EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 12, No. 1, 2019, 135-145 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global

β_1 -paracompactness with respect to an ideal

Abdo Qahis

Department of Mathematics, Faculty of Science and Arts, Najran University, Saudi Arabia

Abstract. The notion of β_1 -paracompactness in topological spaces is introduced and studied in [1]. In this paper, we introduce and investigate the notion of β_1 -paracompact spaces with respect to an ideal \mathcal{I} which is a generalization of the notion of β_1 -paracompact spaces. We study characterizations, subsets and subspaces of $\beta_1\mathcal{I}$ -paracompact spaces. Also, we investigate the invariants of $\beta_1\mathcal{I}$ -paracompact spaces by functions.

2010 Mathematics Subject Classifications: 54A05, 54A08, 54D10

Key Words and Phrases: Ideal, β -open set, β_1 -paracompact, β_1 -paracompact modulo \mathcal{I} , locally finite collection, β -irresolute, β -continuous, strongly β -continuous.

1. Introduction and Preliminaries

In 2016, Heyam Al-Jarrah introduced and studied the concept of β_1 -paracompact spaces. A space (X, τ) is said to be β_1 -paracompact space [1] if every β -open cover of X has a locally finite open refinement. In this paper, we introduce a new class of spaces, called $\beta_1 \mathcal{I}$ -paracompact spaces and investigate their properties and their relations with other types of spaces.

The notion of ideals in topological spaces was first studied by Kuratowski [12] and Vaidyanathaswamy [23]. An ideal \mathcal{I} on a set X is a nonempty collection of subsets of X which satisfies the following properties:

(i) $A \in \mathcal{I}$ and $B \subset A$ implies $B \in \mathcal{I}$;

(*ii*) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$.

Given a topological space (X, τ) with an ideal \mathcal{I} on X and if p(X) is the set of all subsets of X, a set operator $()^* : p(X) \to p(X)$, called a local function [10] of A with respect to τ and \mathcal{I} is defined as follows: for $A \subset X$, $A^*(\mathcal{I}, \tau) = \{x \in X : U \cap A \notin \mathcal{I} \text{ for every } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau : x \in U\}$. A Kuratowski closure operator $cl^*()$ for a topology $\tau^*(\mathcal{I}, \tau)$ called *-topology finer than τ is defined by $cl^*(A) = A \cup A^*(\mathcal{I}, \tau)$ [10] and $\beta = \{U \setminus I : U \in \tau, I \in \mathcal{I}\}$ is a basis for τ^* [10]. We simply write τ^* for $\tau^*(\mathcal{I}, \tau)$. If \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an ideal space. If $\beta = \tau^*$, then we say \mathcal{I} is τ -simple [10]. A sufficient condition for \mathcal{I} to be simple is the following: for $A \subset X$, if for

http://www.ejpam.com

© 2019 EJPAM All rights reserved.

DOI: https://doi.org/10.29020/nybg.ejpam.v12i1.3552

Email address: cahis820gmail.com (A. Qahis)

every $a \in A$ there exists $U \in \tau(a)$ such that $U \cap A \in \mathcal{I}$, then $A \in \mathcal{I}$. If (X, τ, \mathcal{I}) satisfies this condition, then τ is said to be compatible with respect to \mathcal{I} [10] or \mathcal{I} is said to be τ -local, denoted by $\mathcal{I} \sim \tau$. Given an ideal space (X, τ, \mathcal{I}) , we say \mathcal{I} is τ -boundary [10] or \mathcal{I} -codense if $\mathcal{I} \cap \tau = \emptyset$. An ideal \mathcal{I} is said to be weakly τ -local [11] if $A^* = \emptyset$ implies $A \in \mathcal{I}$. Some useful ideals in X are: (i) p(A), where $A \subseteq X$ and (ii) \mathcal{I}_f , the ideal of all finite subsets of X.

By a space (X, τ) , we always mean a topological space (X, τ) with no separation properties assumed. If $A \subseteq X$, we denote the closure of A and the interior of A by cl(A) and int(A), respectively. A subset A of (X, τ) is said to be semi-open[13] (resp., α -open[17], regular open [21]) if $A \subset cl(int(A))$, (resp., $A \subset int(cl(int(A)))$, A = int(cl(A))). The family of α -sets of a space (X, τ) denoted by τ^{α} forms a topology on X finer than τ [17]. Abd El-Monsef et al. [8] introduced and studied the concept of β -open sets in topological spaces. A subset A of X is called β -open if $A \subset cl(int(cl(A)))$. The complement of a β -open set is said to be β -closed [8]. The family of all β -open (resp., β -closed) subsets of X is denoted by $\beta O(X,\tau)$ (resp., $\beta C(X,\tau)$). The union of all β -open subsets of X contained in A is called β -interior of A and is denoted by $\beta int(A)$ and the intersection of all β -closed subsets of X containing A is called the β -closure of A and is denoted by $\beta cl(A)$. A set A is called β -regular [19] if it is both β -open and β -closed. A space (X, τ) is said to be β -regular [14] if for each β -open set U and each $x \in U$, there exists a β -open set V such that $x \in V \subset \beta cl(V) \subset U$. For any space, $\beta O(X, \tau^{\alpha}) = \beta O(X, \tau)$ [2]. A collection $\mathcal{W} = \{W_{\alpha} : \alpha \in \Delta\}$ of subsets of a space (X, τ) is said to be locally finite if for each $x \in X$, there exists an open set U containing x and U intersects at most finitely many members of \mathcal{W} . A subset A of space X is said to be N-closed relative to X (briery, N-closed)[7] if for every cover $\{U_{\alpha} : \alpha \in \Delta\}$ of A by open subsets of X, there exists a finite subfamily Δ_0 of Δ such that $A \subset \cup \{int(cl(int(U_\alpha))) : \alpha \in \Delta_0\}.$

Definition 1. A space (X, τ) is said to be:

(i) extremally disconnected (briefly e.d.) [24] if the closure of every open set in (X, τ) is open;

(ii) submaximal [5] if each dense subset of X is open in X.

Lemma 1. [3] The union of a finite family of locally finite collection of sets in a space is a locally finite family of sets.

Theorem 1. [16] Let (X, τ) be a space, $A \subset B \subset X$ and B is β -open in (X, τ) . Then A is β -open in (X, τ) if and only if A is β -open in the subspace (B, τ_B) .

Theorem 2. [4] If $\{U_{\alpha} : \alpha \in \Delta\}$ is a locally finite family of subsets in a space X and if $V_{\alpha} \subset U_{\alpha}$ for each $\alpha \in \Delta$, then the family $\{V_{\alpha} : \alpha \in \Delta\}$ is a locally finite in X.

Lemma 2. [9] If $f : (X, \tau) \to (Y, \sigma)$ is a continuous surjective function and $\mathcal{U} = \{U_{\alpha} : \alpha \in \Delta\}$ is locally finite in Y, then $f^{-1}(\mathcal{U}) = \{f^{-1}(U_{\alpha}) : \alpha \in \Delta\}$ is locally finite in X.

