Corrigendum The Generalized Artin Primitive Root Conjecture (EUROPEAN J. OF PURE AND APPLIED MATH. Vol. 11, No. 1, 2018, 23-34)

N. A. Carella

Abstract

The subset of integers $\mathcal{N}_2= \{ n\in \mathbb{N}:\text{ord}_n(2)=\lambda(n) \}$ in page 24, \cite{CN18}, should be \\ $$\label{eq2-40} \mathcal{N}_u =\left\{ n\in \mathbb{N}:\ord_n(u)=\lambda(n) \text{ and } p \mid n \Rightarrow \ord_p(u)=p-1, \ord_{p^2}(u)=p(p-1) \right\} $$ where $u \ne \pm 1, v^2$.

In addition, Lemma 3.4 was corrected. 

These changes do not affect the main result. The proof of Theorem 1.1 remains the same. The new version of the paper is available at arXiv:1504.00843v9.

Keywords

Primitive root, Generalized primitive root

Full Text:

PDF