f} are the only proper ideals of S; and as we have seen in Example 2.17, for
the set A = {e, f}, we have Pr(A) = {e, f}. By Proposition 2.20, Pr(A) is a completely
prime ideal of S. Independently, we can check that if C,D are subsets of S such that
CD ⊆ {e, f}, then C ⊆ {e, f} or D ⊆ {e, f} (or we can check that if x, y ∈ S such
that xy ∈ {e, f}, then x ∈ {e, f} or y ∈ {e, f}) which means that {e, f} is a completely
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prime ideal of S. Similarly, the set Pr({f} (= {f}) is a completely prime ideal of S. This
being so, we add to Example 2.14 a second proof that the sets {e, f} and {f} are indeed
semiprime ideals of S; as every completely prime ideal is a prime ideal and every prime
ideal is a semiprime ideal.

According [2; p. 526, l. –9 to –7], if I and J are right ideals of an ordered semigroup
S, then (IJ ] is a right ideal of S. The authors assume that each ordered semigroup has
an identity and a zero [see p. 525, l. 22–23]. It might be noted that, more generally, if I
is a nonempty subset of an ordered semigroup S and J a right ideal of S, then (IJ ] is a
right ideal of S. If I is a left ideal of S and J a nonempty subset of S, then (IJ ] is a left
ideal of S. As a consequence, if I and J are ideals of S, then (IJ ] is an ideal of S. The
finite intersection of right (resp. left, two-sided) ideals of an ordered semigroup S, if it is
nonempty, is a right (resp. left, two-sided) ideal of S; this generalizes the corresponding
result in [2; Corollary 2.2].

Finally, it might be mentioned that the Proposition 2.1 in [2], actually a lemma used
throughout the paper, is not new (see, for example [4; the Lemma] or [5; Lemma 1]). The
Proposition 2.3 in [2] is also not new, it is a special case of the Proposition in [5], where has
been shown that if an ideal of an ordered semigroup is completely semiprime and prime,
then it is completely prime (without using the identity considered in [2]). The fact that
every semigroup endowed with the order ≤= {x, y) | x = y} is an ordered semigroup and,
as a consequence, the notion of a right chain ordered semigroup generalizes the notion of
a right chain semigroup (p. 525, l. 11–19; p. 524, l. –10 to –7] in [2]) is well known as it
is known for any type of ordered semigroups –see, for example [4–7].

I would like to thank the two anonymous referees for their time to read the paper
carefully, their interest on my work and their prompt reply –something lately not very
usual.
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