Lemma 3. [18] Let $f : (X, \tau) \to (Y, \sigma)$ be almost closed surjection with N-closed point inverse. If $\{U_{\alpha} : \alpha \in \Delta\}$ is a locally finite open cover of X, then $\{f(U_{\alpha}) : \alpha \in \Delta\}$ is a locally finite cover of Y.

Lemma 4. [22] \mathcal{I} is weakly τ -local implies \mathcal{I} is τ -locally finite.

Lemma 5. [2] If V is open and A is semi-preopen (or β -open) then $V \cap A$ is semi-preopen (or β -open).

2. $\beta_1 \mathcal{I}$ -paracompact spaces

Recall that an ideal space (X, τ, \mathcal{I}) is said to be \mathcal{I} -paracompact [22] (resp., $S_1\mathcal{I}$ -paracompact [20]) if every open (resp., semi-open) cover \mathcal{U} of X has a locally finite open refinement \mathcal{V} (not necessarily a cover) such that $X \setminus \bigcup \{V : V \in \mathcal{V}\} \in \mathcal{I}$.

Definition 2. An ideal space (X, τ, \mathcal{I}) is said to be $\beta_1 \mathcal{I}$ -paracompact, or β_1 -paracompact modulo an ideal \mathcal{I} if every β -open cover \mathcal{U} of X has a locally finite open refinement \mathcal{V} (not necessarily a cover) such that $X \setminus \bigcup \{V : V \in \mathcal{V}\} \in \mathcal{I}$. A family \mathcal{V} of subsets of X such that $X \setminus \bigcup \{V : V \in \mathcal{V}\} \in \mathcal{I}$ is called an \mathcal{I} -cover of X.

It follows from the definitions that

 β_1 -paracompact $\Rightarrow \beta_1 \mathcal{I}$ -paracompact $\Rightarrow S_1 \mathcal{I}$ -paracompact $\Rightarrow \mathcal{I}$ -paracompact

The following examples show that the converses of the above implications need not be true in general.

Example 1. Let $X = \mathbb{R}$ with the topology $\tau = \{\emptyset, X, \{0\}\}$ and $\mathcal{I} = \mathcal{I}_f$. Then (X, τ) is paracompact which implies that (X, τ, \mathcal{I}) is \mathcal{I} -paracompact. On the other hand (X, τ, \mathcal{I}) is not $\beta_1 \mathcal{I}$ -paracompact. For the β -open cover $\mathcal{U} = \{\{0, x\} : x \in X, x \neq 0\}$, we can find a locally finite open refinement $\mathcal{V} = \{0\}$ of \mathcal{U} . But \mathcal{V} does not \mathcal{I} -cover of X. Therefore, (X, τ, \mathcal{I}) is not $\beta_1 \mathcal{I}$ -paracompact.

Example 2. Let $X = \{1, 2, 3, 4\}$ with the topology $\tau = \{\emptyset, X, \{1, 2\}, \{3, 4\}\}$ and $\mathcal{I} = \mathcal{I}_f$. Then (X, τ, \mathcal{I}) is $S_1\mathcal{I}$ -paracompact, since $SO(X, \tau) = \tau$, but it is not $\beta_1\mathcal{I}$ -paracompact since $\mathcal{U} = \{\{1\}, \{2\}, \{3\}, \{4\}\}\}$ is a β -open cover of X which admits no locally finite open refinement.

Example 3. Consider the ideal space (X, τ, \mathcal{I}) where $X = \{1, 2, 3\}, \tau = \{\emptyset, X, \{1\}\}$ and $\mathcal{I} = \{A \subset X : 1 \notin A\}$. Then $\beta O(X, \tau) = \{\emptyset, X, \{1\}, \{1, 2\}, \{1, 3\}\}$. Therefore (X, τ, \mathcal{I}) is $\beta_1 \mathcal{I}$ -paracompact space. On the other hand, (X, τ) is not β_1 - paracompact space since $\mathcal{U} = \{\{1, 2\}, \{1, 3\}\}$ is a β_1 -open cover of (X, τ) which admits no locally finite open refinement.

Example 4. Consider the ideal space (X, τ, \mathcal{I}) where $X = \mathbb{R}$, the set of all real numbers, $\tau = \{\emptyset, X, \{0\}\}$ and $\mathcal{I} = \{A \subset X : 0 \notin A\}$. Then (X, τ, \mathcal{I}) is $\beta_1 \mathcal{I}$ -paracompact space but (X, τ) is not β_1 -paracompact, since the β -open cover $\mathcal{U} = \{\{0, x\} : x \in X, x \neq 0\}$ admits no locally finite open refinement.

Corollary 1. Let (X, τ) be a space with an ideal $\mathcal{I} = \{\emptyset\}$. Then (X, τ) is β_1 -paracompact if and only if (X, τ, \mathcal{I}) is $\beta_1 \mathcal{I}$ -paracompact.

Corollary 2. For an e.d. submaximal ideal space (X, τ, \mathcal{I}) , the following conditions are equivalent:

(i) (X, τ, \mathcal{I}) is $\beta_1 \mathcal{I}$ -paracompact; (ii) (X, τ, \mathcal{I}) is $S_1 \mathcal{I}$ -paracompact;

(*iii*) (X, τ, \mathcal{I}) is \mathcal{I} -paracompact.

Proof. This follows directly from the fact that if an ideal space (X, τ, \mathcal{I}) is an e.d. submaximal space, then $\tau = SO(X, \tau) = \beta O(X, \tau)$.

Proposition 1. If (X, τ, \mathcal{I}) is $\beta_1 \mathcal{I}$ -paracompact, then $(X, \tau^{\alpha}, \mathcal{I})$ is $\beta_1 \mathcal{I}$ -paracompact.

Proof. Suppose (X, τ, \mathcal{I}) is $\beta_1 \mathcal{I}$ -paracompact. Let $\mathcal{U} = \{U_\alpha : \alpha \in \Delta\}$ be a β -open cover of $(X, \tau^\alpha, \mathcal{I})$. Then \mathcal{U} is a β -open cover of (X, τ, \mathcal{I}) . By hypothesis, there exist a locally finite open refinement $\mathcal{V} = \{V_\lambda : \lambda \in \Lambda\}$ of \mathcal{U} such that $X \cup \setminus \{V_\lambda : \lambda \in \Lambda\} \in \mathcal{I}$. Since $\tau \subset \tau^\alpha$, the family \mathcal{V} is a τ^α -locally finite τ^α -open refinement of \mathcal{U} and so $(X, \tau^\alpha, \mathcal{I})$ is $\beta_1 \mathcal{I}$ -paracompact.

By replacing \mathcal{I} by $\{\emptyset\}$ in Proposition 1, we have the following corollary.

Corollary 3. [1, Theorem 2.8(2)] If (X, τ) is β_1 -paracompact, then (X, τ^{α}) is β_1 -paracompact.

Theorem 3. Let (X, τ, \mathcal{I}) be an ideal space. If \mathcal{I} is codense, (X, τ^*, \mathcal{I}) is $\beta_1 \mathcal{I}$ -paracompact and \mathcal{I} is τ -simple, then every β -open cover of (X, τ, \mathcal{I}) has τ -locally finite β -open \mathcal{I} -cover refinement.

Proof. Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Delta\}$ be a β -open cover of X. Since, $\beta O(X, \tau) \subseteq \beta O(X, \tau^*)$. Then \mathcal{U} is a β -open cover of (X, τ^*, \mathcal{I}) . By hypothesis, there exist τ^* -locally finite τ^* -open refinement $\mathcal{V} = \{V_{\lambda} \setminus I_{\lambda} : \lambda \in \Lambda, V_{\lambda} \in \tau, I_{\lambda} \in \mathcal{I}\}$ of \mathcal{U} such that $X \setminus \bigcup \{V_{\lambda} \setminus I_{\lambda} : \lambda \in \Lambda\} \in \mathcal{I}$. For each $x \in X$, there exists a τ^* -open set W containing x such that $W \cap (V_{\lambda} \setminus I_{\lambda}) = \emptyset$ for $\lambda \neq \lambda_1, \lambda_2, ..., \lambda_n$. Since \mathcal{I} is τ -simple, $W = U \setminus I$ for some $U \in \tau$ and $I \in \mathcal{I}$. Thus, $(U \setminus I) \cap (V_{\lambda} \setminus I_{\lambda}) = \emptyset$ for $\lambda \neq \lambda_1, \lambda_2, ..., \lambda_n$ which implies that $(U \cap V_{\lambda}) \setminus (I \cup I_{\lambda}) = \emptyset$ for $\lambda \neq \lambda_1, \lambda_2, ..., \lambda_n$. Since \mathcal{I} is codense, then $U \cap V_{\lambda} = \emptyset$ for $\lambda \neq \lambda_1, \lambda_2, ..., \lambda_n$. Then $U \cap (V_{\lambda} \cap U_{\alpha}) = \emptyset$ for $\lambda \neq \lambda_1, \lambda_2, ..., \lambda_n$. By Lemma 5, $\mathcal{W} = \{V_{\lambda} \cap U_{\alpha} : \lambda \in \Lambda\}$ is τ -locally finite β -open refinement of \mathcal{U} . Since \mathcal{V} refines \mathcal{U} for every $V_{\lambda} \setminus I_{\lambda} \in \mathcal{V}$, there exists $U_{\alpha} \in \mathcal{U}$ such that $V_{\lambda} \setminus I_{\lambda} \subset U_{\alpha}$. Thus, $V_{\lambda} \setminus I_{\lambda} = U_{\alpha} \cap (V_{\lambda} \setminus I_{\lambda}) = (V_{\lambda} \cap U_{\alpha}) \setminus I_{\lambda} \subset V_{\lambda} \cap U_{\alpha} \subset U_{\alpha}$. Then $X \setminus \bigcup \{V_{\lambda} \cap U_{\alpha} : \lambda \in \Lambda, \alpha \in \Delta\} \subset X \setminus \bigcup \{V_{\lambda} \setminus I_{\lambda} : \lambda \in \Lambda\} \in \mathcal{I}$ which implies that $X \setminus \bigcup \{V_{\lambda} \cap U_{\alpha} : \lambda \in \Lambda, \alpha \in \Delta\} \in \mathcal{I}$.

Theorem 4. Let (X, τ, \mathcal{I}) be an ideal space. If \mathcal{I} is weakly τ -local and (X, τ, \mathcal{I}) is $\beta_1 \mathcal{I}$ -paracompact, then (X, τ^*, \mathcal{I}) is $\beta_1 \mathcal{I}$ -paracompact.

Proof. Let $\mathcal{U} = \{U_{\alpha} \setminus I_{\alpha} : \alpha \in \Delta, U_{\alpha} \in \tau, I_{\alpha} \in \mathcal{I}\}$ be a β -open cover of (X, τ^*, \mathcal{I}) . Then $\mathcal{W} = \{U_{\alpha} : \alpha \in \Delta\}$ is a β -open cover of X and so it has locally finite open refinement $\mathcal{V} = \{V_{\lambda} : \lambda \in \Lambda\}$ such that $X \setminus \bigcup \{V_{\lambda} : \lambda \in \Lambda\} \in \mathcal{I}$. Now the family $\{V_{\lambda} \cap I_{\alpha} : \lambda \in \Lambda\} \subset \mathcal{I}$ is locally finite. Since, \mathcal{I} is weakly τ -local, $\bigcup_{\lambda \in \Lambda} (V_{\lambda} \cap I_{\alpha}) \in \mathcal{I}$, by Lemma 4. Then $X \setminus \bigcup_{\lambda \in \Lambda} (V_{\lambda} \setminus I_{\alpha}) \subset (X \setminus \bigcup_{\lambda \in \Lambda} V_{\lambda}) \cup (\bigcup_{\lambda \in \Lambda} (V_{\lambda} \cap I_{\alpha})) \in \mathcal{I}$ which implies $X \setminus \bigcup_{\lambda \in \Lambda} (V_{\lambda} \setminus I_{\alpha}) \in \mathcal{I}$. Since \mathcal{V} is locally finite, $\mathcal{V}_1 = \{V_{\lambda} \setminus I_{\alpha} : \lambda \in \Lambda\}$ is locally finite. Since τ^* is finer than τ , \mathcal{V}_1 is τ^* -locally finite τ^* -open which refines \mathcal{U} . Hence (X, τ^*, \mathcal{I}) is $\beta_1 \mathcal{I}$ -paracompact.

Theorem 5. Let (X, τ) be a β -regular space. If (X, τ, \mathcal{I}) is $\beta_1 \mathcal{I}$ -paracompact, then every β -open cover of X has a locally finite β -closed \mathcal{I} -cover refinement.

Proof. Let \mathcal{U} be a β -open cover of X. For each $x \in X$, let $U_x \in \mathcal{U}$ such that $x \in U_x$. Since (X, τ) is β -regular, there exists $V_x \in \beta O(X, \tau)$ such that $x \in V_x \subset \beta cl(V_x) \subset U_x$. Then the family $\mathcal{V} = \{V_x : x \in X\}$ is a β -open cover refinement of \mathcal{U} . By hypothesis, there exist a locally finite open refinement $\mathcal{W} = \{W_\alpha : \alpha \in \Delta\}$ which refine \mathcal{V} such that $X \setminus \bigcup \{W_\alpha : \alpha \in \Delta\} \in \mathcal{I}$. The family $\beta cl(\mathcal{W}) = \{\beta cl(W_\alpha) : \alpha \in \Delta\}$ is locally finite for each $\alpha \in \Delta$. Now $X \setminus \bigcup \{\beta cl(W_\alpha) : \alpha \in \Delta\} \subseteq X \setminus \bigcup \{W_\alpha : \alpha \in \Delta\}$ implies $X \setminus \bigcup \{\beta cl(W_\alpha) : \alpha \in \Delta\} \in \mathcal{I}$. Hence $\beta cl(\mathcal{W})$ is \mathcal{I} -cover. Let $\beta cl(W_\alpha) \in \beta cl(\mathcal{W})$. Since \mathcal{W} refines \mathcal{V} , there is some $V_x \in \mathcal{V}$ such that $W_\alpha \subset V_x$ and so $\beta cl(W_\alpha) \subset \beta cl(V_x) \subset U_x$ implies that $\beta cl(W_\alpha) \subset U_x$. Hence $\beta cl(\mathcal{W})$ refines \mathcal{U} . Thus, $\beta cl(\mathcal{W}) = \{\beta cl(W_\alpha) : \alpha \in \Delta\}$ is a locally finite β -closed \mathcal{I} -cover refinement of \mathcal{U} .

If $\mathcal{I} = \{\emptyset\}$ in Theorem 5, then we have the following corollary.

Corollary 4. [1, Theorem 2.12] Let (X, τ) be a β -regular space.. If each β -open cover of the space X has a locally finite refinement, then each β -open cover of X has a locally finite β -closed refinement

Recall that a function $f : (X, \tau) \to (Y, \sigma)$ is said to be β -continuous [8] (resp., β irresolute [15]) if $f^{-1}(V) \in \beta O(X, \tau)$ for each open (resp., β -open) set V in (Y, σ) .

Theorem 6. Let $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be an open, β -irresolute and almost closed surjective function with N-closed point inverse. If (X, τ, \mathcal{I}) is $\beta_1 \mathcal{I}$ -paracompact, then $(Y, \sigma, f(\mathcal{I}))$ is $\beta_1 f(\mathcal{I})$ -paracompact.

Proof. Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Delta\}$ be a β -open cover of Y. Since f is β -irresolute, $\mathcal{U}_1 = \{f^{-1}(U_{\alpha}) : \alpha \in \Delta\}$ is a β -open cover of X. By hypothesis, there exists a τ -locally finite τ -open refinement $\mathcal{V}_1 = \{V_{\lambda} : \lambda \in \Lambda\}$ of \mathcal{U}_1 such that $X \setminus \bigcup \{V_{\lambda} : \lambda \in \Lambda\} \in \mathcal{I}$. Then $f(X \setminus \bigcup \{V_{\lambda} : \lambda \in \Lambda\}) \in f(\mathcal{I})$. Now, $f(X) \setminus \bigcup \{f(V_{\lambda}) : \lambda \in \Lambda\} \subseteq f(X \setminus \bigcup \{V_{\lambda} : \lambda \in \Lambda\})$ implies that $f(X) \setminus \bigcup \{f(V_{\lambda}) : \lambda \in \Lambda\} \in f(\mathcal{I})$ which implies that $Y \setminus \bigcup \{f(V_{\lambda}) : \lambda \in \Lambda\} \in f(\mathcal{I})$. Since f is open and \mathcal{V}_1 is τ -locally finite, $\mathcal{V} = \{f(V_{\lambda}) : \lambda \in \Lambda\}$ is σ -locally finite by Lemma 3. Let $f(V_{\lambda}) \in \mathcal{V}$. Then $V_{\lambda} \in \mathcal{V}_1$. Since \mathcal{V}_1 refines \mathcal{U}_1 , there exists $f^{-1}(U_{\alpha}) \in \mathcal{U}_1$ such that $V_{\lambda} \subset f^{-1}(U_{\alpha})$. Thus $f(V_{\lambda}) \subset f(f^{-1}(U_{\alpha}))$ implies that $f(V_{\lambda}) \subset U_{\alpha}$ for some $U_{\alpha} \in \mathcal{U}$. Hence \mathcal{V} refines \mathcal{U} . Therefore, $(Y, \sigma, f(\mathcal{I}))$ is $\beta_1 f(\mathcal{I})$ -paracompact.

Since every compact set is N-closed and every closed map is almost closed, we conclude the following corollary.

Corollary 5. Let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be an open, β -irresolute, closed surjective function with compact point inverse. If (X, τ, \mathcal{I}) is $\beta_1 \mathcal{I}$ -paracompact, then $(Y, \sigma, f(\mathcal{I}))$ is $\beta_1 f(\mathcal{I})$ -paracompact.

A function $f: (X, \tau) \to (Y, \sigma)$ is said to be strongly β -continuous [1] if $f^{-1}(V) \in \tau$ for each $V \in \beta O(Y, \sigma)$.

Theorem 7. Let $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be an open, strongly β -continuous, almost closed, surjective function with N-closed point inverse. If (X, τ, \mathcal{I}) is \mathcal{I} -paracompact, then $(Y, \sigma, f(\mathcal{I}))$ is $\beta_1 f(\mathcal{I})$ -paracompact.

Proof. Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Delta\}$ be a β -open cover of Y. Since f is strongly β -continuous, $\mathcal{U}_1 = \{f^{-1}(U_{\alpha}) : \alpha \in \Delta\}$ is an open cover of X. By hypothesis, there exists a τ -locally finite τ -open refinement $\mathcal{V}_1 = \{V_{\lambda} : \lambda \in \Lambda\}$ which refines \mathcal{U}_1 such that $X \setminus \bigcup \{V_{\lambda} : \lambda \in \Lambda\} \in \mathcal{I}$. Then $f(X \setminus \bigcup \{V_{\lambda} : \lambda \in \Lambda\}) \in f(\mathcal{I})$. Now $f(X) \setminus \bigcup \{f(V_{\lambda}) : \lambda \in \Lambda\} \subseteq f(X \setminus \bigcup \{V_{\lambda} : \lambda \in \Lambda\})$ implies that $f(X) \setminus \bigcup \{f(V_{\lambda}) : \lambda \in \Lambda\} \in f(\mathcal{I})$ which implies that $Y \setminus \bigcup \{f(V_{\lambda}) : \lambda \in \Lambda\} \in f(\mathcal{I})$. Since f is open and \mathcal{V}_1 is τ -locally finite, $\mathcal{V} = \{f(V_{\lambda}) : \lambda \in \Lambda\}$ is σ -locally finite by Lemma 3. Let $f(V_{\lambda}) \in \mathcal{V}$. Then $V_{\lambda} \in \mathcal{V}_1$. Since \mathcal{V}_1 refines \mathcal{U}_1 , there exists $f^{-1}(U_{\alpha}) \in \mathcal{U}_1$ such that $V_{\lambda} \subset f^{-1}(U_{\alpha})$. Thus $f(V_{\lambda}) \subset f(f^{-1}(U_{\alpha}))$ implies that $f(V_{\lambda}) \subset U_{\alpha}$ for some $U_{\alpha} \in \mathcal{U}$. Hence \mathcal{V} refines \mathcal{U} . Therefore, $(Y, \sigma, f(\mathcal{I}))$ is $\beta_1 f(\mathcal{I})$ -paracompact.

Recall that a function $f : (X, \tau) \to (Y, \sigma)$ is said to be pre β -open[15] if for every β -open set V of (X, τ) , f(V) is β -open in (Y, σ) .

Theorem 8. Let $f : (X, \tau) \to (Y, \sigma, \mathcal{J})$ be a pre β -open, continuous, bijective function. If (Y, σ, \mathcal{J}) is a $\beta_1 \mathcal{J}$ -paracompact, then $(X, \tau, f^{-1}(\mathcal{J}))$ is $\beta_1 f^{-1}(\mathcal{J})$ -paracompact.

Proof. Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Delta\}$ be a β -open cover of X. Since f is a pre β -open, $f(\mathcal{U}) = \{f(U_{\alpha}) : \alpha \in \Delta\}$ is a β -open cover of Y and so it has a σ -locally finite σ open refinement $\mathcal{W} = \{W_{\lambda} : \lambda \in \Lambda\}$ of $f(\mathcal{U})$ such that $Y \setminus \bigcup \{W_{\lambda} : \lambda \in \Lambda\} \in \mathcal{J}$. Let $Y \setminus \bigcup \{W_{\lambda} : \lambda \in \Lambda\} = J \in \mathcal{J}$. This implies $Y = (\bigcup \{W_{\lambda} : \lambda \in \Lambda\}) \cup J$. Then $f^{-1}(Y) =$ $(\bigcup \{f^{-1}(W_{\lambda}) : \lambda \in \Lambda\}) \cup f^{-1}(J)$ which implies $X = (\bigcup \{f^{-1}(W_{\lambda}) : \lambda \in \Lambda\}) \cup f^{-1}(J)$. It follows that $X \setminus \bigcup \{f^{-1}(W_{\lambda}) : \lambda \in \Lambda\} \in f^{-1}(\mathcal{J})$. Since f is continuous, by Lemma 2, $\mathcal{V} = \{f^{-1}(W_{\lambda}) : \lambda \in \Lambda\}$ is is τ -open, τ -locally finite. Let $f^{-1}(W_{\lambda}) \in \mathcal{V}$. Then $W_{\lambda} \in \mathcal{W}$. Since \mathcal{W} refines $f(\mathcal{U})$, there exists $f(U_{\alpha}) \in f(\mathcal{U})$ such that $W_{\lambda} \subset f(U_{\alpha})$. Thus $f^{-1}(W_{\lambda}) \subset f^{-1}(f(U_{\alpha}))$ implies that $f^{-1}(W_{\lambda}) \subset U_{\alpha}$ for some $U_{\alpha} \in \mathcal{U}$. Hence \mathcal{V} refines \mathcal{U} . Therefore, $(X, \tau, f^{-1}(\mathcal{J}))$ is $\beta_1 f^{-1}(\mathcal{J})$ -paracompact.

If $\mathcal{I} = \{\emptyset\}$ in Theorem 8, then we have the following corollary.

Corollary 6. Let $f : (X, \tau) \to (Y, \sigma)$ be a pre β -open, continuous, bijective function. If (Y, σ) is β_1 -paracompact, then (X, τ) is β_1 -paracompact.

3. $\beta_1 \mathcal{I}$ -paracompact subsets

In this section, we define the subsets and subspaces of $\beta_1 \mathcal{I}$ -paracompact and study some of their properties.

Definition 3. A subset A of an ideal space (X, τ, \mathcal{I}) is said to be $\beta_1 \mathcal{I}$ -paracompact relative to X ($\beta_1 \mathcal{I}$ -paracompact subset) if each cover \mathcal{U} of A by β -open sets of X, there exists a

locally finite open refinement \mathcal{V} of \mathcal{U} such that $A \setminus \bigcup \{V : V \in \mathcal{V}\} \in \mathcal{I}$. A is said to be $\beta_{1_A}\mathcal{I}_A$ -paracompact ($\beta_{1_A}\mathcal{I}_A$ -paracompact subspace) if $(A, \tau_A, \mathcal{I}_A)$ is $\beta_{1_A}\mathcal{I}_A$ -paracompact as a subspace, where τ_A is the usual subspace topology and $\mathcal{I}_A = \{A \cap I : I \in \mathcal{I}\}$.

A subset A of a space (X, τ) is said to be βg -closed [6] if $\beta cl(A) \subseteq U$ whenever $A \subset U$ and U is any β -open set in (X, τ) .

Theorem 9. Every βg -closed subset of a $\beta_1 \mathcal{I}$ -paracompact is $\beta_1 \mathcal{I}$ -paracompact.

Proof. Let A be a βg -closed subset of (X, τ, \mathcal{I}) and $\mathcal{U} = \{U_{\alpha} : \alpha \in \Delta\}$ be a cover of A by β -open sets of X. Since $A \subseteq \bigcup_{\alpha \in \Delta} U_{\alpha}$ and A is a βg -closed, we have $\beta cl(A) \subseteq \bigcup_{\alpha \in \Delta} U_{\alpha}$. Then $\mathcal{U}_1 = \mathcal{U} \cup \{X \setminus \beta cl(A)\}$ is a β -open cover of X. By hypothesis, there exist a locally finite open family $\mathcal{V} = \{V_{\lambda} : \lambda \in \Lambda\} \cup \{V\}$ which refines $\mathcal{U}_1 (V_{\lambda} \subset U_{\alpha}$ for some $\alpha \in \Delta$ and $V \subset X \setminus \beta cl(A)$ such that $X \setminus \bigcup [\{V_{\lambda} : \lambda \in \Lambda\} \cup \{V\}] \in \mathcal{I}$. Then $\beta cl(A) \setminus \bigcup \{V_{\lambda} : \lambda \in \Lambda\} = \beta cl(A) \setminus [V \cup (\bigcup \{V_{\lambda} : \lambda \in \Lambda\})] \subset X \setminus \bigcup [\{V_{\lambda} : \lambda \in \Lambda\} \cup \{V\}] \in \mathcal{I}$. Since $A \setminus \bigcup \{V_{\lambda} : \lambda \in \Lambda\} \subset \beta cl(A) \setminus \bigcup \{V_{\lambda} : \lambda \in \Lambda\}$, $A \setminus \bigcup \{V_{\lambda} : \lambda \in \Lambda\} \cup \{V\}] \in \mathcal{I}$, by heredity property of \mathcal{I} . Since $\mathcal{V} = \{V_{\lambda} : \lambda \in \Lambda\} \cup \{V\}$ is a locally finite, the family $\mathcal{V}_1 = \{V_{\lambda} : \lambda \in \Lambda\}$ is locally finite. Thus, the family \mathcal{V}_1 is locally finite open and \mathcal{V}_1 refines \mathcal{U} . Therefore, A is $\beta \mathcal{I}$ -paracompact.

Theorem 10. Every regular open subset of a $\beta_1 \mathcal{I}$ -paracompact is $\beta_1 \mathcal{I}_A$ -paracompact.

Proof. Let A be a regular open in (X, τ) and $\mathcal{W} = \{W_{\alpha} : \alpha \in \Delta\}$ be a β -open cover of A in $(A, \tau_A, \mathcal{I}_A)$. Since A is open in $(X, \tau, \mathcal{I}), W_{\alpha}$ is a β -open set in (X, τ, \mathcal{I}) for each $\alpha \in \Delta$, by Theorem 1. Then $\mathcal{U} = \{W_{\alpha} : \alpha \in \Delta\} \cup \{X \setminus A\}$ is a β -open cover of the $\beta_1 \mathcal{I}$ paracompact (X, τ, \mathcal{I}) and so it has a locally finite open refinement $\mathcal{V} = \{V_{\lambda} : \lambda \in \Lambda\}$ such that $X \setminus \cup \{V_{\lambda} : \lambda \in \Lambda\} = I \in \mathcal{I}$. Then $A \subset A \cap [(\cup \{V_{\lambda} : \lambda \in \Lambda\}) \cup I] = (\cup \{V_{\lambda} \cap A : \lambda \in \Lambda\}) \cup I_A$ which implies that $A \setminus \cup \{V_{\lambda} \cap A : \lambda \in \Lambda\} \in \mathcal{I}_A$. Let $x \in A$. Since \mathcal{V} is locally finite, there exists $V \in \tau(x)$ such that $V_{\lambda} \cap V = \emptyset$ for $\lambda \neq \lambda_1, \lambda_2, ..., \lambda_n$. Then $(V_{\lambda} \cap V) \cap A = \emptyset$ for $\lambda \neq \lambda_1, \lambda_2, ..., \lambda_n$ and so $(V_{\lambda} \cap A) \cap (V \cap A) = \emptyset$. Therefore, $\mathcal{V}_A = \{V_{\lambda} \cap A : \lambda \in \Lambda\}$ is τ_A -locally finite. Let $V_{\lambda} \cap A \in \mathcal{V}_A$. Since \mathcal{V} refines \mathcal{U} , there is some $W_{\alpha} \in \mathcal{U}$ such that $V_{\lambda} \subset W_{\alpha}$ which implies $V_{\lambda} \cap A \subset W_{\alpha}$. Therefore, \mathcal{V}_A refines \mathcal{W} . Hence A is $\beta_{1_A} \mathcal{I}_A$ -paracompact.

Corollary 7. Every clopen subset of a $\beta_1 \mathcal{I}$ -paracompact is $\beta_{1A} \mathcal{I}_A$ -paracompact.

If $\mathcal{I} = \{\emptyset\}$ in Theorem 9 and Theorem 10, then we have the following corollary.

Corollary 8. [1, Theorem 3.5] Let (X, τ) be a β_1 -paracompact space. Then: (i) If A is regular open subset of (X, τ) , then (A, τ_A) is β_{1A} -paracompact; (ii) If A is a β_g -closed subset of (X, τ) , then A is a β_1 -paracompact.

Theorem 11. Let A and B be subsets of an ideal space (X, τ, \mathcal{I}) such that $A \subset B \subset X$. Then the following conditions hold.

(i) If A is $\beta \mathcal{I}$ -paracompact and B is β -open in (X, τ) , then A is $\beta_{1B} \mathcal{I}_B$ -paracompact.

(ii) If A is $\beta_{1B}\mathcal{I}_B$ -paracompact and B is open in (X, τ) , then A is $\beta_1\mathcal{I}$ -paracompact.

Proof. (i) Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Delta\}$ be a cover of A such that $U_{\alpha} \in \beta O(B, \tau_B)$. Since $B \in \beta O(X, \tau)$, \mathcal{U} is a β -open cover of A in (X, τ) , by Theorem 1. By hypothesis, there exists a locally finite open family $\mathcal{V} = \{V_{\lambda} : \lambda \in \Lambda\}$ refines \mathcal{U} such that $A \setminus \bigcup \{V_{\lambda} : \lambda \in \Lambda\} = I \in \mathcal{I}$. Then $A \subseteq (\bigcup \{V_{\lambda} : \lambda \in \Lambda\}) \cup I$ and $A = A \cap B \subseteq [\bigcup \{V_{\lambda} : \lambda \in \Lambda\} \cup I] \cap B = \bigcup \{V_{\lambda} \cap B : \lambda \in \Lambda\} \in I_B$. Let $x \in B$. Since \mathcal{V} is locally finite, there exists $U \in \tau(x)$ such that $U \cap V_{\lambda} = \emptyset$ for $\lambda \neq \lambda_1, \lambda_2, ..., \lambda_n$. This implies $(U \cap V_{\lambda}) \cap B = \emptyset$ for $\lambda \neq \lambda_1, \lambda_2, ..., \lambda_n$ which implies $(U \cap B) \cap (V_{\lambda} \cap B) = \emptyset$ for $\lambda \neq \lambda_1, \lambda_2, ..., \lambda_n$. Therefore, the family $\mathcal{V}_B = \{V_{\lambda} \cap B : \lambda \in \Lambda\}$ is τ_B -locally finite τ_B -open . Let $V_{\lambda} \cap B \in \mathcal{V}_B$. Since \mathcal{V} refines \mathcal{U} there exits $U_{\alpha} \in \mathcal{U}$ such that $V_{\lambda} \subset U_{\alpha}$ and so $V_{\lambda} \cap B \subset U_{\alpha}$. Hence \mathcal{V}_A refines \mathcal{U} . Therefore A is $\beta_{1B}\mathcal{I}_B$ -paracompact.

(*ii*) Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Delta\}$ be a cover of A by β -open subsets of X. Then the family $\mathcal{U}_1 = \{B \cap U_{\alpha} : \alpha \in \Delta\}$ is a β -open cover of A in $(B, \tau_B, \mathcal{I}_B)$. By hypothesis, exists τ_B -locally finite τ_B -open family $\mathcal{V} = \{V_{\lambda} : \lambda \in \Lambda\}$ refines \mathcal{U}_1 such that $A \setminus \bigcup \{V_{\lambda} : \lambda \in \Lambda\} \in \mathcal{I}_B$, where $\mathcal{I}_B = I \cap B$. It follows that $A \setminus \bigcup \{V_{\lambda} : \lambda \in \Lambda\} \in \mathcal{I}$. Since B is open in X. Then by Theorem 1, \mathcal{V} is a locally finite open refinement of \mathcal{U} . Therefore, A is $\beta_1 \mathcal{I}$ -paracompact.

If $\mathcal{I} = \{\emptyset\}$ in Theorem 11, then we have the following corollary.

Corollary 9. [1, Theorem 3.6] Let A and B be subsets of an ideal space (X, τ) such that $A \subset B \subset X$. Then:

(i) If A is β -paracompact and B is β -open in (X, τ) , then A is β_{1B} -paracompact.

(ii) If A is β_{1B} -paracompact and B is open in (X, τ) , then A is β_1 -paracompact.

Theorem 12. Let A be a clopen subspace of an ideal space (X, τ, \mathcal{I}) . Then A a is $\beta_{1A}\mathcal{I}_A$ -paracompact if and only if it is $\beta_1\mathcal{I}$ -paracompact.

Proof. To prove necessity, let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Delta\}$ be a cover of A by β -open subsets of the ideal subspace $(A, \tau_A, \mathcal{I}_A)$. Since A is open, \mathcal{U} is a cover of A by β -open subsets of X and so it has a locally finite open refinement, say $\mathcal{V} = \{V_{\lambda} : \lambda \in \Lambda\}$ such that $A \setminus \bigcup \{V_{\lambda} : \lambda \in \Lambda\} = I \in \mathcal{I}$. Then $A \subseteq (\bigcup \{V_{\lambda} : \lambda \in \Lambda\}) \cup I$. Now $A \subseteq A \cap [(\bigcup \{V_{\lambda} : \lambda \in \Lambda\}) \cup I] = \bigcup \{V_{\lambda} \cap A : \lambda \in \Lambda\} \cup (A \cap I)$. It follows that $A \setminus \bigcup \{V_{\lambda} \cap A : \lambda \in \Lambda\} \in \mathcal{I}_A$. Let $x \in A$. Since $\mathcal{V} = \{V_{\lambda} : \lambda \in \Lambda\}$ is locally finite, there exists $W \in \tau(x)$ such that $V_{\lambda} \cap W = \emptyset$ for $\lambda \neq \lambda_1, \lambda_2, ..., \lambda_n$. Then $(V_{\lambda} \cap W) \cap A = \emptyset$ for $\lambda \neq \lambda_1, \lambda_2, ..., \lambda_n$ which implies $(V_{\lambda} \cap A) \cap (W \cap A) = \emptyset$ for $\lambda \neq \lambda_1, \lambda_2, ..., \lambda_n$. Thus the family $\mathcal{V}_A = \{V_{\lambda} \cap A : \lambda \in \Lambda\}$ is τ_A -locally finite τ_A -open refitment of \mathcal{U} . Hence A is $\beta_{1,A}\mathcal{I}_A$ -paracompact.

To prove sufficiency, let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Delta\}$ be a cover of A by β -open subsets of an ideal space (X, τ, \mathcal{I}) . Then $\mathcal{U}_1 = \{A \cap U_{\alpha} : \alpha \in \Delta\}$ is a β -open cover of the $\beta_{1_A}\mathcal{I}_{A}$ -paracompact ideal subspace $(A, \tau_A, \mathcal{I}_A)$ and so it has a τ_A -locally finite τ_A -open refinement $\mathcal{V} = \{V_{\lambda} : \lambda \in \Lambda\}$ such that $A \setminus \bigcup \{V_{\lambda} : \lambda \in \Lambda\} \in \mathcal{I}_A$. Then $A \setminus \bigcup \{V_{\lambda} : \lambda \in \Lambda\} \in \mathcal{I}$. But A is an open set in X, so V_{λ} is an open set for every $\lambda \in \Lambda$. Now $\tau_A \subseteq \tau$ and $X \setminus A$ is an open set in X which intersects no member of \mathcal{V} . Therefore \mathcal{V} is locally finite and refines \mathcal{U} . Thus A is a $\beta_1 \mathcal{I}$ -paracompact.

If $\mathcal{I} = \{\emptyset\}$ in Theorem 12, then we have the following corollary.

Corollary 10. [1, Theorem 3.8] Let A be a clopen subspace of a space (X, τ) . Then A is a β_{1A} -paracompact if and only if it is β_1 -paracompact.

Theorem 13. If (X, τ, \mathcal{I}) is T_2 space and A is $\beta_1 \mathcal{I}$ -paracompact relative to X, then A is closed in (X, τ^*) .

Proof. Let $x \in X \setminus A$. For each $y \in A$, there exists $U \in \tau$ such that $y \in U_y$ and $x \notin cl(U_y)$. Therefore, the family $\mathcal{U} = \{U_y : y \in A\}$ is an open cover of A which is $\beta_1\mathcal{I}$ -paracompact relative to X. Since \mathcal{U} is a β -open cover of A and so it has a locally finite open refinement $\mathcal{V} = \{V_\lambda : \lambda \in \Lambda\}$ of \mathcal{U} such that $A \setminus \bigcup \{V_\lambda : \lambda \in \Lambda\} \in \mathcal{I}$. Now $x \notin cl(V_\lambda)$ for each λ implies that $x \notin \bigcup \{cl(V_\lambda) : \lambda \in \Lambda\}$. Since the locally finite family \mathcal{V} is closure-preserving, $x \notin \bigcup \{cl(V_\lambda) : \lambda \in \Lambda\} = cl(\bigcup \{V_\lambda : \lambda \in \Lambda\})$. Let $U = X \setminus cl(\bigcup \{V_\lambda : \lambda \in \Lambda\})$ and $J = A \setminus cl(\bigcup \{V_\lambda : \lambda \in \Lambda\}) \subset A \setminus \bigcup \{V_\lambda : \lambda \in \Lambda\} = I_1$, where $I_1 \in \mathcal{I}$. Then $U \setminus J \in \tau^*(x)$ and $(U \setminus J) \cap A = \emptyset$ which implies $x \notin A^*$. Hence $A^* \subset A$. This shows that A is closed in (X, τ^*) .

If $\mathcal{I} = \{\emptyset\}$ in Theorem 13, then we conclude the following corollary.

Corollary 11. Let A be a β_1 -paracompact relative subset of a T_2 space (X, τ) . Then A is closed in (X, τ) .

Theorem 14. In an ideal space (X, τ, \mathcal{I}) , if A and B are $\beta_1 \mathcal{I}$ -paracompact, then $A \cup B$ is $\beta_1 \mathcal{I}$ -paracompact.

Proof. Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Delta\}$ be a cover of $A \cup B$ by β -open sets in X. Then \mathcal{U} is a β open cover of A and B. By hypothesis, there exist locally finite families $\mathcal{V} = \{V_{\lambda} : \lambda \in \Lambda\}$ of A and $\mathcal{W} = \{W_{\gamma} : \gamma \in \Lambda_0\}$ of B which refines \mathcal{U} such that $A \setminus \cup \{V_{\lambda} : \lambda \in \Lambda\} \in \mathcal{I}$ and $B \setminus \cup \{W_{\gamma} : \gamma \in \Lambda_0\} \in \mathcal{I}$. Then $A \cup B \subset (\cup \{V_{\lambda} : \lambda \in \Lambda\} \cup I_1) \cup (\cup \{W_{\gamma} : \gamma \in \Lambda_0\} \cup I_2)$,
where $I_1, I_2 \in \mathcal{I}$ which implies that $A \cup B \subset (\cup \{V_{\lambda} \cup W_{\gamma} : \lambda \in \Lambda, \gamma \in \Lambda_0\}) \cup (I_1 \cup I_2)$.
It follows that $(A \cup B) \setminus \cup \{V_{\lambda} \cup W_{\gamma} : \lambda \in \Lambda, \gamma \in \Lambda_0\} \in \mathcal{I}$. Since the families \mathcal{V} and \mathcal{W} are locally finite the family $\mathcal{V}' = \{V_{\lambda} \cup W_{\gamma} : \lambda \in \Lambda, \gamma \in \Lambda_0\}$ is locally finite, by Lemma 1
which refines \mathcal{U} . Therefore, $A \cup B$ is $\beta_1 \mathcal{I}$ -paracompact.

Theorem 15. In an ideal space (X, τ, \mathcal{I}) , if A is $\beta_1 \mathcal{I}$ -paracompact and B is a β -closed subset of X, then $A \cap B$ is $\beta_1 \mathcal{I}$ -paracompact.

Proof. Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Delta\}$ be a cover of $A \cap B$ by β -open subsets of X. Then $\mathcal{U}_A = \mathcal{U} \cup \{X \setminus B\}$ is a cover of A by β -open sets in X. By hypothesis, there exists a locally finite open refinement $\mathcal{V}_A = \{V_{\lambda} : \lambda \in \Lambda\} \cup \{V\}$ of \mathcal{U}_A , where $V_{\lambda} \subset \mathcal{U}_{\alpha}$ and $V \subset X \setminus B$ such that $A \setminus [(\cup \{V_{\lambda} : \lambda \in \Lambda\}) \cup \{V\}] \in \mathcal{I}$. Let $A \setminus [(\cup \{V_{\lambda} : \lambda \in \Lambda\}) \cup \{V\}] = I$. Then $I \cap B = A \setminus [(\cup \{V_{\lambda} : \lambda \in \Lambda\}) \cup \{V\}] \cap B = A \cap (X \setminus [(\cup \{V_{\lambda} : \lambda \in \Lambda\}) \cup \{V\}]) \cap B$ implies that $I \cap B = A \cap [X \setminus (\cup \{V_{\lambda} : \lambda \in \Lambda\}) \cap \{X \setminus V\} \cap B]$. It follows that $I \cap B =$ $(A \cap B) \setminus \cup \{V_{\lambda} : \lambda \in \Lambda\} \in \mathcal{I}$. Since $V_{\lambda} \subset V_{\lambda} \cup V$, $\mathcal{V} = \{V_{\lambda} : \lambda \in \Lambda\}$ is locally finite open by Theorem 2 which refines \mathcal{U} . Hence $A \cap B$ is $\beta_1 \mathcal{I}$ -paracompact.

Corollary 12. Let $f : (X, \tau) \to (Y, \sigma, \mathcal{J})$ be a pre β -open, continuous, bijective function. If A is $\beta_1 \mathcal{J}$ -paracompact relative to Y, then $f^{-1}(A)$ is $\beta_1 f^{-1}(\mathcal{J})$ -paracompact relative to X.

Acknowledgements

The author would like to thank the referees for their helpful suggestions.

References

- [1] H. H. AlJarrah. β_1 -paracompact spaces. J. Nonlinear Sci. Appl, 9:1728–1734, 2016.
- [2] D. Andrijević. Semi-preopen sets. Mat. Vesn., 38:24–32, 1986.
- [3] A. V. Arkhangelski and V. I. Ponomarev. Fundamentals of General Topology Problems and Exercises. Int. Hindustan, India, 1984.
- [4] N. Bourbaki. *General Topology*. Hermann Addison Wesley, Massachusets, 1966.
- [5] N. Bourbaki. *General Topology Part I.* Addison-Wesley, Reading, Mass, 1966.
- [6] M. Caldas and S. Jafari. Weak and strong forms of β-irresolutess. Arab. J. Sci. Eng, 31:31–39, 2006.
- [7] D. Carnahan. Locally nearly-compact spaces. Boll. Un. Mat. Ital, 6:146–153, 1972.
- [8] M. E. Abd El-Monsef, S. N. El-Deeb, and R. A. Mahmoud. β-open sets and βcontinuous mapping. Bull. Fac. Sci.Assint Univ, 12:77–90, 1983.
- [9] T. R. Hamlett and D. Janković. On almost paracompact and para-H-closed spaces. Quest. Answers Gen. Topology, 11:139–143, 1993.
- [10] D. Janković and T. R. Hamlett. New Topologies from Old via Ideals. Amer. Math. Monthly, 97(4):295–310, 1990.
- [11] D. Janković and T. R. Hamlett. Compatible extensions of Ideals. Boll. U. M. I, 7(6-B):453-465, 1992.
- [12] K. Kuratowski. Topology I, Warszawa. Warszawa, 1933.
- [13] N. Levine. Semi-open sets and semi-continuity in topological spaces. Amer. Math. Monthly, 70:36–41, 1963.
- [14] A. N. Geaisa M. E. Abd El-Monsef and R. A. Mahmoud. β-regular spaces. Proc. Math. Phys. Soc. Egypt, 60:705–717, 1985.
- [15] R. A. Mahmoud and M. E. Abd El-Monsef. β-irresolute and β-topological invariant. Proc. Pakistan Acad. Sci, 27:285–296, 1990.
- [16] G. B. Navalagi. Semi-precontinuous functions and properties of generalized semipreclosed sets in topological spaces. Int. J. Math. Math. Sci, 29:85–98, 2002.
- [17] O. Njastad. On some classes of nearly open sets. Pac. J. Math, 15:961–970, 1965.

- [18] T. Noiri. Completely continuous image of nearly paracompact space. Mat. Vesn, 29:59–64, 1977.
- [19] T. Noiri. Weak and strong forms of β -irressolute functions. Acta Math. Hungar, 99:315–328, 2003.
- [20] N. Sathiyasundari and V. Renukadevi. S₁-Paracompactness with Respect to An Ideal. Acta Universitatis Apulensis, 35:215–227, 2013.
- [21] M. H. Stone. Applications of the theory of Boolean rings to general topology. Trans. Amer. Math. Soc, 41:375–481, 1937.
- [22] D. Rose T. R. Hamlett and D. Janković. Paracompactness with respect to an ideal. Internat. J. Math. Math. Sci, 20(3), pages = 433-442,), 1997.
- [23] R. Vaidyanathaswamy. Set Topology. Chelsea Publishing Company, New York, 1946.
- [24] S. Willard. *General Topology*. Addison-Wesley Publishing Company, 1970.